用户名: 密码: 验证码:
基于非模糊均值漂移的高空间分辨率遥感影像区域分割算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天技术、数据自动采集和传输技术、数据压缩技术和数据库技术的快速发展,使得大量的遥感数据积累下来。但是,这些数据的处理远远不能满足实际应用的需求。遥感数据的应用水平严重的滞后于空间遥感技术的发展。高空间分辨率影像的出现为遥感技术的发展带来了新的机遇,增加了传统遥感应用的深度。发展智能化的遥感影像数据分析和理解技术,利用计算机模拟人脑对遥感影像解译的认知过程,依据应用目的来获得影像内容的语义信息是高分辨率遥感影像解译的重要任务。而这些技术都需要建立在遥感影像区域分割算法基础上。
     在从像素空间经特征空间到语义空间的高分辨率遥感影像解译过程中,区域分割是重要一环,有许多问题值得研究。非模糊均值漂移算法作为一种非参数概率密度估计算法,具有良好的理论基础,且适合并行运算,适用于各种特征空间分析的场合。本文采用非模糊均值漂移算法为工具,就高空间分辨率影像的分割问题展开研究。相关的工作可概括为以下几点:
     1.非模糊均值漂移算法是一种统计迭代算法,算法的收敛性是其应用的理论基础。然而,相关经典文献的收敛性证明却存在错误和不完善之处。本研究梳理了核函数与剖面函数、核函数与阴影核函数的关系,然后基于剖面函数和阴影核的性质严格证明了概率密度估计序列的收敛性,在此基础上又给出了采用带宽矩阵、单一变带宽、变权重不同形式的非模糊均值漂移算法的收敛性证明。
     2.针对高空间分辨率遥感影像的特点,给出了光谱和纹理信息融合的像素级和区域级分割算法。两种算法中,均采用Gabor滤波器组的卷积输出作为纹理特征,并基于特征的方差设计了加权最小距离分类器。为获得像素级的光谱特征,提出了一种均值漂移滤波算法的自适应带宽确定方法,并采用该算法对各像素灰度值组成的特征空间进行滤波,将滤波结果作为光谱特征。对于区域级分割,将均值漂移分割算法获得的区域模态的光谱分量作为光谱特征。实验结果表明:提出的均值漂移带宽确定方法是有效的;加权融合算法较基于光谱的分割方法在分割精度上有一定程度的提高;区域级的分类方法无论是客观精度还是主观评价都要优于像素级的结果。
     3.考虑到传统均值漂移算法带宽参数不易控制,分割结果缺乏稳定性的缺点,提出了一种小波域的遥感影像多尺度均值漂移分割算法。算法通过小波变换将不同分辨率的分割结果融合起来,采用形态学方法实现分割区域边界优化。航空遥感影像和合成影像的实验表明:该算法分割精度要优于4种对比算法,且具有参数调整简单和时间复杂度低的优点。
     4.地表景观本身具有多层次的组织结构,不同的地物需要适当的比例尺,才能完整的观测。论文研究了和地表景观的语义层次对应的层次分割区域树的构建方法,采用边缘置信度加权的均值漂移分割算法作为初始分割,构建了一个两步式的多层次分割框架。在该框架下,首先实现了一种油罐目标提取和油库定位算法。油罐识别问题可视为同一语义层次下的地物、空间尺度不一致时的分割问题的一个实例。相关实验证实了算法的有效性。影像的大尺度划分可为影像进一步的分析打下基础。考虑到高分辨率遥感影像在大尺度上表现出较强的纹理性,在提出的多尺度框架下,还实现了一种基于区域纹理建模的、逐步合并的多层次分割算法。算法采用区域的局部二值模式特征和K均值聚类算法获得的影像标记构建联合直方图,对区域进行建模,采用G统计量度量直方图相似性。采用合成影像,和MRF纹理分割方法等的对比证实了算法的有效性。最后,提出了一种基于多层次分割的特征自适应提取算法,并用于城区地物覆盖分类。算法将最优的分割结果和地物对象联系起来,对同一地物的不同尺度提取特征。两组高光谱实验数据的结果表明:在采用相同的训练和测试数据及分类器的情况下,对比相关文献的结果,本文提出的算法无论是分类精度还是视觉评价都获得了较好的结果,从而验证了特征提取算法的有效性。三种具体的分割应用验证了两步式的多尺度分割框架的可行性。
A large number of remote sensing data has been accumulated with the rapid development of several technologies, such as the aerospace technology, the automatic data acquisition and transmission technology, the data compression technology and the database technology, et al. However, the processing of these data is far from satisfying the needs of practical applications. The application of remote sensing data lags far behind the development of space technology. The appearance of high spatial resolution remote sensing images has brought new opportunities for the development of remote sensing technology and increased the depth of traditional remote sensing applications. The development of intelligent remote sensing image data analysis and understanding techniques, the simulation of remote sensing image interpretation of the human brain's cognitive processes by computer, getting the semantic information from high-resolution images based on the purpose of practical applications are important tasks of image interpretation. And all of these techniques are built on region-based image segmentation algorithms.
     During image interpretation process from the pixel space through the feature space to semantic space, the region segmentation plays an important part; there are many issues worth studying. As a non-parametric probability density estimation algorithm, the nonblurring mean shift algorithm which can be used for feature space analysis of a variety of occasions has a good theoretical basis and is suitable for parallel computing. In my work, the nonBlurring mean shift algorithm is used as a mathematic tool for the research of high spatial resolution image segmentation. The work can be summarized as the following:
     1. The nonBlurring mean shift algorithm is a statistical iterative algorithm; the convergence of the algorithm is the theoretical basis for its application. However, there are some mistakes and imperfections in the proof procedure of its convergence in some classical literatures. The research firstly emphasized the relation between kernel function and profile function, kernel function and the shadow of kernel function. Secondly, the convergence of the probability density estimation sequence is proved strictly according to properties of the profile function and the shadow of the kernel function. Finally, the convergence of nonBlurring mean shift procedures with different forms, such as the bandwidth matrix, the variable bandwidth, the variable weight, is discussed.
     2. A pixel-level and a region-level segmentation algorithm based on spectral and texture information fusion are presented for high spatial resolution remote sensing images. Gabor filter banks are used to extract texture features and a weighted minimum distance classifier is designed on feature variances in both methods. In order to obtain pixel-level spectral features, the paper presents an adaptive bandwidth mean-shift filtering algorithm using pixel numbers as input and using output as selected spectral features, which determines bandwidth based on Gauss assumption. The spectral part of the region mode is used as the region-level spectral feature. The experiments show that:the proposed adaptive mean-shift filtering algorithm is effective; the weighted fusion algorithm has higher segmentation accuracy than methods only using spectral features; the region-level method is superior to the pixel level method in both the objective and subjective evaluation
     3. Considering the bandwidths of the traditional mean-shift algorithm is not easy to control and the lack of stability of the segmentation results, a wavelet domain multiscale mean-shift segmentation algorithm is presented. The algorithm integrates the segmentation result in different wavelet resolutions by wavelet transform and the region boundary in the finest scale is optimized by morphological operation. Airborne image and synthetic image are used for validating the algorithm. Experiments show that:the segmentation algorithm is superior to the compared four algorithms, has a simple parameter setting and low time complexity.
     4.The landscape has a multi-level hierarchical structure, land objects only can be observed completely in a appropriate scale range. The methodology that constructing a multilevel hierarchical region structure, which is associated the multi-level hierarchical structure of the real word is studied, and a two-step framework for multi-level segmentation is built. Under this framework, an oil tank extraction and oil depots location algorithm is presented firstly and validated by experiments. Tank extraction in high resolution images can be treated as an example of the segmentation problems from the same semantic level to a different image spatial scale. The large-scale region partition of images will benefit further analysis. Since the large-scale high resolution remote sensing images have demonstrated a strong texture property, a multi-level segmentation algorithm based on region texture modeling and stepwise merging is presented. The method models the region with the joint histogram of local binary pattern and the labels of K means algorithm, and G-statistic is used to measure the difference of two histograms. Compared with MRF based segmentation methods using synthetic images, the method's accuracy has been validated. Finally, a multi-level segmentation procedure for adaptive feature extraction algorithm is presented and used for urban land cover classification. The method associates meaningful segments with land objects and features are extracted from the different size scale of the same land object. Two hyperspectral data sets are used for validating the method. Compared with other methods using the same training set, testing set and classifier, our results have show superior results in both visual evaluation and classification accuracy.
引文
1. Meer, P. and B. Georgescu, Edge detection with embedded confidence. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001.23(12):p.1351-1365.
    2. Comaniciu, D., V. Ramesh, and P. Meer, Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003.25(5):p.564-577.
    3. Aksoy, S. Spatial Techniques for Image Classification, in Signal and Image Processing for Remote Sensing.2006. New York:Taylor & Francis.
    4. Benediktsson, J.A., J.A. Palmason, and J.R. Sveinsson, Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing,2005.43(3):p.480-491.
    5. Fauvel, M., et al., Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Transactions on Geoscience and Remote Sensing,2008. 46(11):p.3804-3814.
    6. Pesaresi, M. and J.A. Benediktsson, A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing,2001.39(2):p.309-320.
    7. Ojala, T. and M. Pietikainen, Unsupervised texture segmentation using feature distributions. Pattern Recognition,1999.32(3):p.477-486.
    8. Marceau, D.J. and G.J. Hay, Remote sensing contributions to the scale issue Canadian Journal of Remote Sensing,1999.25(4):p.357-366.
    9. 刘国英等.,小波域MRMRF彩色纹理图像分割新方法.武汉大学学报(信息科学版),2008.33(9):p.963-966.
    10. 李德仁,地球空间信息学的机遇.武汉大学学报(信息科学版),2004.29(9).
    11. 李德仁,论21世纪遥感与GIS的发展.武汉大学学报(信息科学版),2003.28(2).
    12. 关元秀,程晓阳,高分辨率卫星影像处理指南.2008,背景:科学出版社.
    13. Blaschke, T., Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing. In Press, Corrected Proof.
    14. 章毓晋,ed.图像分析.2 ed.图像工程(中册).2005,清华大学出版社:北京.
    15. 刘国英,基于小波域马尔可夫场的遥感影像分割研究,测绘遥感信息工程国家重点实验室.2009,武汉大学:武汉.
    16. Beaulieu, J.M. and M. Goldberg, Hierarchy in picture segmentation:a stepwise optimization approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989.11(2):p.150-163.
    17. Yonghui, W., et al., Region-Based Classification of Polarimetric SAR Images Using Wishart MRF. IEEE Geoscience and Remote Sensing Letters,2008.5(4):p.668-672.
    18. Blaschke, T. and J. Strobl, What's wrong with pixels? Some recent developments interfacing remote sensing and GIS. GIS -Zeitschrift fur Geoinformationssysteme,2001. 14(6):p.12-17.
    19. Pons Bernad, G., L. Denise, and P. Refregier, Hierarchical Feature-Based Classification Approach for Fast and User-Interactive SAR Image Interpretation. IEEE Geoscience and Remote Sensing Letters,2009.6(1):p.117-121.
    20. Darwish, A., K. Leukert, and W. Reinhardt. Image segmentation for the purpose of object-based classification. in Geoscience and Remote Sensing Symposium,2003. IGARSS '03. Proceedings.2003 IEEE International.2003.
    21. Akcay, H.G. and S. Aksoy, Automatic Detection of Geospatial Objects Using Multiple Hierarchical Segmentations. IEEE Transactions on Geoscience and Remote Sensing, 2008.46(7):p.2097-2111.
    22. Hay, G.J. and G. Castilla, Geographic Object-Based Image Analysis (GEOBIA):A new name for a new discipline, in Object-Based Image Analysis.2008. p.75-89.
    23. Castilla, G. and G.J. Hay, Image objects and geographic objects, in Object-Based Image Analysis.2008. p.91-110.
    24. Multi-scale Adaptive Segmentation using Edge and Region Based Attributes, [cited; Available from:http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.7580]
    25. Wang, Y., J. Yang, and N. Peng, Unsupervised color-texture segmentation based on soft criterion with adaptive mean-shift clustering. Pattern Recognition Letters,2006.27(5):p. 386-392.
    26. Canny, J., A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986.8(6):p.679-698.
    27. Martin, D.R., C.C. Fowlkes, and J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004.26(5):p.530-549.
    28. Stephen, M.S. and J.M. Brady, SUSAN-A New Approach to Low Level Image Processing. Int. J. Comput. Vision,1997.23(1):p.45-78.
    29. Ojala, T., M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002.24(7):p.971-987.
    30. Ojala, T., M. Pietikainen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions. Pattern Recognition,1996.29(1):p.51-59.
    31. Freixenet, J., et al., Yet Another Survey on Image Segmentation:Region and Boundary Information Integration, in Computer Vision-ECCV 2002.2002. p.21-25.
    32. Dong, J., S. Zhang, and L. She. A Knowledge-based Segmentation Method Integrating both Region and Boundary Information of Medical Images. in BioMedical Engineering and Informatics,2008. BMEI 2008. International Conference on.2008.
    33. Fu, K.S. and J.K. Mui, A survey on image segmentation. Pattern Recognition,1981.13(1): p.3-16.
    34. Sahoo, P.K., S. Soltani, and A.K.C. Wong, A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing,1988.41(2):p.233-260.
    35. Hammouche, K., M. Diaf, and P. Siarry, A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Computer Vision and Image Understanding,2008.109(2):p.163-175.
    36. Zhang, H., J.E. Fritts, and S.A. Goldman, Image segmentation evaluation:A survey of unsupervised methods. Computer Vision and Image Understanding,2008.110(2):p.21.
    37. 吕庆文,陈武凡,基于互信息量的图像分割.计算机学报,2006.29(2):p.6.
    38. Weszka, J.S., A survey of threshold selection techniques. Computer Graphics and Image Processing,1978.7(2):p.259-265.
    39. Yu-Chiang, F. Wang, and D. Casasent, Hierarchical K-means Clustering Using New Support Vector Machines for Multi-class Classification, in International Joint Conference on Neural Networks.2006:Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada.
    40. Wang, X., C. Yang, and J. Zhou, Clustering aggregation by probability accumulation. Pattern Recognition. In Press, Accepted Manuscript.
    41. Cheng, Y., Mean Shift, Mode Seeking, and Clustering. IEEE Transaction on Pattern Analysis and Machine Intelligence,1995.17(8):p.790-799.
    42. Friedman, L., N.S. Netanyahu, and M. Shoshany. Mean shift-based clustering of remotely sensed data. in Geoscience and Remote Sensing Symposium,2003. IGARSS '03. Proceedings.2003 IEEE International.2003.
    43. Qiming, L. and T.M. Khoshgoftaar, Unsupervised multiscale color image segmentation based on MDL principle. IEEE Transactions on Image Processing,2006.15(9):p. 2755-2761.
    44. Comaniciu, D. and P. Meer, Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002.24(5):p. 603-619.
    45. Jung, C.R., Unsupervised multiscale segmentation of color images. Pattern Recognition Letters,2007.28(4):p.523-533.
    46. Yian-Leng, C. and L. Xiaobo, Adaptive image region-growing. IEEE Transactions on Image Processing,1994.3(6):p.868-872.
    47. Pavlidis, T. and Y.T. Liow, Integrating region growing and edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,,1990.12(3):p.225-233.
    48. Deng, Y. and B.S. Manjunath, Unsupervised segmentation of color-texture regions in images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001. 23(8):p.800-810.
    49. Shu-Yen, W. and W.E. Higgins. Symmetric region growing. in Image Processing,2000. Proceedings.2000 International Conference on.2000.
    50. Jianhua, X., T. Adali, and W. Yue. Segmentation of magnetic resonance brain image: integrating region growing and edge detection. in Image Processing,1995. Proceedings., International Conference on.1995.
    51. Zhang, Q., et al., A semi-automatic segmentation procedure for feature extraction in remotely sensed imagery. Computers & Geosciences,2005.31(3):p.289-296.
    52. Ho, P.G.P. and C. Chi Hau.2-D Time Series Model Based Support Vector Machine for Remote Sensing Image Segmentation. in Neural Networks,2007. IJCNN 2007. International Joint Conference on.2007.
    53. Tuduki, Y., et al. Automated seeded region growing algorithm for extraction of cerebral blood vessels from magnetic resonance angiographic data. in Engineering in Medicine and Biology Society,2000. Proceedings of the 22nd Annual International Conference of the IEEE.2000.
    54. Nock, R. and F. Nielsen, Statistical region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004.26(11):p.1452-1458.
    55. Gaetano, R., G. Scarpa, and G. Poggi. A hierarchical segmentation algorithm for multiresolution satellite images. in Geoscience and Remote Sensing Symposium,2007. IGARSS 2007. IEEE International.2007.
    56. 刘国英,基于小波域马尔可夫场的遥感影像分割研究,测绘遥感信息工程国家重点实验室.2009,武汉大学:武汉.
    57. Panjwani, D.K., H. Glenn, and Markov random field models for unsupervised segmentation of textured color images. IEEE Transaction on Pattern Analysis and Machine Intelligence,1995.17(10):p.939-954.
    58. Guillaume Rellier, X.D., F. Falzon, and J. Zerubia, Texture Feature Analysis Using a Gauss-Markov Model in Hyperspectral Image Classification. IEEE Transaction on Geoscience and Remote Sensing,2004.42(7):p.1543-1551.
    59. Kato, Z. and T.-C. Pong, A Markov random field image segmentation model for color textured images. Image and Vision Computing,2006.24:p.1103-1114.
    60. Do, M.N. and M. Vetterli, The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing,2005. 14(12):p.2091-2106.
    61. 沙宇恒,基于Contourlet域HMT模型的多尺度图像分割.红外与毫米波学报,2005.24(6).
    62. 项海林,基于非下采样Contourlet变换域双变量模型的图像分割.中国图象图形学报,2008.13(10).
    63. 孙剑,徐宗本,计算机视觉中的尺度空间方法.工程数学学报,2005.22(6):p.951-962.
    64. 宁纪锋,基于偏微分方程和分水岭算法的图像分割.模式识别与人工智能,2008. 21(5).
    65. 贾迪野,基于四阶偏微分方程平滑的图像分割新方法.计算机应用,2004.24(9):p19-21.
    66. 杨新,基于偏微分方程的多区域SAR图像分割方法研究.电波科学学报,2008.23(3):p.525-529.
    67. Hay, G.J., et al., A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS Journal of Photogrammetry and Remote Sensing,2003. 57(5-6):p.327-345.
    68. 韦春荣,基于阈值分割和Snake模型的弱边缘医学超声图像自动分割.中国组织工程研究与临床康复,2009.13(4):p.659-661.
    69. 仇涵,利用欧氏距离变换Snake模型分割脊椎CT图像.计算机工程与应用,2008.44(30):p.178-1 82.
    70. 吕佩卓,基于局部统计特征约束的Snake模型图像分割方法.华南理工大学学报(自然科学版),2007.35(9):p.36-39.
    71. 王元全,基于先验知识改进Snake模型的脸部特征分割.计算机辅助设计与图形学学报,2004.16(5):p.687-690.
    72. 邓航,综合利用通用霍夫变换与Snake算法对序列图像的分割.红外与激光工程,2000.29(2):p.9-11.
    73. 梅天灿,高分辨率遥感影像中道路信息提取方法的研究,测绘遥感信息工程国家重点实验室.2005,武汉大学:武汉.p.161.
    74. Reed, T.R. and J.M.H. Dubuf, A Review of Recent Texture Segmentation and Feature Extraction Techniques. CVGIP:Image Understanding,1993.57(3):p.359-372.
    75. Schiewe, J., Segmentation of high-resolution remotely sensed data- concepts, applications and problems., in Joint ISPRS Commission Ⅳ Symposium:Geospatial Theory, Processing and Applications.2002.
    76. Ton, J., J. Sticklen, and A.K. Jain, Knowledge-based segmentation of Landsat images. IEEE Transactions on Geoscience and Remote Sensing,1991.29(2):p.222-232.
    77. Baatz, M. and A. Schape, Multiresolution Segmentation:An optimization approach for high quality multi-scale image segmentation, in Geographische Informationsverarbeitung Ⅻ, J.S.e. al., Editor.2000, Verlag Herbert Wichmann Verlag:Karlsruhe, Germany. p. 12-23.
    78. Kartikeyan, B., A. Sarkar, and K.L. Majumder, A segmentation approach to classification of remote sensing imagery.1998, Taylor & Francis. p.1695-1709.
    79. Chen, Z., et al., A new process for the segmentation of high resolution remote sensing imagery. International Journal of Remote Sensing,2006.27(22):p.4991-5001.
    80. Li, P. and X. Xiao, Multispectral image segmentation by a multichannel watershed-based approach. International Journal of Remote Sensing,2007.28(19):p.4429-4452.
    81. Plaza, A. J. and J.C. Tilton. Automated selection of results in hierarchical segmentations of remotely sensed hyperspectral images. in Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. Proceedings.2005 IEEE International.2005.
    82. Aksoy, S. and H.G Akcay, Multi-resolution segmentation and shape analysis for remote sensing image classification. RAST 2005:Proceedings of the 2nd International Conference on Recent Advances in Space Technologies,2005:p.599-604.
    83. Trias-Sanz, R., G. Stamon, and J. Louchet, Using colour, texture, and hierarchial segmentation for high-resolution remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing,2008.63(2):p.156-168.
    84. Duarte-Carvajalino, J.M., et al., Multiscale Representation and Segmentation of Hyperspectral Imagery Using Geometric Partial Differential Equations and Algebraic Multigrid Methods. IEEE Transactions on Geoscience and Remote Sensing,,2008.46(8): p.2418-2434.
    85. Bruzzone, L. and L. Carlin, A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images. IEEE Transactions on Geoscience and Remote Sensing,, 2006.44(9):p.2587-2600.
    86. Castilla, G Size-Constrained Region Merging:A New Tool to Derive Basic Landcover Units from Remote Sensing Imagery.; Photogrammetric Engineering & Remote Sensing, 2008.74(4).
    87. Castilla, G., Size-Constrained Region Merging (SCRM):an automated delineation tool for assisted photointerpretation. (Special Issue:2008 Resource Directory). Photogrammetric Engineering & Remote Sensing,2008.74(4).
    88. 李乡儒,吴福朝,胡占义,均值漂移算法的收敛性.软件学报,2005.16(3):p.365-374.
    89. Fukunaga, K. and L.D. Hostetler, The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Transaction on Information theory,1975. IT-21(1):p.32-40.
    90. Scarpa, G. and M. Haindl. Unsupervised Texture Segmentation by Spectral-Spatial-Independent Clustering. in Pattern Recognition,2006. ICPR 2006.18th International Conference on.2006.
    91. 刘苗苗,黎宁,基于快速均值漂移和水平集方法的图像分割技术.南京航空航天大学学报,2006.38(6):p.764-768.
    92. Barash, D. and D. Comaniciu, A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Vision Computing,2004.22(1):p. 73-81.
    93. 段福庆,周明全,张家才,基于均值漂移的非线性尺度空间滤波.吉林大学学报(工学版),2007.37(3):p.634-639.
    94. Hai, G., et al. Robust multi-level video representation using mean shift analysis. in Multimedia and Expo,2004. ICME '04.2004 IEEE International Conference on.2004.
    95. Haifeng, C. and P. Meer, Robust fusion of uncertain information. Systems, Man, and Cybernetics, Part B:IEEE Transactions on Cybernetics,2005.35(3):p.578-586.
    96. Ozertem, U., D. Erdogmus, and R. Jenssen, Mean shift spectral clustering. Pattern Recognition,2008.41(6):p.1924-1938.
    97. 文志强,蔡自兴,Mean Shift算法的收敛性分析.软件学报,2007.18(2):p.206-213.
    98. Wu, K., Mean shift-based clustering pattern Recognition 2007.40(11):p.3035-3052.
    99. Carreira-Perpinan, M.A., Gaussian Mean-Shift Is an EM Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007.29(5):p.767-776.
    100. Comaniciu, D., V. Ramesh, and P. Meer. The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. in Proceeding of the IEEE international on Computer Vision. 2001. Canada.
    101. Georgescu, B., I. Shimshoni, and P. Meer. Mean Shift Based Clustering in High Dimensions:A Texture Classification Example. in the Ninth IEEE International Conference on Computer Vision.2003.
    102. Parzen, E., On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics,1962.33(3):p.1065-1076.
    103. O.Duda, R., P. E.Hart, and D. G.Stork, pattern classification.2007.
    104. S.J.Sheather and M.C.Jones, A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society,1991.53:p.683-690.
    105. M.P.Wand and M.C.Jones, Kernel Smoothing.1995:Chapman and Hall.
    106. Scott, D.W. and J.R. Thompson. Multi-dimensional Density Estimation. [cited; Available from:http://www.stat.rice.edu/~scottdw/ss.nh.pdf.
    107. Epanechnikov, V., Nonparametric estimation of a multidimensional probability density. Theory of probability and Application,1969.14:p.153-158.
    108. E.J.Paywels and G.Frederix, Finding Salient Regions in Images:Non-Parametric Clustering for Image Segmentation and Grouping. Journal of Computer Vision and Image Understanding,1999.75(1):p.13.
    109. Comaniciu, D., V. Ramesh, and P. Meer. The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. in IEEE Int. Conf. Computer Vision 2001. Vancouver,Canada.
    110. DeMenthon, D. and R. Megret. Spatio-Temporal Segmentation of Video by Hierarchical Mean Shift Analysis. in Statistical Methods in Video Processing Workshop (SMVP). 2002.
    111. Comaniciu, D. and P. Meer, Robust analysis of feature spaces:color image segmentation, in Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97).1997, IEEE Computer Society.
    112. Fukunaga, K. and L. Hostetler, Optimization of k-Nearest-Neighbor Density Estimates. IEEE Transactions on Information Theory,1973.19(3):p.320-326.
    113. Barash, D. and D. Comaniciu, A Common Viewpoint on Broad Kernel Filtering and Nonlinear Diffusion, in Scale Space Methods in Computer Vision.2003. p.683-698.
    114. Gionis, A., P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. in Proc. Int. Conf. on Very Large Data Bases.1999.
    115. Sunil, A., et al., An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM,1998.45(6):p.891-923.
    116. Christouias, C.M., B. Georgescu, and P. Meer. Synergism in Low level Vision. in Proceedings of 16th International Conference onPattem Recognition.2002.
    117. Comaniciu, D. and P. Meer, Mean Shift Analysis and Applications, in IEEE International Conference on Computer Vision 1999:Kerkyra, Greece.
    118. 彭宁嵩,杨杰,刘志.张风超,Mean-Shift跟踪算法中核函数窗宽的自动选取.软件学报,2005.16(9):p.1542-1550
    119. Dell'Acqua, F., et al., Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geoscience and Remote Sensing Letters,2004.1(4):p. 322-326.
    120. Puissant, A., J. Hirsch, and C. Weber, The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. International Journal of Remote Sensing,2005.26(4):p.733-745.
    121. Zhou, W. and A. Troy, An object-oriented approach for analysing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing,2008.29(11): p.3119-3135.
    122. Jiang, L. and R.M. Narayanan, Integrated spectral and spatial information mining in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing,2004. 42(3):p.673-685.
    123. Liangpei, Z., et al., A Pixel Shape Index Coupled With Spectral Information for Classification of High Spatial Resolution Remotely Sensed Imagery. IEEE Transactions on Geoscience and Remote Sensing 2006.44(10):p.12.
    124. Lobo, A., O. Chic, and A. Casterad, Classification of Mediterranean crops with multisensor data:per-pixel versus per-object statistics and image segmentation. International Journal of Remote Sensing,1996.17(12):p.2385-2400.
    125. Jackson, Q. and D.A. Landgrebe, An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Transactions on Geoscience and Remote Sensing,2001.39(12):p.2664-2679.
    126. Lucieer, A., A. Stein, and P. Fisher, Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty. International Journal of Remote Sensing,2005.26(14):p.2917-2936.
    127. 施智平等,基于纹理谱描述子的图像检索.软件学报,2005.16(6):p.7.
    128. Bhagavathy, S. and B.S. Manjunath, Modeling and Detection of Geospatial Objects Using Texture Motifs. IEEE Transactions on Geoscience and Remote Sensing,2006.44(12):p. 3706-3715.
    129. Lu, D. and Q. Weng, A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing,2007. 28(5):p.823-870.
    130. Manjunath, B.S. and W.Y. Ma, Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996.18(8):p. 837-842.
    131. Hall, P., T.C. Hu, and J.S. Marron, Improved Variable Window Kernel Estimates of Probability Desities. The Annals of Statistics 1995.23(1):p.1-10.
    132. Lamonaca, A., P. Corona, and A. Barbati, Exploring forest structural complexity by multi-scale segmentation of VHR imagery. Remote Sensing of Environment. In Press, Corrected Proof.
    133. Mallinis, G., et al., Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS Journal of Photogrammetry and Remote Sensing,2008.63(2):p.237-250.
    134. TIAN, J. and D.-M. CHEN, Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. International Journal of Remote Sensing, 2007.28(20):p.4625-4644.
    135. Chen, K.-M. and S.-Y. Chen, Color texture segmentation using feature distributions. Pattern Recognition Letters,2002.23(7):p.755-771.
    136. Dunn, D. and WE. Higgins, Optimal Gabor filters for texture segmentation. IEEE Transactions on Image Processing,1995.4(7):p.947-964.
    137. 吴高洪,章毓晋,林行刚,分割双纹理图像的最佳Gabor滤波器设计方法.电子学报,2001.29(1):p.48-50.
    138. Sa, J.P.M.d., Pattern Recognition:Concepts, Methods and Applications.2001:Springer.
    139. Wu, G., Y. Zhang, and X. Lin. Wavelet transform-based texture classification with feature weighting. in Image Processing,1999. ICIP 99. Proceedings.1999 International Conference on.1999.
    140. Donoho, D. and I. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994.81(3):p.425-455.
    141. Zhou, W., et al., Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing, I,2004.13(4):p.600-612.
    142. Xin, H. and Z. Liangpei, An Adaptive Mean-Shift Analysis Approach for Object Extraction and Classification From Urban Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing,2008.46(12):p.4173-4185.
    143. 刘志刚,支撑向量机在光谱遥感影像分类中的若干问题研究,测绘遥感信息工程国家重点实验室.2004,武汉大学:武汉.
    144. Manjunath, B.S. and R. Chellappa, A unified approach to boundary perception:edges, textures, and illusory contours. IEEE Transactions on Neural Networks,1993.4(1):p. 96-108.
    145. Xin, H., Z. Liangpei, and L. Pingxiang, An Adaptive Multiscale Information Fusion Approach for Feature Extraction and Classification of IKONOS Multispectral Imagery Over Urban Areas. IEEE Geoscience and Remote Sensing Letters,2007.4(4):p.654-658.
    146. 秦前清,杨宗凯,实用小波分析.1995,西安:西安电子科技大学出版社.
    147. Wang, Z.Z. and J.H. Yong, Texture Analysis and Classification With Linear Regression Model Based on Wavelet Transform. IEEE Transactions on Image Processing,2008. 17(8):p.1421-1430.
    148. Shah, V.P., N.H. Younan, and R.L. King, An Efficient Pan-Sharpening Method via a Combined Adaptive PCA Approach and Contourlets. IEEE Transactions on Geoscience and Remote Sensing,2008.46(5):p.1323-1335.
    149. Mallat, S.G., A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989. 11(7):p.674-693.
    150. Daubechies, I., Time-frequency localization operators:a geometric phase space approach. IEEE Transactions on Information Theory,1988.34(4):p.605-612.
    151. Feng, H., W.C. Karl, and D.A. Castanon, Unified Anomaly Suppression and Boundary Extraction in Laser Radar Range Imagery based on a Joint Curve-Evolution and Expectation-Maximization Algorithm. IEEE Transactions on Image Processing,2008. 17(5):p.757-766.
    152. Stahl, J.S., J.S. Stahl, and S. Wang, Globally Optimal Grouping for Symmetric Closed Boundaries by Combining Boundary and Region Information. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008.30(3):p.395-411.
    153. Arbelaez, P. Boundary Extraction in Natural Images Using Ultrametric Contour Maps. in Computer Vision and Pattern Recognition Workshop,2006. CVPRW '06. Conference on. 2006.
    154. Haddon, J.F. and J.F. Boyce, Image segmentation by unifying region and boundary information. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990. 12(10):p.929-948.
    155. Donoho, D., De-Noising by Soft-Thresholding. IEEE Transactions on information theory, 1995.41(3):p.15.
    156. Yocky, D., Multiresolution wavelet decomposition image. merger of landsat thematic mapper and spot panchromatic data. Photogrammetric Engineering and Remote Sensing, 1996.62(9):p.8.
    157. Comaniciu, D., An algorithm for data-driven bandwidth selection. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003.25(2):p.281-288.
    158. Woodcock, C.E. and A.H. Strahler, The factor of scale in remote sensing. Remote Sensing of Environment,1987.21(3):p.311-332.
    159. 黄慧萍,面向对象影像分析中的尺度问题,遥感应用研究所.2003,中国科学院:北京.p.175.
    160. 焦李成,孙强,多尺度变换域图像的感知与识别:进展和展望.计算机学报,2006.29(2):p.177-193.
    161. 宫鹏,黎夏,徐冰,高分辨率影像解译理论与应用方法中的一些研究问题.遥感学报,2006.10(1):p.1-5.
    162. Woodcock, C.E. and H. V.J., Nested hierarchical scene models and image segmentation. International Journal of Remote Sensing,1987.13(16):p.3167-3187
    163. Castilla, G., Size-constrained region merging:a new tool to derive basic landcover units from remote sensing imagery, [cited; Available from: http://earth.esa.int/rtd/Events/ESA-EUSC 2004/Ar26 Castilla.pdf]
    164. Gonzalez, R.C., R.E. Woods, and S. L., Digital image processing using MATLAB.2003: Prentice Hall.
    165. Kim, H.-S. and J.-H. Kim, A two-step circle detection algorithm from the intersecting chords. Pattern Recognition Letters,2001.22(6-7):p.787-798.
    166. 陈爱军,李金宗,卫星遥感图像中类圆形油库的自动识别方法.光电工程,2006.33(9):p.96-100.
    167. 蔡红苹,蒋咏梅,粟毅,一种基于区域生长原理的油库目标聚类定位方法.遥感学报,2006.10(3):p.6.
    168. Dong-chen, H., Texture Unit, Texture Spectrum, And Texture Analysis. IEEE Transactions on, Geoscience and Remote Sensing,1990.28(4):p.509-512.
    169. Pantofaru, C. and M. Hebert, A Comparison of Image Segmentation Algorithms.2005.
    170. Yang, A.Y., et al., Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding,2008.110(2):p.212-225.
    171. Tobler, W., A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography,1970.46(2):p.234-240.
    172. Chang, C.-C. and C.-J. Lin.{LIBSVM}:a library for support vector machines.2001 [cited; Available from:http://www.csie.ntu.edu.tw/-cjlin/libsvm.]
    173. Huang, X. and L. Zhang, A comparative study of spatial approaches for urban mapping using hyperspectral ROSIS images over Pavia City, northern Italy. International Journal of Remote Sensing,2009.30(12):p.3205-3221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700