用户名: 密码: 验证码:
一维有机纳微米晶材料的自组装及其电荷传输性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们设计、合成了四个系列共十二种有机化合物,用多种方法分别将它们自组装成多种形貌的纳微米尺寸晶体,并使用这些纳微米晶体制备了场效晶体管器件和光照﹑气体传感器等,研究了它们作为高效率、低成本光电材料的潜在应用价值。
     1、制备了具有平面骨架结构的n型半导体化合物TDT,通过简单的溶液方法将其可控的自组装成一维超长纳微米线或纳微米管。通过制备场效应晶体管器件发现这些超长的纳微米线显示出了良好的导电性能和较高的电子迁移率(0.04cm2V–1s–1)。
     2、通过简单的溶液方法,自组装制备了基于AuI AuI分子间相互作用构筑的Au3A3纳微米线。通过制备场效应晶体管器件发现这些Au3A3纳微米线显示出了较高的空穴迁移率(0.23cm2V–1s–1)。我们还发现利用这些纳微米线制备的器件具有光照和气体传感的性质,且这些传感信号都具备灵敏度高、可逆性好和响应时间快等特点。
     3、以氟取代喹吖啶酮(n-FQA)系列化合物为原料,采用溶液方法分别自组装了带状和片状的纳微米晶体。利用这些纳微米晶制备了场效晶体管器件,结果发现由于形貌及堆积方式的区别这些分子结构相似的材料表现出了多种不同的电荷传输性质。为了更好的解释该结果,我们还通过分子堆积﹑密度泛函理论计算和飞行时间迁移率计算等方法对系列化合物的传输性质进行了分析和研究。通过这些结果我们可以揭示出n-FQA系列化合物的晶体形貌及堆积结构对其传输性能的影响。
     4、制备了系列铂席夫碱化合物(nAS_2Pt),通过多种溶剂测试发现16AS_2Pt的四氯乙烷溶液具有一定的凝胶特性。使用扫描电镜及普通照相机对16AS_2Pt的凝胶形貌和凝胶形态进行了表征。考察了nAS_2Pt系列化合物的浓度依赖紫外光谱和荧光光谱。培养了6AS_2Pt化合物的单晶,并通过分析其分子堆积结构解释了16AS_2Pt凝胶的形成。
Organic nano/micro materials, especially one dimensional organic nano/micromaterials has received much attention amongst scientific researchers lately. Because oftheir special photoelectricity properties and molecular packing structures, organicfunctional materials such as nano/microwires or bands with one dimentional, highlyordered structures have attracted large amounts of attention. Some of these research planshave made tremendous breakthroughs and some materials have even been applied inindustrial fields. These materials have potential values in fields such as gas sensing,OLED(Organic Light-Emitting Diode), OFET(Organic Field Effect Transistors), multifiberlightguides and solar cells. The morphology and molecular structures of materalcompounds will affect their functional features, many organic one dimentional materialsposses special photoelectricity properties, amoung which one dimentional organicsemiconductive materials is one of the most prominent types. Compared to traditionalinorganic semiconductive materials, organic semiconductive materials are easy tosynthesize, easy to purify and has better solubility, these characteristics allow scientificresearchers to use these materials to prepare special electronic devices bias non-traditionalmethods. The OFET is one of the most attractive fields in semiconductive materials,because compared to traditional films, single crystals posses more perfect molecularpacking structures, which can lead to better charge transfer characteristics and mobilityrates. This thesis sets off from the design and synthesis of organic semiconductivematerials, then we self assembled them into one-dimensional organic nano/microcrystals, and then used them to fabricate organic electronic devices to research their field-effecttransistor, gas sensor, light sensor and gel forming properties. This research can not onlyhelp us unearth some organic semiconductive materials with great applying potentials butcan also provide some new ideas and inspiration for the production and design of newsemiconductive materials in the future.
     1. In chapter, two planar molecules TDT and SDT were synthesized. A simplesolution process allows us to controllably synthesize large quantities of well-defined, airstable1D microtubes or ultralong microwires from the two compounds. Electricalconductive devices based on the ultralong microwires fabricated in situ on SiO2substratewith interdigitated electrodes exhibited excellent conductivity properties. To furtherdemonstrate the potential as an n-type semiconductor, the electrical characteristics oftop-contact organic field effect transistor (OFET) devices based on TDT nanowires weremeasured in ambient laboratory conditions, the results showed high performance(10-2cm2/Vs) compared to known reports on high mobility nano/micro scale n-typesemiconductors applicated in organic field-effect transistors(OFETs). Our experimentalresults demonstrated that TDT molecule should be a potential candidate for thedevelopment of high performance n-type semiconducting materials. The moleculesreported in this paper possessing novel skeletons can broaden the scope of nano-andmicroscale organic semiconductors and will be valuable for the future design and synthesisof new organic semiconducting materials.
     2. In chapter, we first fabricated a AuI AuIinteraction induced gold complexAu3A3nano/micro-wires through a simple solution process as well as the semiconductingproperties of the in-situ formed microwires by fabricating field-effect transistors. Notably,the produced microwires exhibit interesting photo-and vapor-responsive conductiveproperties. Showing that it is possible to prepare high quality AuI AuIbased1-D crystalswith field-effect charge carrier mobility and external stimuli responsive properties bysolution process, which makes this material very interesting for potential applications insolution process electronics.
     we demonstrated that crystalline, semiconducting microwires can be self-assembled from a trinuclear gold complex Au3A3based on extended intermolecular Au~I Au~Iinteractions by a simple solution process. The formed microwires exhibiting excellentelectrical conductivity properties as well as high hole mobility (0.23cm~2V1s1) whichsuggest they are potential candidates for the development of high performancesemiconducting devices. The AuI AuIinteraction based structure of the Au3A3microwirescan also broaden the scope of nano and micro-scale organic semiconductors and will bevaluable for the future design and synthesis of new organic semiconducting materials.Vapor and photo responsive conductive characteristics with good sensibility, reversibilityand rapid response were also revealed, suggesting that Au3A3microwires have potential inthe fields of chemo-sensing and photo detectors.
     3. In chapter IV, we describe an approach to how crystal arrangement and morphologycan affect the carrier transport abilities of a semiconducting material. We used fluorinatedquinacridone derivatives n-FQA (n=4,8,10,16) to self-assemble microcrystals of differentmorphologies (including microbelts and microplates) and crystal structures, after whichtop-contact organic field effect transistor (OFET) devices based on the n-FQAmicrocrystals were fabricated and carrier mobility were measured in ambient laboratoryconditions. We then discuss our theory of how the altering of morphology and packingstructures can affect their transporting properties, employing calculation theory, packingarrangement analysis and time-of-flight photo-current analysis. This work demonstrates anexplanation towards how crystalline tailoring alters the transporting properties of a highperformance semiconducting material. This text can give us an inspiring insight of howcrystal morphology and molecular packing can tune the transporting properties of a highperformance semiconducting material, and will be valuable for the future design andsynthesis of new organic semiconducting materials. C8-DFQA is also found to be a simpleand low-cost organic n-channel semiconductor for the fabrication of OFET devices withpotential practical applications.
     4. In chapter V, we started from describing the synthesis and characterization of aseries of salphen platinum compositions nAS_2Pt, then we revealed their photophysicalproperties and single crystal structures. We also explored their gel formation characteristics, and found that16AS_2Pt can form heat induced gel in a dichloro-ethane solution. After wesynthesized the series of salphen platinum compositions nAS_2Pt, we used NMR tocharacterize the structure and components of the four compounds. After which weinvestigated the solution dependant UV absorption spectra and solution dependantfluorescence emission spectra of the salphen platinum compositions, we found that thefluorescence emission spectra of the four conpounds all showed solution dependency, andcan all form position association complexes once the concentration reached a critical value.
     We then investigated the gel formation characteristics of the salphen platinumcompositions, and found that only16AS_2Pt could form heat induced gel in adichloro-ethane solution. We fabricated the single crystal sample of6AS_2Pt and used X-raydiffraction to analyze the molecular structure of the compounds. The large planeconjugated structure maed the compounds form π-π interactions and C-H···π interactions,at last the crystals presented a fish bone one dimensional packing structure. These resultscan enlighten the research of related materials in the future.
     In summary we designed and synthesized four series of total twelve organiccompounds, and used a variety of methods to self assemble them into differentmorphologies of nano/microcrystals. Then we applied these crystals to the fabrication offield-effect transistors, light sensors, gas sensors and many other devices, explore andstudied their applied values as high efficiency, low cost photo-electronic materials. Apartfrom this we also studied the theory of how the altering of morphology and packingstructures can affect their transporting properties. These results achieved can help us get abetter understanding of the charge transfer properties of organic one dimensional materials,and will show significant enlightenment to the design and fabrication of these materials inthe future.
引文
[1] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willet, T. Someya, M. E.Gershenson, J. A. Rogers, Elastomeric Transistor Stamps: Reversible Probing of ChargeTransport in Organic Crystals. Science,2004,303,1644.
    [2] Q. Niu, Y. Zhou, L. Wang, J. Peng, J. Wang, J. Pei, Y. Cao, Enhancing thePerformance of Polymer Light-Emitting Diodes by Integrating Self-Assembled OrganicNanowires. Adv. Mater.2008,20,964.
    [3] Y. Che, X. Yang, S. Loser, L. Zang, Expedient Vapor Probing of Organic AminesUsing Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor. Nano.Lett.2008,8,2219.
    [4] H. Xin, F.S. Kim, S.A. Jenekhe, Highly Efficient Solar Cells Based onPoly(3-butylthiophene) Nanowires. J. Am. Chem. Soc.2008,130,5424.
    [5] K. Huang, Y. Hsiao, W. Whang, Low-temperature formation of self-assembled1,5-diaminoanthraquinone nanofibers: Substrate effects and field emission characteristics.Org. Electron.2011,12,686.
    [6] M. Ichikawa, T. Kato, T. Uchino, T. Tsuzuki, M. Inoue, Thin-film andsingle-crystal transistors based on a trifluoromethyl-substituted alternating(thiophene/phenylene)-co-oligomer. Org. Electron.2010,11,1549.
    [7] T. Naddo, Y. Che, W. Zhang, K. Balakrishnan, X. Yang, M. Yen, J. Zhao, J. S.Moore, L. Zang, Detection of Explosives with a Fluorescent Nanofibril Film. J. Am. Chem.Soc.2007,129,6978.
    [8] Y. Che, A. Datar, K. Balakrishnan, L. Zang, Ultralong Nanobelts Self-Assembledfrom an Asymmetric Perylene Tetracarboxylic Diimide. J. Am. Chem. Soc.2007,129,7234.
    [9] Y. Che, X. Yang, S. Loser, L. Zang, Expedient Vapor Probing of Organic AminesUsing Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor. NanoLett.2008,8,2219.
    [10] O. J. Dautel, G. Wantz, R. Almairac, D. Flot, L. Hirsch, J.-P. Lere-Porte, J.-P.Parneix, F. S. Spirau, L. Vignau, J. J. E. Moreau, Nanostructuration ofPhenylenevinylenediimide-Bridged Silsesquioxane: From Electroluminescent MolecularJ-Aggregates to Photoresponsive Polymeric H-Aggregates. J. Am. Chem. Soc.2006,128,4892.
    [11] Y. S. Zhao, C. Di, W. Yang, G. Yu, Y. Liu, J. Yao, Photoluminescence andElectroluminescence from Tris(8-hydroxyquinoline)aluminum Nanowires Prepared byAdsorbent-Assisted Physical Vapor Deposition. Adv. Funct. Mater.2006,16,1985.
    [12] Y. S. Zhao, H. Fu, F. Hu, A. Peng, W. Yang, J. Yao, Tunable Emission fromBinary Organic One-Dimensional Nanomaterials: An Alternative Approach to White-LightEmission. Adv. Mater.2008,20,79.
    [13] A.L. Briseno, S.C.B. Mannsfeld, S.A. Jenekhe, Z. Bao, Y. Xia, Introducingorganic nanowire transistors. Mater. Today,2008,11,38.
    [14] A.L. Briseno, S.C.B. Mannsfeld, C. Reese, X. Lu, Y. Xiong, S.A. Jenekhe, Z. Bao,Y. Xia, Fabrication of Field-Effect Transistors from Hexathiapentacene Single-CrystalNanowires. Nano. Lett.2007,7,668.
    [15] Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang, C. Liu, D. Zhu, LowThreshold Voltage Transistors Based on Individual Single-CrystallineSubmicrometer-Sized Ribbons of Copper Phthalocyanine. Adv. Mater.2006,18,65.
    [16] L. Jiang, H. Dong, W. Hu, Organic single crystal field-effect transistors: advancesand perspectives. J. Mater.Chem.2010,20,4994.
    [17] R. Li, W. Hu, Y. Liu, D. Zhu, Micro-and Nanocrystals of OrganicSemiconductors. Acc. Chem. Res.43(2010)529.
    [18] K. Takazawa, Y. Kitahama, Y. Kimura, G. Kido, Optical WaveguideSelf-Assembled from Organic Dye Molecules in Solution. Nano Lett.2005,5,1293.
    [19] F.Quochi, F. Cordella, A. Mura, G. Bongiovanni, F. Balzer, H.-G. Rubahn, Gainamplification and lasing properties of individual organic nanofibers. Appl. Phys. Lett.2006,88,041106.
    [20] Y. S. Zhao, J. Xu, A. Peng, H. Fu, Y. Ma, Jiang, L.J. Yao, Optical WaveguideBased on Crystalline Organic Microtubes and Microrods. Angew. Chem. Int. Ed.2008,47,7301.
    [21] Y. S. Zhao, A. Peng, H. Fu, Y. Ma, J. Yao, Nanowire Waveguides and UltravioletLasers Based on Small Organic Molecules. Adv. Mater.2008,20,1661.
    [22] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Melting in SemiconductorNanocrystals. Science1992,256.
    [23] M. A. Reed, W. R. Frensley, R. J. Matyi, J. N. Randall, A. C. Seabaugh, Realizationof a Three-Terminal Resonant Tunneling Device: The Bipolar Quantum ResonantTunneling Transistor. Appl. Phys. Lett.1989,54,1034.
    [24] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh Strength and High ElectricalConductivity in Copper. Science2004,304,422.
    [25] A. Corma, From microporous to mesoporous molecular sieve materials and theiruse in catalysis. Chem. Rev.1997,97,2373.
    [26] W. C. W. Chan, S. Nie, Quantum Dot Bioconjugates for Ultrasensitive NonisotopicDetection. Science1998,281,2016.
    [27] S. Fafard, K. Hinzer, S. Raymond, M. Dion, J.McCaffrey, Y. Feng, S. Charbonneau,Red-Emitting Semiconductor Quantum Dot Lasers. Science1996,274,1350.
    [28] Y. Wang, X. Xie, T. Goodson, III, Enhanced Third-Order Nonlinear OpticalProperties in Dendrimer Metal Nanocomposites. Nano Lett.2005,5,2379.
    [29] S. Ghosh, A. K. Sood, N. Kumar, Carbon Nanotube Flow Sensors. Science2003,299,1042.
    [30] J. Wu, W. Pisula, K. Muellen, Graphenes as potential material for electronics. Chem.Rev.2007,107,718.
    [31] A. P. H. J. Schenning, E. W.Meijer, Supramolecular electronics; nanowires fromself-assembled p-conjugated systems. Chem. Commun.2005,3245.
    [32] T.-Q. Nguyen, R. Martel, P. Avouris, M. L. Bushey, L. Brus, C. Nuckolls, Molecularinteractions in one-dimensional organic nanostructures. J. Am. Chem. Soc.2004,126,5234.
    [33] Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin nanotubes by ionic selfassembly. J. Am. Chem. Soc.2004,126,15954.
    [34] M. Shirakawa, N. Fujita, S. Shinkai, A stable single piece of unimolecularlypi-stacked porphyrin aggregate in a thixotropic low molecular weight gel: Aonedimensional molecular template for polydiacetylene wiring up to several tens ofmicrometers in length. J. Am. Chem. Soc.2005,127,4164.
    [35] J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T.Hashizume, N. Ishii, T. Aida, Self-assembled hexa-peri-hexabenzocoronene graphiticnanotube. Science2004,304,1481.
    [36] R. van Hameren, P. Schoen, A. M. van Buul, J. Hoogboom, S. V. Lazarenko, J. W.Gerritsen, H. Engelkamp, P. C. M. Christianen, H. A. Heus, J. C. Maan, T. Rasing, S.Speller, A. E. Rowan, J. A. A. W. Elemans, R. J. M. Nolte, Macroscopic hierarchicalsurface patterning of porphyrin trimers via self-assembly and dewetting. Science2006,314,1433.
    [37] Y. S. Zhao, H. Fu, F. Hu, A. D. Peng, J. Yao, Multicolor emission from orderedassemblies of organic1D nanomaterials. Adv. Mater.2007,19,3554.
    [38] H. Kasai, H. S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta,K. Ono, A. Mukoh, H. Nakanishi, Jpn. J. Appl. Phys.1992,31, L1132.
    [39] H. S. Nalwa, H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, A. Kakuta,A. Mukoh, H. Nakanishi, Adv. Mater.1993,5,758.
    [40] H. Kasai, H. Oikawa, H. Nakanishi, Organic Mesoscopic Chemistry (Eds: H.Masuhara, F. C. Schryver), Blackwell Science, Oxford1999, pp.145–170.
    [41] X. Mu, W. Song, Y. Zhang, K. Ye, H. Zhang, Y. Wang, Controllable Self-Assemblyof n-Type Semiconductors to Microtubes and Highly Conductive Ultralong Microwires.Adv. Mater.,2010,22,4905.
    [42] Y. Che, X. Yang, S. Loser, S. L. Zang, Expedient Vapor Probing of Organic AminesUsing Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor. NanoLett.2008,8,2219.
    [43] Y. Che, A.Datar, K.Balakrishnan, L. Zang, Ultralong Nanobelts Self-Assembledfrom an Asymmetric Perylene Tetracarboxylic Diimide. J. Am. Chem. Soc.2007,129,7234.
    [44] A. Datar, R. Oitker, L. Zang, Chem. Commun. Surface-assisted one-dimensionalself-assembly of a perylene based semiconductor molecule.2006,1649.
    [45] H. Kasai, H. Kamatani, S. Okada, H. Oikawa, H. Matsuda, H. Nakanishi,Size-Dependent Colors and Luminescences of Organic Microcrystals. Jpn. J. Appl. Phys.1996,35, L221.
    [46] H. Auweter,H.Haberkorn,W.Heckmann, D. Horn, E. Lu¨ ddecke, J. Rieger, H.Weiss, Supramolecular Structure of Precipitated Nanosize beta-Carotene Particles. Angew.Chem. Int. Ed.1999,38,2188.
    [47] D. Xiao,W.Yang, J.Yao, L. Xi, X.Yang, Z. Shuai, Size-Dependent Exciton Chiralityin (R)-(+)-1,1‘-Bi-2-naphthol Dimethyl Ether Nanoparticles. J. Am. Chem. Soc.2004,126,15439.
    [48] R. Deans, J. Kim, M. R. Machacek, T. M. Swager, A Poly(p-phenyleneethynylene)with a Highly Emissive Aggregated Phase. J. Am. Chem. Soc.2000,122,8565.
    [49] D. K. Smith, Bioresponsive Hydrogels. Adv. Mater.2006,18,2773.
    [50] J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu,D. Zhu, B. Z. Tang, Aggregation-induced emission of1-methyl-1,2,3,4,5-pentaphenylsilole.Chem. Commun.2001,1740.
    [51] B.-K. An, S.-K. Kwon, S.-D. Jung, S.Y. Park, Enhanced Emission and Its Switchingin Fluorescent Organic Nanoparticles. J. Am. Chem. Soc.2002,124,14410.
    [52] Y. S. Zhao, C. Di,W. Yang, G. Yu, Y. Liu, J. Yao, Photoluminescence andelectroluminescence from tris(8-hydroxyquinoline)aluminum nanowires prepared byadsorbent-assisted physical vapor deposition. Adv. Funct. Mater.2006,16,1985.
    [53] Y. S. Zhao, D. Xiao, W. Yang, A. Peng, J. Yao,2,4,5-Triphenylimidazole Nanowireswith Fluorescence Narrowing Spectra Prepared through the Adsorbent-Assisted PhysicalVapor Deposition Method. Chem. Mater.2006,18,2302.
    [54] Y. S. Zhao, H. Fu, F.Hu, A. Peng, J. Yao, Multicolor emission from orderedassemblies of organic one-dimensional nanomaterials. Adv.Mater.2007,19,3554.
    [55] Y. S. Zhao,H. Fu, F. Hu, A. Peng, W. Yang, J.Yao, Tunable emission from binaryorganic one-dimensional nanomaterials: an alternative approach to white-light emission.Adv. Mater.2008,20,79.
    [56] A. Bloess, Y. Durand, M. Matsushita, R. Verberk, E. J. J.Groenen, J. Schmidt,Microscopic Structure in a Shpol'skii System: A Single-Molecule Study ofDibenzanthanthrene in n-Tetradecane. J. Phys. Chem. A2001,105,3016.
    [57] R. Zallen, The Physics of Amorphous Solids, Wiley-Interscience, New York1983.
    [58] Y. Durand, A. Bloe, A. M. van Oijen, J. Ko¨ hler, E. J. J. Groenen, J. Schmidt, Anoptical study of single pentacene molecules in n-tetradecane. Chem. Phys. Lett.2000,317,232.
    [59] P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J.Campbell, W. Blau, D. D. C. Bradley, Origin of electrophosphorescencefrom a doped polymer light emitting diode. Phys. Rev. B2001,63,235206.
    [60] A. Pogantsch, G. Trattnig, G. Langer, W. Kern, U. Scherf, H. Tillmann, H. H.H rhold, E. Zojer, Interface Fermi Level Pinning at Contacts Between PEDOT:PSS andMolecular Organic Semiconductors. Adv. Mater.2002,14,1722.
    [61] Y. S. Zhao, H. Fu, F.Hu, A. Peng, J. Yao, Multicolor emission from orderedassemblies of organic one-dimensional nanomaterials. Adv.Mater.2007,19,3554.
    [62] X.-C. Gao, H. Cao, L. Huang, Y.-Y. Huang, B.-W. Zhang, C.-H. Huang, Appl. Surf.Sci.2003,210,183.
    [63] A. B. Djurisˇic′, Y.H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge,Y. C. Zhong,K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok, D. L. Philips,Nanotechnology2007,18,095702.
    [64] V. A. Lisovenko, M. T. Shpak, V. G. Antoniuk, Chem. Phys. Lett.1976,42,339.
    [65] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys.1989,65,3610.
    [66] H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, Z. H. Kafafi, J. Appl.Phys.1999,86,2642.
    [67] H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido, Z. H. Kafafi, J. Appl.Phys.1999,86,2642.
    [68] A. D. Peng, D. B. Xiao, Y. Ma, W. S. Yang, J. N. Yao, Tunable emission FromDoped1,3,5-Triphenyl-2-pyrazoline Organic Nano-particles. Adv. Mater.2005,17,2070.
    [69] M. Sun, T. Pullerits, P. Kjellberg, W. J. D. Beenken, K. Han, J. Phys. Chem. A2006,110,6324.
    [70] M. Irie, Diarylethenes for memories and switches. Chem. Rev.2000,100,1685.
    [71] H. Tian, S. J. Yang, Recent progresses on diarylethene based photochromic switches.Chem. Soc. Rev.2004,33,85.
    [72] T. B. Norsten, N. R. Branda, Axially-Coordinated Porphyrinic Photochromes forNondestructive Information Processing. Adv. Mater.2001,13,347.
    [73] X. Sheng, A. Peng, H. Fu, Y. Liu, Y. S. Zhao, Y. Ma, J. Yao, Nanotechnology2007,18,145707.
    [74] A. Tsumura, H. Koezuka, T. Ando, Macromolecular electronic device: field-effecttransistor with a polythiophene thin-film. Appl. Phys. Lett.1986,49,1210.
    [75] Y. Y. Lin, D. J. Gundlach, S.F. Nelson, T. N. Jackson. Stacked pentacene layerorganic thin-film transistors with improved characteristics. IEEE Electron Device Lett.,1997,18,606.
    [76] F. Garnier, G. Horowitz, X. Z. Peng, D. Fichou, Structural basis for high carriermobility in conjugated oligomers. Synth. Met.,1991,45,163.
    [77] Z. Bao, A. J. Lovinger, A. Dodabalapur, Organic field-effect transistors with highmobility based on copper phthalocyanine. Appl. Phys. Lett.,1996,693066.
    [78] Z. Bao, A. J. Lovinger, J. Brown, New air-stable n-channel organic thin filmtransistors. J. Am. Chem. Soc.,1998,120,207.
    [79] D. Shukla, S. F. Nelson, D. C. Freeman, M. Rajeswaran, W. G. Ahearn, D. M.Meyer, J. T. Carey, Thin-Film morphology control in naphthalene-diimide-basedsemiconductors: High mobility n-type semiconductor for organic thin-film transistors.Chem. Mater.,2008,20,7486.
    [80] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W.Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. deLeeuw Two-dimensional charge transport in self-organized, high-mobility conjugatedpolymers. Nature,1999,401,685.
    [81] P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss.Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett.,2003,82,3964.
    [82] R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O.Shchekin, A. Dodabalapur, Radio frequency rectifiers based on organic thin-filmtransistors. Appl. Phys. Lett.,2006,88,123502.
    [83] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck,H. Katz, K. Amundson, J. Ewing, P..Drzaic, Paper-like electronic displays: Large-arearubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks.Proc Natl Acad Sci USA,2001,98,4835.
    [84] A. N. Sokolov, M. E. Roberts, Z. A. Bao. Fabrication of low-cost electronicbiosensors. Materials Today,2009,12,12.
    [85] C. Kloc, P. G. Simpkins, T. Siegrist, R. A. Laudise, Physical vapor growth ofcentimeter-sized crystals of alpha-hexathiophene. J Cryst Growth,1997,182,416.
    [86] C. Kloc, R. A. Laudise, Vapor pressures of organic semiconductors:alphahexathiophene and alpha-quaterthiophene. J. Cryst. Growth,1998,193,563.
    [87] G. Horowitz, F. Garnier, A. Yassar, R. Hajlaoui, F. Kouki, Field-effect transistormade with a sexithiophene single crystal. Adv. Mater.,1996,8,52.
    [88] M. Mas-Torrent, M. Durkut, P. Hadley, X. Ribas, C. Rovira High, mobility ofdithiophene-tetrathiafulvalene single-crystal organic field effect transistors. J. Am. Chem.Soc.,2004,126,984.
    [89] Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, G. Saito, Highmobility organic field-effect transistor based on hexamethylenetetrathiafulvalene withorganic metal electrodes. Chem. Mater.,2007,19,6382.
    [90] J. E. Anthony, D. L. Eaton, S. R. Parkin A road map to stable, soluble, easilycrystallized pentacene derivatives. Org. Lett.,2002,4,15.
    [91] D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, K. ChoHighmobility organic transistors based on single-crystalline microribbons oftriisopropylisilylethynl pentacene via solution-phase self-assembly. Adv. Mater.,2007,19,678.
    [92] Q. X. Tang, H. X. Li, Y. L. Liu, W. P. Hu. High-performance air-stable n-typetransistors with an asymmetrical device configuration based on organic single-crystallinesubmicrometer/nanometer ribbons. J. Am. Chem. Soc.,2006,128,14634.
    [93] L. Jiang, J. H. Gao, E. J. Wang, H. X. Li, Z. H. Wang, W. P. Hu, Organicsingle-crystalline ribbons of a rigid "H"-type anthracene derivative and high-performance,short-channel field-effect transistors of individual micro/nanometer-sized ribbonsfabricated by an “organic ribbon mask” technique. Adv. Mater.,2008,20,2735.
    [94] A. L. Briseno, R. J. Tseng, M. M. Ling, E. H. L. Falcao, Y. Yang, F. Wudl, Z. Bao,High-Performance Organic Single-Crystal Transistors on Flexible Substrates. Adv. Mater.,2006,18,2320.
    [95] A. L. Briseno,S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, Y.Yang, F. Wudl, Z. Bao, Patterning organic single-crystal transistor arrays. Nature,2006,444,913.
    [96] Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang, Y. Liu, D. Zhu, Lowthreshold voltage transistors based on individual single-crystalline submicrometer-sizedribbons of copper phthalocyanine. Adv. Mater.,2006,18,65.
    [97] A. L. Briseno,S. C. B. Mannsfeld, X. Lu, Y. Xiong, S. A. Jenekhe, Z. Bao, Y. Xia,Fabrication of Field-Effect Transistors from Hexathiapentacene Single-Crystal Nanowires.Nano. Lett.,2007,7,668.
    [98] C. R. Newman, C. D. Frisbie, D. A. daSilvaFilho, J. L. Bredas, P. C. Ewbank, K. R.Mann, Introduction to Organic Thin Film Transistors and Design of n-Channel OrganicSemiconductors., Chem. Mater.2004,16,4436.
    [99] A. Babel, S. A. Jenekhe, High Electron Mobility in Ladder Polymer Field-EffectTransistors. J. Am. Chem. Soc.,2003,125,13656.
    [100] A. L. Briseno,S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A.Jenekhe, Z. Bao, Y. Xia, Perylenediimide Nanowires and Their Use in FabricatingField-Effect Transistors and Complementary Inverters. Nano. Lett.,2007,7,2847.
    [101] F. Würthner, Perylene bisimide dyes as versatile building blocks for functionalsupramolecular architectures Chem. Commun.,2004,1564.
    [102] A. N. Aleshin, Adv. Mater.,2006,18,17.
    [103] H. Sirringhaus1, P. J. Brown1, R. H. Friend1, M. M. Nielsen, K. Bechgaard, B.M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M.de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugatedpolymers. Nature,1999,401,685.
    [104] J. A. Merlo, and C. D. Frisbie, Field Effect Transport and Trapping inRegioregular Polythiophene Nanofibers. J. Phys. Chem. B.2004,108,19169.
    [105] K. J. Ihn, J. Moulton, P. Smith, J. Polym. Sci. Part B: Polym. Phys.,1993,31,735.
    [106] a) P. S. Shah, T. Hanrath, K. P. Johnston, B. A. Korgel, High Yield MultiwallCarbon Nanotube Synthesis in Supercritical Fluids. J. Phys. Chem. B.2004,108,9574. b)O. Hayden, C. K. Payne, Nanophotonic Light Sources for Fluorescence Spectroscopy andCellular Imaging. Angew. Chem. Int. Ed.2005,44,1395. c) X. Duan, Y. Huang, Y. Cui, J.Wang, C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscaleelectronic and optoelectronic devices. Nature2001,409,66.
    [107] a) Y. Che, A. Datar, K. Balakrishnan, L. Zang, Ultralong NanobeltsSelf-Assembled from an Asymmetric Perylene Tetracarboxylic Diimide. J. Am. Chem. Soc.2007,129,7234. b) Y. Che, X. Yang, S. Loser, L. Zang, Expedient Vapor Probing ofOrganic Amines Using Fluorescent Nanofibers Fabricated from an n-Type OrganicSemiconductor. Nano Lett.2008,8,2219. c) Y. Sun, K. Ye, H. Zhang, J. Zhang, L. Zhao, B.Li, G. Yang, B. Yang, Y. Wang, S.-W. Lai, C.-M. Che, Luminescent One-DimensionalNanoscale Materials with PtII···PtII Interactions. Angew. Chem. Int. Ed.2006,45,5610.
    [108] a) O. J. Dautel, G. Wantz, R. Almairac, D. Flot, L. Hirsch, J.-P. Lere-Porte, J.-P.Parneix, F. Serein-Spirau, L. Vignau, J. J. E. Moreau, Nanostructuration ofPhenylenevinylenediimide-Bridged Silsesquioxane: From Electroluminescent MolecularJ-Aggregates to Photoresponsive Polymeric H-Aggregates. J. Am. Chem. Soc.2006,128,4892. b) Y. S. Zhao, H. Fu, F. Hu, A. Peng, W. Yang, J. Yao, Tunable emission from binaryorganic one-dimensional nanomaterials: an alternative approach to white-light emission.Adv. Mater.2008,20,79. c) A. Datar, K Balakrishnan, X. Yang, X. Zuo, J. Huang, R.Oitker, M. Yen, J. Zhao, D. M. Tiede, L. Zang, Linearly Polarized Emission of an OrganicSemiconductor Nanobelt. J. Phys. Chem. B2006,110,12327.
    [109] a) A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. Bao, Y. Xia,Introducing Organic Nanowire Transistors. Materials Today2008,11,38. b) B. S. Ong, Y.Wu, P. Liu, S. Gardner, Structurally Ordered Polythiophene Nanopartcles for HighPerformance Organic Thin-film Transistors. Adv. Mater.2005,17,1141. c) Q. Tang, L.Jiang, Y. Tong, H. Li, Y. Liu, Z. Wang, W. Hu, Y. Liu, D. Zhu, Micrometer-andNanometer-Sized Organic Single-Crystalline Transistors. Adv. Mater.2008,20,2947.
    [110] a) K. Takazawa, Y. Kitahama, Y. Kimura, G. Kido, Nano Lett.2005,5,1293. b)H. Yanagi, T. Morikawa, Appl. Phys. Lett.1999,75,187. c) Y. S. Zhao, J. Xu, A. Peng, H.Fu, Y. Ma, L. Jiang, J. Yao, Angew. Chem. Int. Ed.2008,47,7301. d) Y. S. Zhao, A. Peng,H. Fu, Y. Ma, J. Yao, Adv. Mater.2008,20,1661.
    [111] a) Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa,M. Taniguchi, T. Kawai, T. Aida, Science2006,314,1761. b) A. D. Schwab, D. E. Smith,B. Bond-Watts, D. E. Johnston, J. Hone, A. T. Johnson, J. C. de Paula, W. F. Smith, NanoLett.2004,4,1261. c) X. Zhang, J. Jie, W. Zhang, C. Zhang, L. Luo, Z. He, X. Zhang, W.Zhang, C. Lee, S. Lee, Adv. Mater.2008,20,2427. d) H.-X. Ji, J.-S. Hu, L.-J. Wan, Chem.Commun.2008,2653.
    [112] a) L. Schmidt-Mende, A. Fechtenk tter, K. Müllen, E. Moons, R. H. Friend, J. D.MacKenzie, Science2001,293,1119. b) T. Hasobe, H. Imahori, S. Fukuzumi, P. V. Kamat,J. Mater. Chem.2003,13,2515.
    [113] A. Ajayaghosh, S. J. George, A. P. H. J. Schenning in Topics in CurrentChemistryVol.258: Supramolecular Dye Chemistry (Ed.: F. Würthner), Springer, Berlin,2005, pp.83–118.
    [114] a) F. Würthner, Chem. Commun.2004,1564. b) F. J. M. Hoeben, P. Jonkheijm, E.W. Meijer, A. P. H. J Schenning, Chem. Rev.2005,105,1491. c) A. C. Grimsdale, K.Müllen, Angew. Chem. Int. Ed.2005,44,5592. d) L. Zang, Y. Che, J. S. Moore, Acc. Chem.Res.2008,41,1596. e) Y. S. Zhao, H. Fu, A. Peng, Y. Ma, D. Xiao, J. Yao, Adv. Mater.2008,20,2859.
    [115] J. P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T.Hashizume, N. Ishii, T. Aida, Self-Assembled Hexa-peri-hexabenzocoronene GraphiticNanotube. Science2004,304,1481.
    [116] a) Y. S. Zhao, C. Di, W. Yang, G. Yu, Y. Liu, J. Yao, Adv. Funct. Mater.2006,16,1985. b) Y. S. Zhao, D. Xiao, W. Yang, A. Peng, J. Yao, Chem. Mater.2006,18,2302. c) Y.S. Zhao, H. Fu, A. Peng, J. Yao, Adv. Mater.2007,19,3554.
    [117] a) C. D. Dimitrakopoulos, D. J. Mascaro, IBM J. Res. Dev.2001,45. b) Z. Bao,Adv. Mater.2000,12,227.
    [118] a) Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang, Y. Liu, D. Zhu, Adv.Mater.2006,18,65. b) Y. Sun, L. Tan, S. Jiang, H. Qian, Z. Wang, D. Yan, C. Di, Y. Wang,W. Wu, G. Yu, S. Yan, C. Wang, W. Hu, Y. Liu, D. Zhu, J. Am. Chem. Soc.2007,129,1882.c) Y. Wakayama, R. Hayakawa, T. Chikyow, S. Machida, T. Nakayama, S. Egger, D. G. DeOteyza, H. Dosch, K. Kobayashi, Nano. Lett.2008,8,3273. d) A. L. Briseno, S. C. B.Mannsfeld, S. A. Jenekhe, Z. Bao, Y. Xia, Materials Today2008,11,38.
    [119] E. H. Morkved, H. Kjosen, S. M. Neset, Acta. Chemica. Scandinavica.1994,48,372.
    [120]宋伟锋,系列电子传输材料的合成和一维自组装特性的研究,吉林大学硕士学位论文,2009年。
    [121] X. Zhang, X. Zhang, W. Shi, X. Meng, C. Lee, S. Lee, Single-Crystal OrganicMicrotubes with a Rectangular Cross Section. Angew. Chem. Int. Ed.2007,46,1525.
    [122] Y. T. Tao, E. Balasubramaniam, A. Danel, P. Tomasik, Appl. Phys. Lett.2000,77,933.
    [123] J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev.2004,104,4971.
    [124] T. C. Wong, J. Kovac, C. S. Lee, L. S. Hung, S. T. Lee, Chemical Physics Letters,2001,334,61.
    [125] a) J. H. Williams, Acc. Chem. Res.1993,26,593. b) C. A. Hunter, J. K. M.Sanders, J. Am. Chem. Soc.1990,112,5525.
    [126] G. Horowitz, Adv. Mater.1998,10,365.
    [127] Y. Takahashi, T. Hasegawa, Chem. Mater.2007,19,6382.
    [128] M. Enomoto, A. Kishimura, T. Aida, Coordination Metallacycles of an AchiralDendron Self-Assemble via Metal Metal Interaction To Form Luminescent SuperhelicalFibers. J. Am. Chem. Soc.2001,123,5608.
    [129] W. Lu, V. A. L. Roy, C. M. Che, Self-assembled nanostructures with tridentatecyclometalated platinum(II) complexes. Chem. Commun.2006,38,3972.
    [130] A. L. F. Chow, M. H. So, W. Lu, N. Zhu, C. M. Che, Synthesis, PhotophysicalProperties, and Molecular Aggregation of Gold(I) Complexes Containing Carbon-DonorLigands. Chem. Asian J.2011,6,544.
    [131] Y. Sun, K. Ye, H. Zhang, J. Zhang, L. Zhao, B. Li, G. Yang, B. Yang, Y. Wang,S.W. Lai, C. M. Che, Luminescent One-Dimensional Nanoscale Materials with PtIIPtIIInteractions. Angew. Chem. Int. Ed.,2006,45,5610.
    [132] A. Kobayashi, T. Kojima, R. Ikeda, H. Kitagawa, Synthesis of aOne-Dimensional Metal-Dimer Assembled System with Interdimer Interaction, M2(dtp)4(M=Ni, Pd; dtp=Dithiopropionato). Inorg. Chem.,2006,45,322.
    [133] C. M. Che, C. F. Chow, M. Y. Yuen, V. A. L. Roy, W. Lu, Y. Chen, S. S. Y.Chui, N. Zhu, Single microcrystals of organoplatinum(II) complexes with highcharge-carrier mobility. Chem. Sci.,2011,2,216.
    [134] X. Zhang, J. Jie, W. Zhang, C. Zhang, L. Luo, Z. He, X. H. Zhang, W. Zhang,C. Lee, S. Lee, Photoconductivity of a Single Small-Molecule Organic Nanowire. Adv.Mater.,2008,20,2427.
    [135] J. Yoon, S. K. Chae, J. M. Kim, Colorimetric Sensors for Volatile OrganicCompounds (VOCs) Based on Conjugated Polymer-Embedded Electrospun Fibers. J. Am.Chem. Soc.,2007,128,3038.
    [136] A. Kishimura, T. Yamashita, T. Aida, Phosphorescent Organogels via“Metallophilic” Interactions for Reversible RGB Color Switching. J. Am. Chem. Soc.,2005,127,179.
    [137] D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, K. Cho,High-Mobility Organic Transistors Based on Single-Crystalline Microribbons ofTriisopropylsilylethynyl Pentacene via Solution-Phase Self-Assembly. Adv. Mater.,2007,19,678.
    [138] Y. Chen, K. Li, H. O. Lloyd, W. Lu, S. S. Y. Chui, C. M. Che,Tetrakis(arylisocyanide) Rhodium(I) Salts in Water: NIR Luminescent and ConductiveSupramolecular Polymeric Nanowires with Hierarchical Organization. Angew. Chem. Int.Ed.,2010,49,9968.
    [139] J. H. Oh, H. W. Lee, S. Mannsfeld, R. M. Stoltenberg, E. Jung, Y. W. Jin, J. M.Kim, J.-B. Yoo, Z. Bao, Solution-processed, high-performance n-channel organicmicrowire transistors. Proc. Natl. Acad. Sci. U.S.A.,2009,106,6065.
    [140] W. Jiang, Y. Zhou, H. Geng, S. Jiang, S. Yan, W. Hu, Z. Wang, Z. Shuai, J. Pei,Solution-Processed, High-Performance Nanoribbon Transistors Based on Dithioperylene. J.Am. Chem. Soc.,2011,133,1.
    [141] J. E. Parks, A. L. Balch, Gold Carbene Complexes: Preparation, Oxidation, andLigand Displacement. J. Organomet. Chem.,1974,71,453.
    [142] G. Minghetti, F. Bonati, Trimeric (Alkoxy)(alkylimino)methylgold()Compounds,[(RO)(R’N=)CAu]3. Inorg. Chem.,1974,13,1600.
    [143] R. L. White-Morris, M. M. Olmstead, S. Attar, A. L. Balch, IntermolecularInteractions in Polymorphs of Trinuclear Gold(I) Complexes: Insight into theSolvoluminescence of AuI3(MeN=COMe)3.Inorg. Chem.,2005,44,5021.
    [144] J. C. Vickery, M. Olmstead, E. Y. Fung, A. L. Balch, Solvent-StimulatedLuminescence from the Supramolecular Aggregation of a Trinuclear Gold() Complex thatDisplays Extensive Intermolecular Au-Au Interactions. Angew. Chem. Int. Ed.,1997,36,1197.
    [145] A. Kobayashi, T. Kojima, R. Ikeda, H. Kitagawa, Synthesis of aOne-Dimensional Metal-Dimer Assembled System with Interdimer Interaction, M2(dtp)4(M=Ni, Pd; dtp=Dithiopropionato). Inorg. Chem.,2006,45,322.
    [146] M. Y. Yuen, V. A. L. Roy, W. Lu, S. C. F. Kui, G. S. M. Tong, M. H. So, S. S.Y. Chui, M. Muccini, J. Q. Ning, S. J. Xu, C. M. Che, Semiconducting andElectroluminescent Nanowires Self-Assembled from Organoplatinum(II) Complexes.Angew. Chem. Int. Ed.,2008,46,9895.
    [147] Y. Chen, K. Li, W. Lu, S. S. Y. Chui, C. W. Ma, C. M. Che, PhotoresponsiveSupramolecular Organometallic Nanosheets Induced by PtIIPtIIand C H π Interactions.Angew. Chem. Int. Ed.,2009,48,9909.
    [148] C. M. Che, C. F. Chow, M. Y. Yuen, V. A. L. Roy, W. Lu, Y. Chen, S. S. Y.Chui, N. Zhu, Single microcrystals of organoplatinum(II) complexes with highcharge-carrier mobility. Chem. Sci.,2011,2,216.
    [149] Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, G. Saito, HighMobility Organic Field-Effect Transistor Based on Hexamethylenetetrathiafulvalene withOrganic Metal Electrodes. Chem. Mater.,2007,19,6382.
    [150] Y. Zhang, H. Zhang, X. Mu, S. W. Lai, B. Xu, W. Tian, Y. Wang, C. M. Che,Photo-and vapor-responsive conducting microwires based on Pt-Pt interactions. Chem.Commun.,2010,41,7727.
    [152] Q. X. Tang, H. X. Li, M. He, W. P. Hu, C. M. Liu, K. Q. Chen, C. Wang, Y. Q.Liu, D. B. Zhu, Low threshold voltage transistors based on individual single-crystallinesubmicrometer-sized ribbons of copper phthalocyanine. Adv. Mater.2006,18,65.
    [153] Y. Wakayama, R. Hayakawa, T. Chikyow, S. Machida, T. Nakayama, S. Egger,D. G.De Oteyza, H. Dosch, K. Kobayashi, Self-Assembled Molecular Nanowires of6,13-Bis(methylthio)pentacene: Growth, Electrical Properties, and Applications. Nano.Lett.2008,8,3273.
    [154] A. L. Briseno, S. C. B. Mannsfeld, X. M. Lu, Y. J. Xiong, S. A. Jenekhe, Z. N.Bao, Y. N. Xia, Fabrication of Field-Effect Transistors from HexathiapentaceneSingle-Crystal Nanowires. Nano Lett.2007,7,668.
    [155] a) Q. X. Tang, H. X. Li, Y. L. Liu, W. P. Hu, High-Performance Air-Stablen-Type Transistors with an Asymmetrical Device Configuration Based on OrganicSingle-Crystalline Submicrometer/Nanometer Ribbons. J. Am. Chem. Soc.2006,128,14634. b) L. Jiang, H. L. Dong, W. P. Hu, Organic single crystal field-effect transistors:advances and perspectives. J. Mater. Chem.2010,20,4994.
    [156] D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, K. Cho,High-Mobility Organic Transistors Based on Single-Crystalline Microribbons ofTriisopropylsilylethynyl Pentacene via Solution-Phase Self-Assembly. Adv. Mater.2007,19,678.
    [157] Y. Shirota, H. Kageyama, Charge carrier transporting molecular materials andtheir applications in devices. Chem. Rev.2007,107,953.
    [158] R. J. Li, H. X. Li, Y. B. Song, Q. X. Tang, Y. L. Liu, W. Xu, W. P. Hu, D. B.Zhu, Micrometer Sized Organic Single Crystals Anisotropic Transport and Field-effectTransistors of a Fused-ring Thienoacene. Adv. Mater.2009,21,1605.
    [159] A. L. Briseno, S. C. B. Mannsfeld, S. A. Jenekhe, Z. N. Bao, Y. N. Xia,Introducing organic nanowire transistors. Materials Today2008,11,38.
    [160] A. Kovacs, A. Szabo, I. Hargittai, Structural characteristics of intramolecularhydrogen bonding in benzene derivatives. Acc. Chem. Res.2002,35,887.
    [161] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y.Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. N. Bao, Tuning charge transport insolution-sheared organic semiconductors using lattice strain. Nature2011,480,504.
    [162] J. H. Oh, H. W. Lee, S. Mannsfeld, R. M. Stoltenberg, E. Jung, Y. W. Jin, J. M.Kim, J.-B. Yoo, Z. Bao, Solution-processed, high-performance n-channel organicmicrowire transistors. Proc. Natl. Acad. Sci. U.S.A.2009,106,6065.
    [163] J. Yang, D. Yan, Weak epitaxy growth of organic semiconductor thin films.Chem. Soc. Rev.2009,38,2634.
    [164] X. Sun, L. Zhang, C. Di, Y. Wen, Y. Guo, Y. Zhao, G. Yu, Y. Liu, MorphologyOptimization for the Fabrication of High Mobility Thin-Film Transistors. Adv. Mater.2011,23,3128.
    [165] X. Zhang, L. J. Richter, D. M. DeLongchamp, R. J. Kline, M. R. Hammond, I.McCulloch, M. Heeney, R. S. Arshraf, J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H.Geerts, D. A. Fischer, M. F. Toney, Molecular Packing of High-Mobility DiketoPyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. J. Am. Chem.Soc.2011,133,15073.
    [166] P. M. Beaujuge, J. M. J. Fréchet, Highly Luminescent, Electron-DeficientBora-cyclophanes. J. Am. Chem. Soc.2011,133,20009.
    [167] T. Sakurai, K. Tashiro, Y. Honsho, A. Seaki, S. Seki, A. Osuka, A. Miranaka, M.Uchiyama, J. Kim, S. Ha, K. Kato, M. Takata, T. Aida, Electron-or Hole-TransportingNature Selected by Side-Chain-Directed π-Stacking Geometry: Liquid Crystalline FusedMetalloporphyrin Dimers. J. Am. Chem. Soc.2011,133,6537.
    [168] R. J. Li, W. P. Hu, Y. Q. Liu, D. B. Zhu, Micro-and Nanocrystals of OrganicSemiconductors, Acc. Chem. Res.2010,43,529.
    [169] A. L. Briseno, S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A.Jenekhe, Z. N. Bao, Y. N. Xia, Perylenediimide Nanowires and Their Use in FabricatingField-Effect Transistors and Complementary Inverters, Nano Lett.2007,7,2847.
    [170] H. Wang, D. Song, J. Yang, B. Yu, Y. Geng, D. Yan, High mobilityvanadyl-phthalocyanine polycrystalline films for organic field-effect transistors, Appl.Phys. Lett.2007,90,253510.
    [171] W. Jiang, Y. Zhou, H. Geng, S. Jiang, S. Yan, W. Hu, Z. Wang, Z. Shuai, J. Pei,Solution-Processed, High-Performance Nanoribbon Transistors Based on Dithioperylene, J.Am. Chem. Soc.2011,133,1.
    [172] N. A. Minder, S. Ono, Z. Chen, A. Facchetti, A. F. Morpurgo, Band-LikeElectron Transport in Organic Transistors and Implication of the Molecular Structure forPerformance Optimization, Adv. Mater.2012,24,503.
    [173] K. Q. Ye, J. Wang, H. Sun, Y. Liu, Z. C. Mu, F. Li, S. M. Jiang, J. Y. Zhang, H.X. Zhang, Y. Wang, C. M. Che, Supramolecular Structures and Assembly andLuminescent Properties of Quinacridone Derivatives, J. Phys. Chem. B2005,109,8008.
    [174] E. M. Gross, J. D. Anderson, A. F. Slaterbeck, S. Thayumanavan, S. Barlow, Y.Zhang, S. R. Marder, H. K. Hall, M. Flore Nabor, J. F. Wang, E. A. Mash, N. R.Armstrong, R. M. Wightman, Electrogenerated Chemiluminescence from Derivatives ofAluminum Quinolate and Quinacridones: Cross-Reactions with Triarylamines Lead toSinglet Emission through Triplet Triplet Annihilation Pathways. J. Am. Chem. Soc.2000,122,4972.
    [175] M. Hiramoto, S. Kawase, M. Yokoyama, Jpn. J. Appl. Phys.1996,35, L349.
    [176] Y. F. Zhao, X. Y. Mu, C. X. Bao, Y. Fan, J. Y. Zhang, Y. Wang, Alkyl ChainLength Dependent Morphology and Emission Properties of the Organic MicromaterialsBased on Fluorinated Quinacridone Derivatives, Langmuir2009,25,3264.
    [177] Z. X. Xu, H. F. Xiang, V. A. L. Roy, S. S. Y. Chui, Y. Wang, P. T. Lai, C. M.Che, Appl. Phys. Lett.2009,95,123305.
    [178] J. L. Brédas, J. P. Calbert, D. A. da Silva Filho, J. Cornil, Proc. Natl. Acad. Sci.U.S.A.2002,99,5804.
    [179] G. Horowitz, Organic Field-Effect Transistors. Adv. Mater.1998,10,365.
    [180] Y. Takahashi, T. Hasegawa, S. Horiuchi, R. Kumai, Y. Tokura, G. Saito, HighMobility Organic Field-Effect Transistor Based on Hexamethylenetetrathiafulvalene withOrganic Metal Electrodes. Chem. Mater.2007,19,6382.
    [181] A. N. Sokolov, S. Atahan-Evrenk, R. Mondal, H. B. Akkerman, R. S.Sánchez-Carrera, S. Granados-Focil, J. Schrier, S. C. B. Mannsfeld, A. P. Zoombelt, Z. N.Bao, A. Aspuru-Guzik, From computational discovery to experimental characterization ofa high hole mobility organic crystal, Nat. Commun.2011,2:437, DOI:10.1038/ncomms1464.
    [182] Terech, P.; Weiss, R. G. Low molecular mass gelators of organic liquids and theproperties of their gels. Chem. Rev.1997,97,3133.
    [183] Weiss, R. G.; Terech, P. Molecular gels materials with self-assembled fibrillarnetworks, Dordrecht: springer,2006.
    [184] Sugiyasu, K.; Fujita, N.; Shinkai, S. Visible-light-harvesting organogelcomposed of cholesterol-based perylene derivatives. Angew. Chem. Int. Ed.2004,43,1229.
    [185] Shirakawa, M.; Fujita, N.; Shinkai S.[60]Fullerene-motivated organogelformation in a porphyrin derivative bearing programmed hydrogen-bonding sites J. Am.Chem. Soc.2003,125,9902.
    [186] Ajayaghosh, A.; Praveen, V. K.; Vijayakumar, C. Organogels as scaffolds forexcitation energy transfer and light harvesting. Chem. Soc. Rev.2008,37,109.
    [187] Praveen, V. K.; George, S. J.; Varghese, R.; Vijayakumar, C.; Ajayaghosh, A.Self-assembled π-nanotapes as donor scaffolds for selective and thermally gatedfluorescence resonance energy transfer (FRET). J. Am. Chem. Soc.2006,128,7542.
    [188] Yang, X.; Lu, R.; Xu, T.; Xue, P.; Liu, X.; Zhao, Y. Novel carbazole-basedorganogels modulated by tert-butyl moieties. Chem. Commun.2008,453.
    [189] Zhao, Fan; Ma, M. L.; Xu, B. Molecular hydrogels of therapeutic agents. Chem.Soc. Rev.2009,38,883.
    [190] Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B.Angew. Chem., Int. Ed.2007,46,4285.
    [191] John, G.; Shankar, B. V.; Jadhav, S. R.; Vemula, P. K. Biorefinery: a design toolfor molecular gelators. Langmuir2010,26,17843.
    [192] Vemula, P. K.; Li, J.; John G. Enzyme catalysis: tool to make and breakamygdalin hydrogelators from tenewable resources: a delivery model for hydrophobicdrugs. J. Am. Chem. Soc.2006,128,8932.
    [193] Lin, Y.-C.; Kachar, B.; Weiss, R. G. Novel family of gelators of organic fluidsand the structure of their gels. J. Am. Chem. Soc.1989,111,5542.
    [194] Wang, R.; Geiger, C.; Chen, L.; Swanson, B.; Whitten, D. G.; Direct observationof sol-gel conversion: the role of the solvent in organogel formation. J. Am. Chem. Soc.2000,122,2399.
    [195] van Nostrum, C. F.; Picken, S.; Schouten, A.-J.; J. Nolte, R. J. M. Synthesis andsupramolecular chemistry of novel liquid crystalline crown ether-substitutedphthalocyanines: toward molecular wires and molecular ionoelectronics. J. Am. Chem. Soc.1995,117,9957.
    [196] Wang, G.; Lin, J.; Jiang, X.; Li Z. Cholesterol-appended aromatic imineorganogelators: s case study of gelation-driven component selection. Langmuir2009,25,8414.
    [197] Shirakawa, M.; Fujita, N.; Tani, T.; Kaneko, K.; Ojima, M.; Fujii, A.; Ozaki, M.;Shinkai, S. Organogels of8-quinolinol/metal(II)–chelate derivatives that show electron-and light-emitting properties. Chem. Eur. J.2007,13,4155.
    [198] Lu, W.; Chen, Y.; Roy, V. A. L.; Chui, S. S.-Y.; Che, C.-M. Supramolecularpolymers and chromonic mesophases self-organized from phosphorescent cationicorganoplatinum(II) complexes in water. Angew. Chem. Int. Ed.2009,48,7621.
    [199] Tam, A. Y.-Y.; Wong, K. M.-C.; Yam, V. W.-W. Influence of counteranion onthe chiral supramolecular assembly of alkynylplatinum(II) terpyridyl metallogels that arestabilized by Pt···Pt and π–π interactions. Chem. Eur. J.2009,15,4775.
    [200] Hui, J. K.-H.; Yu, Z.; MacLachlan, M. J. Supramolecular assembly of zincsalphen complexes: access to metal-containing gels and nanofibers. Angew. Chem. Int. Ed.2007,46,7980.
    [201] Yilmaz, I.; Bekaroglu, O. Synthesis and Characterization of Substituted withLong Alkoxy Chains and Halogeno Groups and a Binuclear Cyclopalladated Symmetrical.Chem. Rev.1997,97,3133.
    [202] Fernandez, S.; Pizaro, J. L.; Mesa, J. L. Hydrothermal Synthesis and StructuralCharacterization of the (CnH2n+6N2)[Mn3(HPO3)4](n)3-8) New LayeredInorganic-Organic Hybrid Manganese(II) Phosphites. Crystal Structure and Spectroscopicand Magnetic Properties of (C3H12N2)[Mn3(HPO3)4]. Inorg. Chem.2001,40,3476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700