用户名: 密码: 验证码:
6-UPUR并联式六维测力平台静态性能标定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量程高精度六维测力平台在航空航天、风洞实验以及工业工程等领域具有广泛的应用前景。并联式测力平台具有刚度与承载能力大、结构稳定、无误差积累等优点,基于以上优点本课题组研制了大量程柔性铰6-UPUR并联式六维测力平台。本文主要对6-UPUR并联式六维测力平台静态性能标定进行了研究,主要内容如下:
     (1)对6-UPUR并联式六维测力平台的线性标定方法和非线性标定方法进行了分析研究。给出了线性标定方法中的K值标定法和最小二乘法的相关公式;非线性标定方法包括BP神经网络法和RBF神经网络法,确定了适合本6-UPUR并联式六维测力平台的相关网络参数。
     (2)在上述各种标定方法研究的基础上,基于LABVIEW开发了适合大量程柔性铰6-UPUR并联式六维测力平台静态性能标定的软件,同时给出了该六维测力平台静态性能标定实验的具体步骤,并完成了该六维测力平台静态性能标定实验。
     (3)利用实验数据计算了线性标定方法对应的标定矩阵和各种标定方法的误差矩阵,分析了6-UPUR并联式六维测力平台各支路测量电压的线性度;另外,本文对该六维测力平台维间耦合等问题进行了分析研究。
     (4)对6-UPUR并联式六维测力平台误差影响因素进行了分析研究,并提出了相关改进措施。
     本文开发的大量程柔性铰6-UPUR并联式六维测力平台静态性能标定系统对其它类型传感器的标定具有一定的参考价值,所得的6-UPUR并联式六维测力平台静态性能标定结果对该六维测力平台的性能评价具有重要意义,6-UPUR并联式六维测力平台误差影响因素分析对本六维测力平台的改进具有指导意义。
6-axis force/torque platform which has large range and high accuracy has extensive application prospects in aviation,wind tunnel experiments,industrial engineerings and some other fields. Parallel force/torque platform is characterized by high rigidity , large load-carrying capacity,good structural stability,not-accumulative error. Based on these advantages our team has designed a wide range 6-UPUR parallel structural 6-axis force/torque platform with flexible joints. This paper researches the static performance calibration of 6-axis force/torque platform which is 6-UPUR parallel structure. The main research contents are as follows:
     (1)Linear and nonlinear calibration methods of 6-UPUR parallel structural 6-axis force/torque platform are researched. The linear calibration methods include K value calibration method and least-squares calibration method. Relevant formulas are deduced. The non-linear calibration methods include BP neural network method and RBF neural network method. The relevant proper network parameters of the 6-UPUR parallel structural 6-axis force/torque platform are chosen.
     (2)Based on the research of above calibration methods and LBVIEW,the static performance calibration’s software system which suits wide range 6-UPUR parallel structural 6-axis force/torque platform with flexible joints is developed,concrete steps of static performance calibration experiment of 6-axis force/torque platform is given , and does the static performance calibration experiment.
     (3) Based on experimental datas,calibration matrixes of linear calibration methods and error matrixes of each calibration methods are calculated,and analyzes linearities of each branches’s measured voltages of the 6-UPUR parallel 6-axis force /torque platform. In addition,the paper analyzes coupling between different dimensions.
     (4)Various of factors which affects the measurement error of 6-UPUR parallel structural 6-axis forc/torque platform are researched,relevant measures for improvement are given.
     The static performance calibration system of wide range 6-UPUR parallel 6-axis force/torque platform with flexibel joints has a certain reference to the other types of platform’s calibration. The calibration result of the static performance is significant to the 6-UPUR parallel 6-axis force/torque platform’s performance evaluation. Analysising to the factors about 6-UPUR parallel 6-axis force/torque platform’s error has guiding significance to the improvment of the 6-axis force/torque platform.
引文
1葛运建,张建军,戈瑜.无所不在的传感器与机器人感知.自动化学报,2002,28(12):125-133
    2姚裕,吴洪涛,张召明.基于Stewart平台的六维力传感器在风洞天平中应用.淮安工学院学报,2002,11(4):12-14
    3高晓辉,刘宏,蔡鹤皋,姜力.机器人手指尖六维力/力矩传感器的研制.高技术通讯,2002,03:67-69
    4 http://www.sunsortech.com/html/bigpic/pl.jpg
    5 http://www.cwm.it/html/Kyowa/Auto/6_wtorque_e.pdf
    6 D.Diddens,D.Reynaerts,et al. Design of A Ring-shaped Three-axis Micro Force/Torque Sensor. Sensors and Actuators A,1995:225-232
    7 Hartung, Winfried, Gensheimer, Valentin. System for Measuring the Engagement Pressure between Cylinders of a Printing Press. United States Patent, Patent No.4 625 568, Date of Patent,1986-12
    8 Angelbeck, J. John. Load Bar Weighing System. United States Patent, Patent No.4 657 096, Date of Patent,1987-4
    9 Aoki, Hiroyuki, Yahagi, Shinichiro, Saito, Takanobu. Torque Detecting Device. United States Patent, Patent No.4 840 073, Date of Patent,1989-6
    10 Beihoff, C. Bruce. Torque Sensor. United States Patent, Patent No.4 852 411, Date of Patent,1989-8
    11 Dobler, Klaus, Hachtel, Hansjorg, Zimmermann, Georg. Process for Contactless Measurement of Mechanical Stress and Device for Carry Out the Same. United States Patent, Patent No.4 976 160, Date of Patent,1990-12
    12 Stuart, O. Keith. Force and Torque Measurement System. United States Patent, Patent No.4 998 441, Date of Patent,1991-3
    13 Hesthamer Tore, Tyren, Carl. Device for Non-contact Measuring of Stresses in a Bar-shaped Body. United States Patent, Patent No.5 020 378, Date of Patent,1991-6
    14 Ikeda, Hideo, Hamamura, Chiyo, Satoh, Hiroshi, Utsui, Yoshihiko. Strain Detector. United States Patent, Patent No. 5 036 713, Date of Patent,1991-8
    15 Poekristl, Albert, Steinberger, Johann. Device for Measuring the Spacing between Aligned Rails. United States Patent, Patent No. 5 053 701, Date of Patent,1991-10
    16 Ch’Hayder, Ameur, Durand, Didier, Diaz, Constantino. Process for Producing Sensors for Measuring Spatial Forces and Sensors Obtained. United States Patent, Patent No. 5 063 788, Date of Patent,1991-11
    17 Grant, P. Andris, Ballantyne, J. William. Force Moment Sensor. United States Patent, Patent No. 5 295 399, Date of Patent,1994-3
    18袁哲俊,王娜君.机器人用六维力/力矩传感器.中国专利,专利号:CN-2066134U,日期,1990,11,21
    19易秀芳,王容川.六分量力与力矩传感器.中国专利,专利号:CN-2233081U,日期,1996,8,14
    20 P. C. Watson, S. H. Drake. Pedestal Wrist Force Sensors for Industrial Assembly. Proc. of the 5th Int. Symp. On Industrial Robots, Chicago, 1975:501-511
    21 B. Shimano, B. Roth. On Force Sensing Information and Its Use in Controlling Manipulators. Proc. Of the 8th Int. Symp. On Industrial Robots, 1979:227-229
    22 J. Schott. Tactile Sensor With Decentralized Signal Conditioning. The 9th IMEKO World Congress, Beilin, 1982:138-143
    23 Robot Technology. London: Kegon page Ltd, 1983
    24 P. Dario. Sensors and Sensory Systems for Advanced Robots. Germany: Springer-Verlag Berlin Geidelberg, 1988:429-445
    25 T. Yoshikawa, T. Miyazaki. A Six-axis Force Sensor with Three-dimensional Cross-shape Structure. Proc. of IEEE Conf. On Robotics and Automation, 1989, (1): 249-255
    26 M. Uchiyama, E. Bayo, E. Palma-Villalon. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors. Trans. ASME, Journal of Dynamic Systems, Measurement, and Control, 1991,1(113):388-394
    27 E. Bayo, J. R. Stubbes. Six-axis Force Sensor Evaluation and a new Type of OptimalFrame Truss Design for Robotic Applications. Journal of Robotic Systems, 1989,6(2): 191-208
    28 Y. Hatamum. A Ring-Shape 6-axis Force Sensor and Its Application. Int. Conf. On Advanced Mechatronics, Tokyo, Japan, 1989:647-652
    29 R. Little. Force/Torque Sensing in Robotic Manufacturing. Sensor, The Journal of Machine Perception, 1992,9(11):346-348
    30 M. Kaneko. Twin-Head Six-axis Force Sensors. IEEE Transactions on Robotics and Automation, 1996,12(1):146-154
    31 S. Hirose, K. Yoneda. Robotic Sensors with Photo Detecting Technology. Proc. of the 20th ISIR, 1989:271-278
    32 S. Hirose, K. Yoneda. Development of Optical 6-axis Force Sensor and Its Signal Calibration Considering Non-Linear Interfence. Proc. of IEEE Int. Conf. On Robotics and Automation, 1989,(1):45-63
    33 J. S. Dai, D. R. Kerr. A Six-component Contact Force Measurement Device Based on the Stewart Platform. Proc Instn Mech Engrs, C 214,2000:687-697
    34 T. A. Dwarakanath, Bhasker Dasgupta, T. S. Mruthyunjaya. Design and Development of a Stewart Platform based Force-Torque Sensor. Mechatronics, 2001,(11):793-809
    35 Chul-Goo Kang. Closed-form Force Sensing of a 6- axis Force Transducer Based on the Stewart Platform.Sensors and Actuators, A 90,2001:31-37
    36 M. Sorli, S. Pastorelli. Six-axis Reticulated Structure Force/Torque Sensor with Adaptable Performances. Mechatronics, 1995,5(5):585-601
    37 R.Ranganath,P.S.Nair,T.S.Mruthyunjaya,and A.Ghosal.A Force-torque Sensor Based on a Stewart Platform in a Near-singular Configuration.Mechanism and Machine Theory,2004,39(9):971-998
    38 Tao Liu, Yoshio Inoue, Kyoko Shibata, Yohei Yamasaki, and Masafumi Nakahama. A Six-dimension Parallel Force Sensor for Human Dynamics Analysis. Proceedings of 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore,2004,1: 208-212
    39 http://www.biomechanicsweb.com/Product.aspx?Id=72
    40 M. Uchiyama, K. A. Hakomori. Few Considerations on Structure Design of Force Sensors. Proceedings of the Third Annual Conf. Japan Robotics Society, 1985:17-18
    41 D. Diddens, D. Reynaerts, H. Van Brussel. Design of a Ring-shaped Three-axis Micro Force/Torque Sensor. Sensors and Actuators, 1995, A 46-47:225-232
    42 F.Aghili.On-orbit Calibration of the SPDM Force-moment Sensor. Proceeding of 2000 IEEE International Conference on Robotics and Automation,2000,4:3603-3608
    43中国智能研究所.SAFMS-1型六维力传感器技术鉴定材料,1987
    44黄心汉,胡建元,王健.一种非径向三梁结构六维腕力传感器弹性体及其优化设计.机器人,1992,14(5):1-7
    45陈雄标,袁哲俊,姚英学.多维力传感器设计的评价准则与优化设计研究.哈尔滨工业大学学报,1997,29(4):88-92
    46陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究.机器人,1997,19(1):7-12
    47陈雄标,姚英学,袁哲俊.六维力传感器干扰及其标定方法.传感器技术,1995,(2):37-40
    48 H. R. Wang, F. Gao. Design of 6-Axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering (English Edition), 1997:138-14
    49王洪瑞,陈贵林,高峰.基于stewart平台的6维力传感器的各向同性的进一步分析.机械工程学报,2000,36(4):49-52
    50 Zhenlin Jin,Feng Gao,and Xiaohui Zhang.Design and Analysis of a Novel Isotropic six-component Force/Toque Sensor.Sensors and ActuatorsA:Physical,2003,109:17-20
    51 Feng Gao,Jianjun Zhang,Yulong Chen,and Zhenlin Jin.Development of a New Type of 6-DOF Parallel Micro-manipulator and Its Control System.Proceedings of the 2003 IEEE International Conference On Robotics,Intelligent Systems and Signal Processing,Changsha,China,2003,2:715-720
    52王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题.机器人,1997,19(6):474-478
    53徐科军,江敦明,王国泰.腕力传感器三维自适应动态补偿方法.中国机械工程,1997,8(6):40-42:55
    54刘正士.机器人六分量腕力传感器加载试验台系统误差分析.计量学报,1998,19(1):44-50
    55高晓辉,刘宏,蔡鹤皋.机器人手指尖六维力/力矩传感器的研制.高技术通讯, 2002,(3):67-69;95
    56 Jie Zhao,Xiaoyu Wang,Liang Zhang,and Hegao Cai.Finite Element Analysis of Six-dimension Stiff Force/Torque Sensor Elastomer for Robots.Proceedings of the Second International Symposium on Instrumentation Scicence and Technology,Jinan, China,2002,3:272-275
    57尹瑞多.Stewart广义六维力传感器的研究. [浙江大学工学硕士论文].2006:1-50
    58侯雨雷.超静定并联式六维力与力矩传感器基础理论与实验研究.[燕山大学工学博士学位论文].2007:102-103
    59牛建业.大量程超静定并联式六维力传感器静态标定研究.[燕山大学工学硕士学位论文].2008:33-34
    60唐毅,葛运建,高理富.基于一体化结构的全力测试平台的研制及其动态性能研究.仪器仪表学报,2003,24(5):536-539
    61 Lu-Ping Chao,Ching-Yan Yin.The six-component Force Sensor for measuring the loading of the feet in Locomotion. Materials and Design,1999,20:237-244
    62 http://baike.baidu.com/view/714904.htm
    63扬春,裴文江,杜海淘.参数估计法修正过载传感器标定的方法误差.测控技术,1996,(2):51-52
    64黄俊钦.测试误差分析与数学模型.长沙:国防工业出版社,1985:165-208
    65费业泰.误差理论与数据处理.第四版.北京:机械工业出版社,2002:23-120
    66马明建.数据采集与处理技术.第二版.西安:西安交通大学出版社,2005:294-297
    67李强,张维衡.多分量腕力传感器的标定方法.武汉造船,1995,(4):10-13
    68杨秀丽,王春圃,陈金岭.传感器的最小二乘法拟合.成都气象学院学报,2001,(3): 88-92
    69赵乐军,王朝英,陈怀琛.头盔式眼动仪的标定与算法实现.西安电子科技大学学报,1998,(8):606-610
    70李海滨,段志信.基于神经网络的六维力传感器静态标定方法研究.内蒙古工业大学学报自然科学版,2006, 25(2):85-89
    71朱卫东.多维轮力传感器的静态解耦及信号去噪研究.[中国石油大学(华东)硕士学位论文].2007:38-54
    72赵延治.大量程柔性铰并联六维力传感器基础理论与系统设计研制.[燕山大学工学博士学位论文].2009:95-125
    73刘丽欢.大量程柔性铰并联六维力传感器结构设计.[燕山大学工学硕士学位论文].2009:29-70
    74董长虹.Matlab神经网络与应用.长沙:国防工业出版社,2005:20-130
    75谷萩隆嗣.人工神经网络与模糊信号处理.北京:科学出版社,2003:24
    76罗晓曙.人工神经网络理论·模型·算法与应用.桂林:广西师范大学出版社,2005:30
    77彭蓬.基于神经网络的煤炭企业技术创新能力评价及经济学分析.煤炭现代化,2008,(6)
    78 http://baike.baidu.com/view/47823.htm
    79计算机虚拟仪器图形编程LabVIEW实验教材.北京中科泛华测控技术有限公司,4-6
    80侯国屏,王珅,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计教程.北京:清华大学出版社,2005:1-2
    81中华人民共和国国家标准传感器主要静态性能指标计算方法GB/T 18459-2001.北京:中国标准出版社,2002:1-42
    82中华人民共和国国家标准称重传感器GB/T 7551-2008.北京:中国标准出版社,2008:1-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700