用户名: 密码: 验证码:
融合叶尖定时信号的旋转机械转子故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转子系统作为旋转机械的核心部件,其运行过程中的故障呈现多种形式,振动问题十分复杂。传统的轴系振动监测方法在转子不平衡、不对中、碰摩等故障的诊断领域得到了广泛研究,但在分析叶盘裂纹、叶片失效、气激振动等故障方面受到了限制。叶尖定时技术能够监测旋转叶片的运行参数,在提取叶片、叶盘故障特征的应用中具有特殊优势。本文主要研究融合叶尖定时测振与轴系振动监测两种信息源,结合历史与经验信息,在已知故障发生和故障类型基础上,辨识旋转机械转子故障程度、位置等相关参数,减小判断误差,提高致信度的故障诊断技术。具体开展了以下几个方面的工作:
     将两个按一定角度安装的叶尖定时传感器构成采样双通道,在叶尖定时数据分析中引入了通信领域中的ESPRIT方法用于频率辨识。该方法可分辨叶片振动数据中的多个频率分量。分析了转速变化、信噪比等参数对辨识精度的影响。研究了用于均布传感器的叶尖定时叶片振动数据重建算法,并根据B样条函数构造了插值核函数,通过仿真分析了该函数的重构性能和误差产生的原因。经实验验证该算法可用于对叶片振动幅值参数的辨识。
     采用传递矩阵法和有限元法分别建立了转子不平衡故障和碰摩故障模型,求解故障力振动响应,分析了各相关参数对响应特征的影响。并在此基础上结合小波空域滤波原理,提出了小波包系数相关滤波算法。该方法在已知故障类型的前提下可用于强背景信号下的故障特征提取和并发故障情况下的指定特征提取。将该方法与小波重分配谱、Hilbert-Huang变换两种时频分析方法结合,应用于碰摩故障加速度信号的特征提取,取得了较好的效果。
     叶尖定时数据中耦合的转子轴系故障特征会影响叶片工作状态判断的准确性,针对这个问题本文采用了小波包系数相关滤波算法来滤除叶尖定时数据中转子不平衡故障响应。该方法首先通过ESPRIT算法辨识振动频率特征,再融合轴系测振系统定量识别叶盘不平衡量,将其响应能量作为阈值进行滤波。经实验分析,该方法能在一定程度上抑制叶片振动信号中由叶盘不平衡故障带来的干扰。
     通过实验探索了碰摩故障的定位分析方法,该方法以结点振动响应的分布变化为依据,判断了转子的轴向碰摩位置,并基于周向均布叶尖定时传感器判断了叶片—机匣的碰摩位置。实验融合叶尖定时测振和轴系振动监测这两种信息源,验证了进行叶盘转子碰摩位置全面诊断的可行性。
The vibration of rotor system which serves as the core component of rotating machinery is extremely complicated because of the result of various fault types. The traditional methods for shaft vibration monitoring have been researched extensively on the areas of fault diagnosis such as unbalance, misalignment and rubbing, but are limited in the aspect of disk crack, blade failure and turbulence excitation vibration. At the same time, blade tip-timing technology has superiority in terms of blade and blisk fault features extraction due to the application of monitoring the operating parameters of rotating blades. In this dissertation, the research focuses on the fault diagnosis technology to integrate the information from blade tip-timing system and rotor shaft vibration monitoring system for the purpose of error reduction and accuracy improvement. History experience is combined to identify the malfunction parameters on the condition that the fault occurrence and its type have been known. The specific details are as follows:
     A method for the frequency identification from blade tip-timing data matrix is presented. The matrix is based on ESPRIT and obtained from two sensors which work as the double signal channels, and mounted with a specific angle. This paper is analyzed the influence on accuracy caused by fluctuating of revolving speed and SNR.
     The reconstruction method for blade tip-timing signal from equispaced sensors is studied. The reconstructive kernels consist of B-spline function which is analyzed in the performance and error reasons by simulation. Experiment results indicate that the reconstructive signal is helpful for the identification of the blades vibration amplitude which is one of the features for rotating assemblies fault diagnosis.
     The vibration responses of fault force are solved on the base of rotor unbalance and rubbing fault model which are built by transfer matrix and finite element method respectively. The influences on response features caused by relevant parameters are also analyzed. Based on these analyses as well as wavelet spatial filtering theory, it proposes a wavelet packet coefficients correlation filtering algorithm. According to the known fault type, this algorithm can be applied to specify fault feature extraction from strong background signal or concurrent faults. Combining with wavelet redistribution spectrum and Hilbert-Huang transform, this filtering algorithm achieves favorable result in rotor rubbing feature extraction from acceleration signal.
     The precision would be influenced by rotor shaft fault response during the blade working condition judgment. The wavelet packet coefficients correlation filtering algorithm is applied to solve this problem. At first the ESPRIT method is used to identify the frequency of blade tip-timing data, and then the energy of blisk unbalance response amplitude which is identified by a quantitative diagnosis method is performed as the threshold value. The experiment results indicate that this method could restrain the interference caused by the blisk unbalance in the blade vibration signals to some extent.
     The rubbing fault locating-analysis method is explored by experiment. The axial rubbing location of rotor is estimated according to the distributing variation of node vibration response, and so does the blade-case rubbing location based on the blade tip-timing sensor equispaced around the case. The feasibility of diagnosis method of the blisk rotor rubbing location quantitatively is verified according to the two information sources blade tip-timing and shaft vibration monitoring.
引文
[1]孙海东,傅强,航空发动机振动监测研究,机械设计与制造,2007,2:127~129
    [2]韩清凯,于涛,王德友,等,故障转子系统的非线性振动分析与诊断方法,北京:科学出版社,2010
    [3] 430厂,驻430厂军代表室,航空发动机叶片故障分析研究,航空发动机叶片故障及预防研讨会论文集,Jan. 2005,北京:36-53
    [4]钟秉林,黄仁,机械故障诊断学,北京:机械工业出版社,2002
    [5]赵玉成,陈荣华,马占国,旋转机械动力辨识与故障诊断技术,徐州:中国矿业大学出版社,2008
    [6]虞和济,陈长征,张省,等,基于神经网络的智能诊断,北京:冶金工业出版社,2002
    [7]胖永新,何伟明,旋转机械振动信号处理的发展及现状,水电站机电技术,2008,31(6): 51~55
    [8] Martinson, L. Smith, R. Digital matched filtering with Pipelined Floating Point Fast Fourier transforrns(FFTs). Acoustics, Speech, and Signal Processing, IEEE Transactionson on Volume23,Issue 2,Apr 1975: 222~234
    [9] Dae Youn, Jin-Geol Kim. Short-time Fourier Transform Using Bank of Low-pass filters. Acousties, Speech, and Signal Processing, IEEE Transactions on Volume33, Issue l, Feb 1985: 182~185
    [10] Arnin, M.G. Kai Di Feng, Short-time Fourier Transforms Using Cascade filter structures. Analog Circuits and Systerns II: 1995, 42(10): 631~641
    [11] I. Soltani Bozchalooi, Ming Liang, A Smoothness Index-Guided Approach to Wavelet Parameter Selection in Signal De-noising and Fault Detection, Journal of Sound and Vibration, 2007,1-2(308): 246-267
    [12] A. A. Chanerley, N. A. Alexander, Correcting Data from an Unknown Accelerometer Using Recursive Least Squares and Wavelet De-noising, Computers & Structures, 2007,21-22(85): 1679-1692
    [13]李富才,何正嘉,陈进,小波域相关滤波法及其早期故障预示应用田.振动工程学报,2005,18(2): 145~148
    [14] A. S. Rafsanjani, Rolling Element Bearings Multi-fault Classification Based on the Wavelet Denoising and Support Vector Machine, Mechanical Systems and Signal Processing, 2007,7(21): 2933-2945
    [15] J. Rafiee, P. Tes, A. Harifi. M. Sadeghi, A Novel Technique for Selecting Mother Wavelet Function Using an Intelligent Fault Diagnosis System, Expert System with Application, 2009,3(36): 4862-4875
    [16]周强,顾必冲,一种机械故障信号滤波器的设计,水利电力机械,1998,6(3):15~58
    [17]明阳,陈进,董广明,基于循环维纳滤波器和包络谱的轴承故障诊断,振动工程学报,2010,23(5): 537~540
    [18]叶大鹏,丁启全,吴昭同,Kalman滤波在机械故障信号预处理中的应用,机床与液压,2005,10:187~195
    [19]韩清凯,张红军,黄振东,等,基于Kalman滤波的机械系统微弱突变振动信号的检测方法[C],第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议论文集, 2009:798~803
    [20]宓为建,沈一飞,冲击振动响应下的自适应滤波模型研究,振动与冲击,1995,54:77~81
    [21]孙晖,朱善安,基于自适应滤波的滚动轴承故障诊断研究,浙江大学学报(工学版),2005,39(11):1746~1749
    [22] Norden E, Huang, Zheng Shen, et. al, The Empirical Mode Decomposition and the Hilbert-spectrum for Nonlinear and Non-stationary Time Series Analysis. Proe. R. See. Lond. A,1998: 903~995
    [23]李琳,张永祥,明廷涛,EMD降噪的关联维数在齿轮故障诊断中的应用研究,振动与冲击,2009,28(4):145~148
    [24]孔国杰,张培林,徐龙堂,等,基于经验模态分解的自适应滤波算法及其应用,信号处理,2009,25(6):958~962
    [25]李春枝,何荣建,田光明,基于数学形态滤波的振动信号降噪分析[C],第二十一届全国振动与噪声高技术及应用学术会议论文集,2008:336~340
    [26]章立军,杨德斌,徐金梧,等,基于数学形态滤波的齿轮故障特征提取方法,机械工程学报,43(2):71~75
    [27]郭瑜,秦树人,汤宝平,基于分段重叠零相位滤波的阶比跟踪滤波法,振动工程学报,2003, 4: 11~15
    [28]纪跃波,秦树人,汤宝平,零相位数字滤波器,重庆大学学报,2000, 23(6): 4~7
    [29]王济,胡晓,MATLAB在振动信号处理中的应用,北京:中国水利水电出版社,2006
    [30]门吉芳,基于粒子滤波降噪技术的齿轮箱故障诊断研究,硕士学位论文,中北大学,2010
    [31]王琦,基于独立分量分析的故障源识别技术,硕士学位论文,华北电力大学,2008
    [32]程发斌,面向机械故障特征提取的混合时频分析方法研究,博士学位论文,重庆大学,2007
    [33]沈国际,陶利民,温熙森,等,基于Wigner分布的齿轮箱振动信号相位估计,机械工程学报,2004,9:185~189
    [34]何清波,多元统计分析在设备状态监测诊断中的应用研究,博士学位论文,中国科学技术大学,2007
    [35]郭瑜,高艳,郑华文,旋转机械阶比跟踪中的阶比交叠噪声消除,振动与冲击,2008,10:98~102
    [36]徐敏,等,设备故障诊断手册:机械设备状态监测和故障诊断,西安:西安交通大学出版社,1998
    [37] R. K. Potter, G. Kopp,H. C. Green, Visible Speech, New York: Van Nostrand, 1947
    [38] D Gabor, Theory of Communication, J. Inst. Elec. Eng.,1946,93:429~457
    [39] J. Ville, Theorie et applications de la notion de signalanalytique, Cables et Transmission, 1948, 2A: 61~74
    [40] C. H. Page, Instantaneous power spectra, J. Appl. Phys.,1952,23:103~106
    [41]蔡源春,周云山,张飞铁,等,基于自适应AR谱与神经网络的汽车变速器轴承故障诊断,汽车工程,2008,4:372-375
    [42]梁萌,汽轮机故障诊断技术研究,硕士学位论文,大庆石油学院,2005
    [43]杨明慧,邱阳,最大熵谱估计在振动中应用的几个问题,应用力学学报,1988,4:20~29
    [44]林勇,基于振动谱图像识别的故障诊断方法研究,博士学位论文,浙江大学,2009
    [45]黄伟国,基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究,博士学位论文,中国科学技术大学,2010
    [46]李舜酩,许庆余,微弱振动信号的谐波小波频域提取,西安交通大学学报,2004,38(1):51~55
    [47]屈梁生,张海军,机械诊断中的几个基本问题,中国机械工程,2000,11(1):211~2l6
    [48]訾艳阳,何正嘉,张周锁,小波分形技术及其在机械设备非平稳故障诊断中的应用,西安交通大学学报,2000,34(9):82~87
    [49]刘占生,刘成敏,刘树春,等,小波分析和分形几何在转子动静碰摩故障诊断中的应用,哈尔滨工业大学学报,1999,31(11):55~56
    [50]钱立军,蒋东翔,小波变换在横向裂纹转子升速过程状态监测中的应用,中国电机工程学报,2003,23(5):86~89
    [51]徐金梧,徐科,小波变换在滚动轴承故障诊断中的应用,机械工程学报,1997,33(4):50~55
    [52]徐科,杨穗斌,徐金梧,小波变换在齿轮局部缺陷诊断中的应用.机械工程学报,1999,35(3):105~107
    [53]马孝江,王凤利,蔡悦,等,局域波时频分布在转子系统早期故障诊断中的应用研究,中国电机工程学报,2004,24(3):161~164
    [54] Baozhong Yang, C Steve Suh, Interpretation of Crack-induced Rotor Non-linear Response Using Instantaneous Frequency, Mechanical Systems and Signal Processing, 2004, 18: 491~513
    [55]程军圣,于德介,杨宇,EMD方法在转子局部碰摩故障诊断中的应用.振动、测试与诊断,2006,26(1):24~27
    [56] Manuel A Andrade, A R Messina, Carlos A Rivera, et al,Identification of instantaneous attributes of torsional shaft signals using the Hilbert transform,IEEE Transactions On Power Systems,2004,19(3):1422~1426
    [57] B Liu,S Riemenschneidera,Y Xu,Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum,Mechanical Systems and Signal Processing,2006,20:718~734
    [58] V. K. Raia,A. R. Mohanty,Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform,Mechanical Systems and Signal Processing,2007,21(6):2607~2615
    [59] A. M. Bassiunya,Xiaoli Lib,Flute breakage detection during end milling using Hilbert-Huang transform and smoothed nonlinear energy operator,International Journal of Machine Tools and Manufacture,2007,47(6):1011~1020
    [60] G. Gelle, M. Colas, G. Delaunay, Blind Source Separation Applied to Rotating Machine Monitoring by Acoustical and Vibrations Analysis, Mechanical Systems and Signal Processing, 2000, 14(3): 427~442
    [61]杨世锡,焦卫东,吴昭同,独立分量分析基网络应用于旋转机械故障特征抽取与分类,机械工程学报,2004, 40(3): 45~49
    [62]黄文虎,武新华,焦映厚,等,非线性转子动力学研究综述,振动工程学报,2000,13(4):497~509
    [63]刘献栋,李其汉,王德友,具有转静件碰摩故障双转子系统的动力学模型及其小波变换特征,航空动力学报,2000,15(2):187~190
    [64]褚福磊,王庆禹,卢文秀,用声发射技术与小波包分解确定转子系统的碰摩位置,机械工程学报,2002,38(3):140~143
    [65] P. E. McCarty, J. W. Thompson Jr., R. S. Ballard, Noninterference Technique for Measurement of Turbine Engine Compressor Blade Stress, J. AIRCRAFT AIAA, 1982, 19(1): 65~70
    [66] HOOD Technology, Overview of blade vibration monitoring capabilities, www.hoodtech.com, 2010
    [67] FOGALE Nanotech, Capacitive blade tip clearance & tip timing measurement system, www.fogale.com
    [68] THERMOCOAX, Capacitance sensors for noncontact measurement, www.thermocoax.com
    [69] Craig P. Lawson, Paul C. Ivey, Turbomachinery blade vibration amplitude measurement through tip timing with capacitance tip clearance probes, Sensors and Actuators, 2005, A118: 14~24
    [70] Michael Zielinski, Gerhard Ziller, Noncontact Blade Vibration Measurement System for Aero Engine Application, ISABE-2005-1220: 1~9
    [71] M. Gloger, M. Jung, H. Termuehlen, H. Wolf, Blade Vibration System BeSSI for Power Plant Operation, IJPG Conference, Minneapolis, 1995,9~11
    [72] Kam Chana, Donald Lyon, Turbo-Machinery Tip-Timing Comes of Age, Maintenance & Asset Management, 2009, 24(1): 34~40
    [73]比尔·伯切尔,发动机叶尖计时技术新突破,国际航空杂志,2007,3:48~49
    [74] K S Chana, D N Cardwell, The use of eddy current sensor based blade tip timing for FOD detection, Proceedings of the ASME Turbo Expo, GT2008-59701: 1~10
    [75]王宇华,段发阶,叶声华等,旋转叶片振动测量新的技术方案研究,仪表技术与传感器,2002,(2):44~46
    [76]王宇华,叶声华,段发阶等,基于光纤技术的叶尖定时传感器,天津大学学报,2002,35(5):605~610
    [77]方志强,段发阶,孙宇扬,赵行明,非接触式叶片振测系统的叶尖定时传感器的研究,计量学报,2003,24(2):119~121
    [78] Duan Fajie, Fang Zhiqiang, Ye Shenghua, Real-time vibration measurement for high-speed rotating blades, 3rd International Symposium on Instrumentation Science and Technology, 2004, 1: 100~104
    [79] Wang Yuhua, Sun Yuyang, Duan Fajie, Design of pulse signal high-speed sampling system based on tip-timing sensor, ISTM 5th International Symposium on Test and Measurement, 2003: 440~442
    [80]段发阶,方志强,孙宇扬,叶声华,叶尖定时旋转叶片实时振动测量技术,光电工程,2005,32(3):28~31
    [81]李志华,段发阶,方志强,一种新型高速旋转叶片振动测量传感器的研究,传感技术学报,2005,18(1):95~97
    [82]张玉贵,段发阶,方志强,叶声华等,速矢端迹法分析叶片同步振动幅值的方法研究,传感技术学报,2007,20(9):2045~2048
    [83]张玉贵,段发阶,李帅,叶声华等,高定时精度的双屏蔽电容式脉冲传感器的设计,传感技术学报,2007,20(10):2199~2202
    [84]方志强,段发阶,张玉贵,叶声华,非接触式高速旋转叶片振动测量新技术的研究,传感技术学报,2007,20(4):937~940
    [85]方志强,段发阶,张玉贵,叶声华,反射式光纤在高速旋转叶片振动测量中的应用,光电子·激光,2007,18(11):1348~1350
    [86]张玉贵,段发阶,方志强,叶声华,石小江,旋转叶片异步振动的频率识别技术,振动与冲击,2007,26(12):106~108
    [87]张玉贵,段发阶,欧阳涛,叶声华,双屏蔽电容式脉冲传感器定时精度的仿真分析,传感技术学报,2007,21(1):88~91
    [88]方志强,段发阶,张玉贵,叶声华,基于光纤传感的旋转叶片振动检测技术研究,传感器与微系统,2008,27(2):71~76
    [89]张玉贵,段发阶,方志强,叶声华,光纤束传感器测量叶片同步振动幅值的研究,光电子.激光,2008,19(1):70~73
    [90]段发阶,张玉贵,欧阳涛,叶声华,航空发动机旋转叶片振动监测系统研究,光学与光电技术,2008,l6(1):48~51
    [91]张玉贵,段发阶,方志强,欧阳涛,叶声华,基于叶尖定时的非接触式旋转叶片异步振动分析,机械工程学报,2008,44(7):147~150
    [92]张玉贵,段发阶,方志强,欧阳涛,叶声华,间断相位法测量叶片同步振动幅值的研究,振动与冲击,2008,27(10):183~186
    [93]欧阳涛,段发阶,张玉贵,李孟麟,磁电式脉冲传感器原理与叶尖定时误差分析,计量技术,2008,(4):3~6
    [94]欧阳涛,段发阶,李孟麟等,旋转叶片固有频率测试技术的研究,测控技术,2008年,27(增刊):78~81
    [95] Duan Fajie,Ouyang Tao,Li Menglin,Research on Detecting Technology of Rotating Blade Vibration Performance Parameters, International Conference on Measuring Technology and Mechatronics Automation, 2009:693~696
    [96] Duan Fajie,Li Menglin,Ouyang Tao,Kong Xianghong,Analysis of the Tip-Timing Precision of Double-Shielded Capacitive Pulse Sensor, International Conference on Measuring Technology and Mechatronics Automation, 2009:81~84
    [97] Menglin Li, Fajie Duan, Tao Ouyang, Analysis of blade vibration frequencies from blade tip timing data, Sixth International Symposium on Precision Engineering Measurements and Instrumentation, Volume 7544, 2010:75445F-75445F-8
    [98]李孟麟,段发阶,欧阳涛,等,基于叶尖定时的旋转机械叶片振动频率辨识ESPRIT方法,振动与冲击,2010,29(12):18~21
    [99]欧阳涛,段发阶,闫明,李孟麟,双参数法辨识叶片同步振动的研究,传感器与微系统,2010,29(3):42~45
    [100]方志强,涡轮机叶片振动非接触检测原理及应用技术研究,博士学位论文,天津大学,2007
    [101]张玉贵,烟气轮机叶片振动的非接触式在线监测关键技术研究,博士学位论文,天津大学,2008
    [102]王宇华,高速旋转叶片振动叶端测量方法和系统研究,博士学位论文,天津大学,2003
    [103]方志强,叶尖定时传感器及叶片振动信号处理技术的研究,硕士学位论文,天津大学,2004
    [104]孙宇扬,叶尖定时旋转叶片测振信号获取及处理技术研究,硕士学位论文,天津大学,2004
    [105]李志华,测振用叶尖定时传感器的设计,硕士学位论文,天津大学,2005
    [106]欧阳涛,旋转叶片振动性能参数测试技术的研究,硕士学位论文,天津大学,2008
    [107]丁克勤,乔松,李娜,段发阶,烟气轮机叶片振动在线监测技术,无损检测,2010,32(8):608~611
    [108]钟志才,范志强,李光辉,段发阶,欧阳涛,叶尖定时振动测量系统及其在某模拟试验件上的应用,燃气涡轮试验与研究,2008,21(4):42~45
    [109]安连锁,徐艇,葛永庆,汽轮机叶片振动的叶端定时测量法,电力科学与工程,2005,(3):35~37
    [110]李勇,胡伟,王德友,李其汉,非接触式转子叶片振动测试技术应用研究,航空动力学报,2008,23(1):21~25
    [111]胡伟,杜少辉,王德友,王磊,基于叶尖定时确定叶片共振频率的新型技术,测控技术,2010,29(增刊):91~94
    [112]章敏,基于广义回归网络的叶端定时测振技术研究,硕士学位论文],广东工业大学,2006
    [113]艾延廷,张凤玲,航空发动机转子叶片振动测量技术研究,仪器仪表学报,2006,27(6):1242~1244
    [114]胡仕刚,一种机械故障监测的信息融合,机床与液压,2006,(6):325~327
    [115] Gyekenyesi A.L., Sawicki J.T., Baaklini G., Application of Vibration Monitoring Techniques for Damage Detection in Rotating Disks, The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, 2002,2
    [116] Andrew L. Gyekenyesi, Jerzy T. Sawicki, George Y. Baaklini, Vibration Based Crack Detection in a Rotating Disk, www.nasa. gov, 2003
    [117] Huageng Luo, Hector Rodriguez, Darren Hallman, Disk Crack Detection for Seeded Fault Engine Test, www.nasa.gov, 2004
    [118] Lewicki David G, Emmerling William C, Altobelli Donald, et.al., TF41 Engine Fan Disk Seeded Fault Crack Propagation Test, www.nasa.gov, 2004
    [119] Wenyi Wang, Greg Muschlitz, Disk Crack Detection in Spin Testing using Tip Timing Data, Aerospace Conference, 2010 IEEE, 6~13 March 2010, Big Sky, MT:1~14
    [120] B. Salhi, J. Lardies, M. Berthillier, Identification of Modal Parameters and Aeroelastic Coefficients in Bladed Disk Assemblies, Mechanical Systems and Signal Processing, Special Issue: Inverse Problems, 2009, 23(6): 1894~1908.
    [121] B. Salhi, J. Lardies, M. Berthillier,et al., Modal Parameter Identification of Mistuned Bladed Disks Using Tip Timing Data, Journal of Sound and Vibration, 2008, 314(3): 885~906
    [122] Vsevolod Kharyton, Faults Detection in Blades of an Aviation Engine in Operation, Doctoral Dissertation, Ecole Centrale de Lyon, 2009
    [123]杨光海,汽轮机叶片的安全防护,北京:机械工业出版社,1992
    [124]陶春虎,钟培道,王仁智,聂景旭,航空发动机转动部件的失效与预防,北京:国防工业出版社,2000
    [125] Donald L. Simon, An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element, AIAA : 2000~3624
    [126]于孝儒,张欣元,赵平屹,用激光全息法测定成组169叶片的振动,汽轮机技术,1981:56~62
    [127] Kulczyk W.K, Q.V. Davis. Laser Doppler instrument for measurement of vibration of moving turbine blade, Proceedings of the Institution of Electrical Engineers, 1973, 120(9):134~145
    [128] ?brahim Ata SEVE, Experimental validation of turbo-machinery blade vibration predictions, Degree Paper of Doctor, London; Department of Mechanical Engineering Imperial College London, 2004.
    [129] McCarty P. E., Thompson J. W,. Development of a Noninterference Technique for Measurement of Turbine Engine Compressor Blade Stress, AEDC TR-79-78, 1980,6: 364~378
    [130] Zablotskiy I.Ye, Korostelev Yu A, et.al. Contactless Measuring of Vibrations in Rotor Blades of Turbines, Technical Translation FTD–HT–23–673–74 (AD180365), 1974,4: 173~186
    [131] Kyu-Kang Joung, Suk-Chul Kang, Andy Von Flotow, Analysis of vibration of the turbine blades using non-intrusive stress measurement system, Proceedings of the ASME Power, POWER2006-88239: 1~7
    [132] Michael Zielinski, Gerhard Ziller, Noncontact vibration measurements on compressor rotor blades, Measurement Science & Technology, 2000, 11: 847~856
    [133] Tappert P., Mercadal M., von Flotow A,. The Last Few Minutes Prior to a Fatigue Blade Failure in an Axial Compressor: Observations of Blade Vibration and Blade Lean, Aerospace Conference, 2007 IEEE, 2007,3: 1~8
    [134] R. A. Rooth, W. Hiemstra, A Fiber-Optic Tip-Shroud Deflection Measurement System, Journal of Engineering for Gas Turbines and Power, 2001, 123:359~362
    [135] H. S. Dhadwal, A. P. Kurkov, Dual-Laser Probe Measurement of Blade-Tip Clearance, J. Turbomach. Vol. 121, Issue 3, 1999,7: 481~486
    [136] T. Pfister, L. Büttner, J. Czarske, et.al., Turbo Machine Tip Clearance and Vibration Measurements Using a Fiber Optic Laser Doppler Position Sensor, Meas. Sci. Technol. 17(2006), 2006,6: 1693~1705
    [137] Alexander Steiner, Techniques for Blade Tip Clearance Measurements with Capacitive Probes, Meas. Sci. Technol. 11(2000), July 2000: 865-869
    [138] Garimella R. Sarma, John P. Barranger, Capacitance-Type Blade-Tip Clearance Measurement System Using a Dual Amplifier with Ramp/DC Inputs and Integration,. Transaction on Instrumentation and Measurement Vol.41, No. 5, 1992,10: 674~678
    [139] W. Q. Yang, Hardware Design of Electrical Capacitance Tomography System, Meas. Sci. Technol. 7(1996), 1996,3: 225~232
    [140] John P. Barranger, Low-Cost FM Oscillator for Capacitance Type of Blade Tip Clearance Measurement System, NASA Technical Paper 2746, 1987
    [141] Craig Lawson, Dr. Paul Ivey, Compressor Blade Tip Timing Using Capacitance Tip Clearance Probes, Proceedings of the ASME Turbo Expo, GT2003-38284: 1~8
    [142] Tibor Fabian, Friedrich B. Prinz, Georg Brasseur, Capacitive Sensor for Active Tip Clearance Control in a Palm-Sized Gas Turbine Generator, IEEE Transactions on Instrumentation and Measurement, 2005, Vol. 54, No3, 2005,6: 1133~1143
    [143] Roeseler G., Von Flotow A., Tappert P., Monitoring Blade Passages in Turbomachinery Through the Engine Case (No Holes), IEEE, 2002, 6: 3125~3129
    [144] D N Cardwell, K S Chana, P. Russhard, The use of eddy current sensors for the measurement of rotor blade tip timing - sensor development and engine testing, Proceedings of the ASME Turbo Expo, GT2008-59702: 1~11
    [145] Alexandr Maslovskiy, Microwabe Turbine Tip Clearance Measuring System for Gas Turbine Engines, ASME Turbo Expo 2008: Power for Land, Sea, and Air (GT2008), Volume 2, 2008,6: 1~10
    [146] Heath S., Imregun M., An improved single parameter tip-timing method for turbomachinery blade vibration measurement using laser probes, International Journal of Mechanical Science, 1996, 38(10): 1047~1058
    [147] I. Ye Zablotskiy, Yu. A. Korostelev, Measurement of Turbine Blades with the ELURA Device, Energomashinos-Troneniye, Nr. 2, February 1970, 36~39
    [148] Fradley, Improved Methods of determining Turbine Blade Vibration Levels,Master’s Thesis, Cranfield University, 1995
    [149]И.E.萨勃洛斯基等著,吴士祥,郑叔琛(译),涡轮机叶片振动的非接触测量,北京:国防工业出版社,1986
    [150] Steve Heath, A New Technique for Identifying Synchronous Resonances Using Tip-timing, Journal of Engineering for Gas Turbines and Power, 2000, 122: 219~225
    [151] G. Dimitriadis, I.B. Carrington, J. R. Wright, J.E. Cooper, Blade-tip timing measurement of synchronous vibrations of rotating bladed assemblies, Mechanical Systems and Signal Processing, 2002, 16(4): 599~622
    [152] Kelly Grant, Experimental Testing of Tip Timing Methods Used for Blade Vibration Measurement in the Aero-Engine, Doctor’s Thesis, Cranfield; Cranfield University, 2004
    [153] I.B. Carrington, J.R. Wright, J.E. Cooper, G. Dimitriadis, A comparison of blade tip-timing data analysis methods, Proceedings of the 1st International Conference on the Integration of Dynamics, Monitoring and Control, 1999
    [154] J. Gallego-Garrido and G. Dimitriadis, Validating synchronous blade vibration amplitudes from blade tip-timing data analysis, in Proceedings of the 8th International Conference on Vibrations in Rotating Machinery, 2004, 2: 205~214
    [155] Pierre Beauseroy, Régis Lengellé, Nonintrusive turbomachine blade vibration measurement system, Mechanical Systems and Signal Processing, 2006, 2006.07.015
    [156] Chan Y T, Langford R P, Spectral estimation via the high order Yule-Walker equations, IEEE Trans. ASSP, 1982, 30(5):689~698.
    [157] Wahlberg BO, ARMA spectral estimation of narrow band processes via model reduction, IEEE Trans ASSP, 1990,38(7):1144~1154.
    [158] Eriksson A, Stoica P, Sencond-order properties of MUSIC and ESPRIT estimates of sinusoidal frequencies in high SNR scenarios, IEEE Proceedings-F, 1993,140(4):266~272.
    [159] Tufts W, Ge Y, Digital estimation of frequencies of sinusoid from wide band under sampled data, ICASSP, 1995:3155~3158.
    [160] Roy R, Kailah T, Esprit-estimation of signal parameter via rotational invariance technique, IEEE Trans. ASSP, 1989, 37(7):984~995
    [161] Zoltowski D, Mathews P, Real-time frequency and 2-D angle estimation with sub-Nyquist spatio-temporal sampling, IEEE Trans. SP, 1994,42:2781~2794.
    [162] Zoltowski D, Stavrinides D, Sensor Array Signal Processing via a Procrusters Rotations Based Eigenanalysis of the ESPRIT Data Pencil, IEEE Trans. ASSP, 1989,37(6):832~861
    [163]黄佑勇,王激扬,陈天麒,基于欠采样的宽频段信号频率估计技术,电波科学学报,2001,16(2):275~279.
    [164]王洪祥,廖桂生,吴云韬,欠采样频率估计方法,电子学报,2004,32(12):1978~1981.
    [165]徐小红,高隽,范之国,盲信号分离中信号源数目估计方法研究,合肥工业大学学报,2007,31(1):1~4.
    [166] S. Ries, On the Reconstruction of Signals by a Finite Number of Samples, Signal Processing., 1991, 23(1): 45~68.
    [167] S. Ries, Reconstruction of Real and Analytic Band-pass Signals from a Finite Number of Samples, Signal Processing, 1993, 33(3): 237~257.
    [168] I.J. Schoenberg, Contributions to the Problem of Approximation of Equidistant Data by Analytic Function. Part B. On the Problem of Osculatory Interpolation. A Second Kind of Approximation Formulae, Q. Appl. Math. 1946.4(2):112~141
    [169]钟一谔,何衍宗,王正,等,转子动力学,北京:清华大学出版社,1987
    [170] Genta G, Brusa E, Rotor Dynamic in the Design of Rotating Machinery, Pretoria: International Workshop on Multidisciplinary Design Optimization, Pretoria, South Africa, 2000,8: 8~10
    [171]郑旭东,张连祥,刘延毅,航空发动机整机振动特性及应变能计算与分析,航空发动机,2000,2:42~46
    [172]蒋书运,陈照波,须根法,等,航空发动机整机瞬态动力特性分析,哈尔滨工业大学学报,1998,30(2):4~6
    [173]李晓峰,王立平,史铁林,等,考虑非线性油膜力的转子系统稳态响应的研究,华中理工大学学报,1999,27(6):57~59
    [174]杨建刚,蔡霆,高伟,转子轴承耦合系统动力响应分析问题研究,机械工程学报,2004,40(10):62~67
    [175] Bachschmid N., Pennacchi P., Vania A., et al., Case Studies of Fault Identification in Power Plant Large Rotating Machinery, Sydney: 6th IFToMM-Conference on Rotor Dynamics, 2002:171
    [176] Rao J. S., Sreenivas R., Dynamics of a Three Level Rotor System Using Solid Elements, Atlanta: ASME Turbo Expo 2003, 2003,6:16~19
    [177] Chan S. H., Beamish D., Sharma R., The Application of Superelement Technique to 3D Aircraft Engine Modeling and Calibration of Full Engine Vibration Model, Prague: NATO AVT Symposium, Prague, Czech Republic, 2004
    [178] Moreno-Barragan J. A., Investigations into Engine Transient Response Due to Internal and External Dynamic Excitations, Sydney: 6th IFToMM Conf on Rotor Dynamics, 2002:171
    [179]谭青,风机故障诊断与自动平衡技术研究,博士学位论文,中南工业大学,1996
    [180]张立.大型水轮发电机组轴系动力特性分析,硕士学位论文,西安理工大学,2006
    [181]何衍宗.具有滑动轴承柔性转子瞬态响应的数值解,应用力学学报,1988,5(3):9~20
    [182]缪红燕,高金昌,徐鸿.转子系统瞬态不平衡响应的有限元分析,振动与冲击,2004,23(3):1~20
    [183]顾致平,陈松淇. Prohl传递矩阵—Newmark差分公式积分法,振动工程学报,1990,03(3):82~91
    [184]贺少华,吴新跃.一种转子系统冲击响应的计算方法—平均速度Newmark-Riccati传递矩阵法,应用力学学报,2010,27(4):823~829
    [185]尹晶,李清红.不同的力-时间函数及初始冲击压力对叶片响应的的影响,南京航空学院学报,1992,24(1):107-111
    [186]钟万勰,吴志刚,谭述君,状态空间控制理论与计算,北京:科学出版社,2007
    [187]邹贵平,唐立民,极坐标系中弹性力学平面问题的Hamilton正则方程及状态空间有限元法,工程力学,1993,10(1):20~28
    [188]刘贵忠,邸双亮,小波分析及其应用,西安:西安电子科技大学出版社,1992
    [189] D. L. Donoho, De-noising by Soft-thresholding, IEEE Transactions on Information Theory, 1995,41(3): 613~627
    [190] D. L. Donoho, I.M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, 1995,90: 1200~1224
    [191] S. Mallat, A Theory for Multiresolution Signal Decomposition: the Wavelet Representation, IEEE Trans. On PAMI, 1989,11(7): 674~693
    [192] Y. S. Xu, J. B. Weaver, M. J. Healy, et al. Wavelet Transform Domain Filters: A Spatially Selective Noise Filtration Technique, IEEE Transaction on Image Processing, 1994,3(6): 747~758
    [193] L. Zhang, P. Bao, Denoising by Spatial Correlation Thresholding, IEEE Transations on Circuits and System for Video Technology, 2003,13(6): 535~538
    [194]赵学智,陈统坚,叶邦彦,等,小波包分析在轴承早期故障诊断中的应用,振动、测试与诊断,2003,23(4): 243~246
    [195]赵瑞珍,屈汉章,宋国乡,基于小波系数区域相关性的阈值滤波算法,西安电子科技大学学报,2006,28(3): 324~327
    [196]赵纪元,何正嘉,孟庆丰,等,小波包——自回归谱分析及在振动诊断中的应用,振动工程学报,1995,8(3): 198~202
    [197]杨国安,许飞云,吴贞焕,等,基于小波包和解调分析的多类故障综合诊断方法研究,东南大学学报(自然科学版),2004,41(1): 42~45
    [198]杨建国,小波分析及其工程应用,北京:机械工业出版社,2005
    [199]潘泉,张磊,孟晋丽,等,小波滤波方法及应用,电子与信息学报,2007,29(1): 236~242
    [200] Pan Q,Zhang L, Dai G Zh,et al, Two Denoisingmethods by Wavelet Transform, IEEE Trans.on Signal Proc, 1999,47(12): 3401~3406
    [201]赵瑞珍,小波理论及其在图像、信号处理中的算法研究:[博士论文],西安,西安电子科技大学,2001
    [202] S. Mallat, W. Hwang, Singularity Detection and Processing with Wavelets, IEEE Trans.on Inform.Theory, 1992,38(2): 617~643
    [203] F. Abramovich, T. Sapatinas, B. W. Silverman, Wavelet Thresholding via a Bayesian Approach, J.Royal Statistical Society B, 1998, 60(3): 725~749][ B. Vidakovic, Nonlinear Wavelet Shrinkage with Bayes Rules and Bayes Factor, J.of the Amer.Statist.Assoc., 1998, 93(5):173~179
    [204] G. P. Nason, Wavelet Shrinkage Using Cross-validation, J. Royal Statistical Society B, 1996, 58(2): 463~479
    [205] M. Jansen, M. Malfait, A. Bultheel, Generalized Cross Validation for Wavelet Thresholding, Signal Processing, 1997, 56(1): 33~44
    [206] F. Abramovich, Y. Benjamini, Thresholding of Wavelet Coefficients as Multiple Hypotheses Testing Procedure, In A.Antoniadis and G.Oppenheim,editors,Wavelets and Statistics,Springer, New York, 1995: 6~14
    [207] Chang S G, Yu B, Vetterli M, Adaptive Wavelet Thresholding for Image Denoising and Compression, IEEE Trans.on Image Proc., 2000, 9(9): 1532~1546
    [208]蒋永华,汤宝平,刘文艺,等,基于参数优化Morlet小波变换的故障特征提取方法,仪器仪表学报,2010,31(1): 56~60
    [209]曾庆虎,刘冠军,邱静,基于小波相关特征尺度熵的预测特征信息提取方法研究,中国机械工程,2008,19(10): 1193~1196
    [210]马辉,赵鑫,赵群超,等,时频分析在旋转机械故障诊断中的应用,振动与冲击,2007,26(3): 61~63
    [211]褚福磊,彭志科,冯志鹏,等,机械故障诊断中的现代信号处理方法,北京,科学出版社,2009
    [212]程圣军,于德介,杨宇,Hilbert-Huang变换端点效应问题的探讨,振动与冲击,2005,24(6): 40~41,47
    [213]陈予恕,非线性振动,北京:高等教育出版社,2002
    [214] P. Sundararajan, S. T. Noah, An Algorithm for Response and Stability of Large Order Non-linear Systems - Application to Rotor Systems, Journal of Sound and Vibration, 1998,214(4): 659~723
    [215]吕和吉,蔡志勤,裘春航,非线性动力学问题的一个显式精细积分算法,应用力学学报,2001,18(2): 34~40
    [216] Paolo Pennacchi, Nicolo Bachschmid, Andrea Vania, et al., Use of Modal Representation for the Supporting Structure in Model-based Fault Identification of Large Rotating Machinery: Part 1--Theoretical Remarks, Mechanical Systems and Signal Processing, 2006,20(3): 662-681
    [217]张茉,转子系统振动故障的诊断方法及时频分析技术研究,硕士学位论文,东北大学,2008
    [218]李增勇,张建川,路长厚,等,基于不平衡响应的柔性转子系统动态参数识别研究,润滑与密封,1999,5:23~25
    [219] F. K. Choy, J. Padovan, C. Batur, Rub Interactions of Flexible Casing Rotor Systems, Transactions of the ASME, 1989,111: 652~658
    [220]李振平,张金换,金志浩,等,碰摩转子—轴承系统非线性动力学行为研究,航空动力学报,2004,19(2):179~183
    [221]姚红良,刘长利,李鹤,采用瞬态传递矩阵法分析复杂转子系统碰摩故障,东北大学学报(自然科学版),2004,25(1):62~65
    [222]李晓峰,曹鹏举,转子系统碰摩故障的理论与实验研究,汽轮机技术,2007,49(1):37~42
    [223]卢文秀,褚福磊,转子系统碰摩故障的实验研究,清华大学学报(自然科学版),2005,45(5):614~618
    [224]刘耀宗,胡莺庆,Jeffcott转子碰摩故障实验研究,振动工程学报,2001,14(1):96~99
    [225] J. Padovan, F. K. Choy, Nonlinear Dynamics of Rotor/Blade/Casing Rub Interactions, ASME Journal of Turbomachinery 1987,109(4): 527~534
    [226] N. Gladys, V. Laura, Analysis of Rotor-blade Failure Due to High-temperature Corrosion/Erosion, Surface and Coatings Technology 1999,120-121: 145~150
    [227] Myounggu Park, Young-Ha Hwang, Yun-Seung Choi, et.al, Analysis of a J69-T-25 Engine Turbine Blade Fracture, Engineering Failure Analysis, 2002,9(5): 593~601
    [228] Ahrens, J. Ulbrich, Determination of Contact Forces During Rubbing Considering Blade Dynamics, Proceedings of the International Symposium on Stability Control of Rotating Machinery, South Lake Tahoe, California, USA, Aug. 2001
    [229]李勇,姜广义,王德友,转静件碰摩状态下的叶片振动载荷和振动特性测试分析,航空动力学报,2008,23(11):1988~1992
    [230]应光耀,童小忠,吴文健,9F联合循环机组严重碰摩诊断分析及处理,汽轮机技术,2010,52(1):74~76
    [231]张王西,某330MW汽轮机轴系碰摩及断叶片的分析判断,陕西电力,2007,35(12):44~48
    [232]刘献栋,李其汉,具有转静件碰摩故障双转子系统的动力学模型及其小波变换特征,航空动力学报,2000,15(2):187~190
    [233] P. Goldman, A. Muszynska, Chaotic Behavior of Rotor/Stator Systems with Rubs, Journal of Engineering for Gas Turbines and Power, 1994,116(7): 692~710
    [234]何田,刘献栋,李其汉,一种改进的航空发动机转静件碰摩诊断方法,航空动力学报,2008,23(6):1093~1097
    [235]张帅,杨勇,韩清凯,等,基于HHT的转子系统定点碰摩实验研究,振动与冲击,2010,29(7):121~125
    [236]宋友,柳重堪,李其汉,基于小波包分解的早期碰摩故障诊断研究,北京航空航天大学学报,2003,29(1):87~90
    [237]于涛,韩清凯,孙伟,等,基于模态扩展与谐波分解的转子碰摩故障精确诊断,东北大学学报(自然科学版),2006,27(5):524~527
    [238]韩清凯,杨英,郎志强,等,基于非线性输出频率响应函数的转子系统碰摩故障定位方法研究,科技导报,2009,27(0902):29~32
    [239]马建敏,张文,郑铁生,转子系统瞬时撞击刚度的定量计算方法,应用力学学报,2003,20(6):68~71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700