用户名: 密码: 验证码:
动物运动接触反力测试系统、实验与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动是动物捕食、逃逸、生殖、繁衍等行为的基础。壁虎、蜘蛛、昆虫等快的运动速度、强的负载能力、高度的灵敏性,使它们成为运动学研究的理想模型。生物学家们从比较生物学的角度深入研究壁虎、蜘蛛、昆虫等动物的爬行基本规律,工程师们则从动物运动中获得设计灵感,进一步提高特种仿生机器人(特别是爬壁机器人)和其他复杂系统的性能。研究壁虎、蜘蛛、昆虫等动物在各种表面(地面、壁面、天花板)上运动时脚掌与接触表面的作用力,可以为生物学家和工程师们研究动物时的粘附机制提供有价值的线索。本文主要研究内容如下:
     1.研制了两种量程的3维力传感器用于测量壁虎、蜘蛛、昆虫等动物运动时脚掌与接触表面作用力。对传感器弹性体进行优化设计,按照设计要求对传感器弹性体加工贴应变片。研制了传感器的信号调理和放大电路,编制信号采集与数据处理程序。对两种量程的力传感器进行标定。
     2.研制了昆虫运动力学测试系统。由16个用于测量昆虫脚掌接触力的传感器组成的4×4传感器阵列,通过限位保护装置防止传感器在安装和实验过程中的过载失效。采用NI公司的SCXI应变调理模块和相应的采集模块组成48通道的信号放大与数据调理电路。编制了基于LabVIEW环境的数据采集与分析软件。配合动态图像的同步采集,运动力学测试系统可以测量分析动物运动过程中各个脚掌之间的力学协调规律。设计了由多个用于壁虎脚掌接触力测试的3维力传感器组成的测力阵列。
     3.测定了壁虎在水平地面和垂直壁面爬行过程中脚掌与表面的接触力,观察了壁虎的形态特征与运动行为,结果表明壁虎在垂直壁面爬行过程中的切向力是法向力的2倍以上,为类壁虎机器人脚掌力反馈的设计提供理论依据。
     4.分析了黄斑蝽的腿部运动。测定了黄斑蝽在地面和垂直壁面两种状态下的爬行时的接触力,分析了力的产生机理。在垂直壁面状态下,昆虫向上爬行时将身体向上推进的同时,会产生防止身体倾覆的吸附力。
     5.对斑衣蜡蝉的生物学形态进行了观察研究。发现斑衣蜡蝉通过中垫实现在光滑壁面上的附着。测量了斑衣蜡蝉在切向和法向两种状态下的抓附力以及在切向和法向两种状态下抓附时中垫与接触面的接触面积,分析了接触面积和力的关系。提出了斑衣蜡蝉运动时的粘附-脱附模型。
     6.测定了水黾在自由运动状态下向前的滑行力(0.3 - 0.4 mN/cm)。比较了实际测量值和几何计算值之间的误差,分析了误差产生的原因。比较了同种的雄性和雌性的水黾以及不同种的水黾的滑行力的大小。
Locomotion is the basis of predation, escape, reproduction for animals. Geckos, spiders and insects run and climb with exceptional speed, strength and agility for their size, representing in many respects an ideal model system for the study of terrestrial locomotion. Biologists make comparative biology study with animals to develop a deeper understanding of the foundmental biomechanical design rules common to all legged organisms. Engineers look to animals’locomotion for design principles to improve the performance of legged robots including wall-climbing robots and other complex systems. By measuring the ground reaction forces generated by animals when walking upright, climbing vertically or walking on an inverted surface, we can understand adhesion mechanism and locomotion dynamics. Two kinds of 3 dimensional force sensors in different range were made to measure the ground reaction forces generated by animals such as geckos, spiders, insects etc. first, the elastic elements of sensors were designed optimally and strain gages were glued to elastic elements in right position. Secondly, the circuits of signal amplification and condition were also made to acquire the data. Then the software of data acquisition and analysis was compiled. These two kinds of 3 dimensional force sensors were made calibration before used to measure the ground reaction forces.
     An insects’s kinematic mechanics measurement system was created to measure the ground reaction forces produced by animals in different legs at the same time. With this system and the high speed camera , the cooperative adhesive mechanics among all legs of insects when locomotion can be acquired. The sensor array of the system were composed of 16 3-dimensional sensors in smaller range on 4×4 pattern. A mechanical device was installed in sensor array to achieve over-load protection. National Instruments Company’s SCXI signal conditioning modules were used in this system to compose 48 channels signal amplification, data acquisition and processing device. The software of data acquisition and analysis was compiled in LabVIEW environment. Another sensor array which will be use to measure the gecko’s cooperative adhesive forces was designed also with several sensors in bigger range A 3 dimensional force sensor in bigger range was use to measure the ground reaction forces generated by geckos when walking upright and climbing vertically. By measuring the different target surface reaction force,we can understand gecko’s adhesion mechanism and locomotion. The study sheds light on the study of animal’s locomotion and the design of bio-inspired robot.
     Legs of stinkbug Erthesina fullo performance during walking was examined with a model. A 3 dimensional force sensor in smaller range was used to measure the ground reaction forces created by individual legs of the stinkbug when moving on the level and vertical surfaces. The legs of insect generate adhesive forces to avoid overturning when climbing vertically.
     Morphology of Lycorma delicatula was studied with microscope. The insect possesses arolium between claws to adhesive on smooth surface when walking. Adhesive forces and contact area between arolium and the target surface were measured when Lycorma delicatula walked on the level and slided on the vertical surface. A model of peeling theory was put forward to give relationship between contact area and adhesive forces.
     The force of free swimming water striders was measured about 0.3 - 0.4 mN/cm. The error calculated by comparing force and geometrical derived data, was estimated as 13%. Females in average were stronger than males, however the ratio force / weight was not significantly different. Compared to other lighter species' data available in literature, water strider A. paludum seems to be stronger, but the ratio force / weight is actually lower.
引文
[1] 机器人技术软科学研究组.我国机器人技术需求分析与研究重点探索.机器人技术与应用,2001,2:1-5.
    [2] Ryu S W,Park J J,Ryew S M,et al.Self-contained wall-climbing robot with closed link mechanism.Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems,Hawaii,USA:Oct-29,2001.
    [3] Nishi A.Development of wall-climbing robots.Journal of Computers and Electrical Engineering,1996,22(2):123-149.
    [4] Bahr B,Li Y,Najafi M.Design and suction cup analysis of a climbing robot.Journal of Computers and Electrical Engineering,1996,22(3):193-209.
    [5] Zhang Y,Nishi A.Low-pressure air motor for wall-climbing robot actuation.Mechatronics,2003,13(4):377-392.
    [6] 王京.“超级间谍”机器苍蝇.机器人技术与应用,2003(3):20-22.
    [7] 新加坡研制出微型无人驾驶侦察机“扇尾鸽”.机器人技术与应用,2003(5):33-33.
    [8] 郑元芳.世界机器人发展现状和我国战略规划探讨.服务机器人发展战略研讨会,北京:2005,1-7.
    [9] 李鲁虹.英国特种机器人的应用研究情况.机器人情报,1992,5:3-6.
    [10] 刘呈则,朱新坚等.自导向磁吸附爬壁机器人控制系统的实现.测控技术,2004,23(12):43-45.
    [11] 谈士力,万德钧,龚振邦.真空气吸附壁面行走机器人动态路径规划.东南大学学报,26(5):89-94.
    [12] 王辉静.仿壁虎微纳米阵列的粘附机理与控制方法研究[博士学位论文].合肥:中国科学技术大学,2006.
    [13] Kuwana Y,Shimoyama I,et al.Steering Control of a Mobile Robot Using Insect Antennae.Proceedings of the IEEE IROS’95 conference in Pittsburgh,1995.
    [14] Talwar S K,Xu S,Hawley E S,et al.Rat navigation guided by remote control.Nature,2002,417:37-38.
    [15] Wickelgren I.Tapping the Mind.Science,2003,5606(299):496-499.
    [16] 李科杰.微型无人机系统的发展及其对测试技术的新挑战.仪表技术与传感器,2003(1):4-7.
    [17] Guo C,Dai Z,Ji A,et al.The modulation and control of the gecko’s foot movement.Journal of Bionics Engineering,2005,2(3):151-156.
    [18] 孙久荣,郭策,程红,等.蜣螂与壁虎刚毛的比较及改形对其功能的影响.动物学报,2005,51(4):761-767.
    [19] 戴振东,孙久荣.壁虎的运动及仿生研究进展.自然科学进展,2006,16(5):519-523
    [20] Full R J,Tu M S.mechanics of a rapid running insect:two-,four,and six- legged locomotion.Journal of Experimental Biology,1991,156:215-231.
    [21] Full R J,Autumn K,Chung J I,et al.Rapid negotiation of rough rough terrain by the death-head cockroach.American zoologist,1998,38(5):81A.
    [22] Rode N J.A simple biogically inspired walking robot.27th Intl. Symp. On Industrial Robots,ISIR’96,6-8 Oct.1996,Milan,Italy.
    [23] Nelson G M,Quinn R D.Posture control of a cockroach-like robot.IEEE Intl.Conf.on Robotics and Automation 1998,Leuven,Belguim.
    [24] Gorb S N,Peressadko A,Spolenak R,et al.Biological hairy attachment devices as a protptype for artificial adhesive systems.Proceedings of the First International Industrial Conference,Bionik:2004,237-242.
    [25] 美国 Newscientist 杂志主页http://www.newscientisttech.com/channel/tech/mg19025526.500.html.
    [26] Sitti M,Fearing R S.Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs.IEEE conference on Nanotechnology,2002,Aug. 26-28,Washington DC.
    [27] Geim A K,Dubonos S V,Grigorieva I V,et al.Microfabricated adhesive mimicking gecko foot-hair.Nature Materials,2003,2(7) :461-463.
    [28] 师汉民,论仿生制造,中国机械工程,1998,9(1):54-54.
    [29] 任露泉,佟金,李建桥,等.生物脱附与机械仿生-多学科交叉新技术领域,中国机械工程,1999,10(9):984-986.
    [30] 佟金,马云海,任露泉.天然生物材料及其摩擦学,摩擦学学报,2001,21(4):315-319.
    [31] 周本濂.复合材料的仿生研究.物理,1995,24(10):577-582.
    [32] 廖鹰翔,陈乃力.仿生学与包装设计.包装工程,1999,20(3):26-28.
    [33] 裴若娟,王艳芬.交通工程中的仿生结构.钢结构,2000,15(3):50-53.
    [34] 王庭尧.建筑仿生的应用.南方建筑,1995,4:43-45。
    [35] Hewish M.A bird in the hand-miniature and micro air vehicles challenge conventional thinking.Jane’s International Defense Review,1999,32 (11):22 - 28.
    [36] Fearing R S,Chiang K H,et al.Wing transmission for a micromechanical flyinginsect . Proceedings of the 2000 IEEE International Conference on Robotics and Automation,San Francisco:IEEE 2000,1509-1516.
    [37] Endo G,Togawa K,Hirose S.Study on self-contained and terrain adaptive active cord mechanism.Proceedings of the 1999 IEEE International Conference on Intelligent Robots and Systems,Tokyo:IEEE 1999,111-117.
    [38] Yamada T,Tanaka K,Yamakita M.Winding and task control of snake like robot.The Society of Instrument and Control Engineers Annual Conference,Fuku:2003,3059-3063.
    [39] http://people.bath.ac.uk/en2tjm/hexapod.htm.
    [40] 美国加州工学院喷气推进实验室主页 http://robotics.jpl.nasa.gov/tasks/mre/homepage. html.
    [41] 美国加州大学伯克利分校多足类爬行动物仿生实验室主页 http:/ /polypedal.berkeley.edu /Bioinsp ire /Robotics.html.
    [42] Hale E,Schara N,Burdick J,et al.A minimally actuated hopping rover for exploration of celestial bodies.Proceedings of the IEEE International Conference on Robotics and Automation,San Francisco:2000,420-427.
    [43] Rediniotis O,Lagoudas D,et al.Development of a shape memory alloy actuated underwater biomimetic vehicle.Journal of Smart Material and Structure,1999,99 (5):673-683.
    [44] Iijima D,Yu W W,Yokoi H,et al.Obstacle avoidance learning for a multi-agent linked robot in the real world.Proceedings of the 2001 IEEE International Conference on Robotics and Automation,New York:2001,523-528.
    [45] 喻俊志,陈尔奎,王硕,等.一种应用于多仿生鱼协作的图像并行处理方法.高技术通讯,2004,14 (1):75-78.
    [46] 美国麻省理工大学机器人中心主页 http: / / robosap iens. mit. edu /ariel. htm.
    [47] Hayashi I,Iwatsuki N,Iwashina S.The running characteristics of a screw-principle microbot in a small bent pipe.Proceedings of the Sixth International Symposium onMicroMachine and Human Science,Nagoya:1995,225-228.
    [48] 马建旭,李明东,包志军.仿蚯蚓蠕动微机器人及控制系统.上海交通大学学报,1999, 33 (7):855-861.
    [49] 吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人,2005,27(3):284-288.
    [50] Dickinson M H,Farley C T,Full R J,et al.How animals move: An integrative view.Science,2000,288:100-106.
    [51] Bartsch M S . Micromachined Transducers for Insect Ground Reaction Force Measurement[D].California:Stanford University,2003.
    [52] Dai Z,Gorb S N,Schwarz U.Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae).Journal of Experimental Biology.2002,205:2479-2488.
    [53] Spolenak R,Gorb S,Gao H,et al.Effects of contact shape on the scaling of biological attachments.Proceedings of the Royal Society A,2005,461:305-309.
    [54] Jiao Y K,Gorb S,Scherge M.Adhesion measured on the attachment pads of tettigonia viridissima (Orthoptera,Insecta).The Journal of Experimental Biology,2000,203:1887–1895.
    [55] Arzt E,Gorb S,Spolenak R.From micro to nano contacts in biological attachment devices.PNAS,2003,100:10603-10606.
    [56] Gao H,Yao H.Shape Insensitive optimal adhesion of nanoscale fibrillar structures.PNAS,2004,101:7851-7856.
    [57] Peressadko A G , Gorb S N . Surface profile and friction force generated by insect.Proceedings of the First International Industrial Conference,Bionik:2004,257-263.
    [58] 戴振东,佟金,任露泉.仿生摩擦学研究及发展.科学通报.2006,51(20):2353-2359.
    [59] Autumn K,Peattie A.Mechanisms of Adhesion in Geckos.Integrative comparative biology,2002,42:1081 -1090.
    [60] Autumn K,Liang Y A,Hsieh S T,et al.Adhesive Force of a Single Gecko Foot-hair.Nature,2000,405(6):681-685.
    [61] Liang Y A,Autumn K,Hsieh S T,et al.Adhesion Force Measurements on Single Gecko Setae.Solid-state Sensor and Actuator Workshop,South Carolina, USA:Hilton Head Island,2000:33-38.
    [62] Autumn K,Sitti M,Liang Y C,et al.Evidence for van der Waals adhesion in gecko setae,PNAS,2002,99(19) :12252-12256.
    [63] Huber G,Mantz H,Spolenak R,et al.Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements,PNAS,2005,102(45):16293-16296.
    [64] 美国应用生物系统中国公司 http://www.appliedbiosystems.com.cn/services/20051115.htm.
    [65] 安捷伦科技收购 Molecular Imaging 公司及其原子力显微技术http://www.instrument.com.cn/news/2005/009235.shtml.
    [66] Cham R,Redfern M S.Changes in gait when anticipating slippery floors.Gait and Posture.2002,15:159-171.
    [67] Gravante G,Russo G,Pomara F,et al.Comparison of ground reaction forces between obese and control young adults during quiet standing on a baropodometric platform.Clinical Biomechanics,2003,18:780-782.
    [68] Christina K A,White S C,Gilchrist L A.Effect of localized muscle fatigue on vertical ground reaction forces and ankle joint motion during running.Human Movement Science,2001,20:57-276.
    [69] Hunt A E,Smith R M,Torode M,et al.Inter-segment foot motion and ground reaction forces over the stance phase of walking.Clinical Biomechanics,2001,16:592-600.
    [70] Taylor A J,Menz H B,Keenan A M.Effects of experimentally induced plantar insensitivity on forces and pressures under the foot during normal walking.Gait and Posture,2004,20:232-237.
    [71] Lee Y H,Hong W H.Effects of shoe inserts and heel height on foot pressure,impact force,and perceived comfort during walking.Applied Ergonomics,2005,36:355-362.
    [72] Ge W, Hitt J. Ground contact characteristics of Tai Chi gait. Gait & Posture. 2005,22:32-39
    [73] Liddle D,Rome K,Tracey H.Vertical ground reaction forces in patients with unilateral plantar heel pain-a pilot study.Gait and Posture,2000,11:62-66.
    [74] 张国华,张如一,王克鹏,等.双杠三维测力系统的研制和应用.实验力学,1995,10(1):11-16.
    [75] 陆葵,杨庆铭.三维测力台在股骨头坏死患者步态分析中的应用.上海第二医科大学学报,1996,16(6):445-447.
    [76] Chao L P,Yin C Y.The six-component force sensor for measuring the loading of the feet of in locomotion.Materials and design,1999,20:237-244.
    [77] Harris J,Ghiradella H.The forces exerted on the substrate by walking and stationary crickets.Journal of Experimental Biology,1980,85:263–279.
    [78] Heglund N C.A simple design for a force-plate to measure ground reaction forces.Journal of Experimental Biology,1981,93:333-338.
    [79] Full R J,Tu M S.Mechanics of six-legged runners.Journal of Experimental Biology,1990,148:129-146.
    [80] Full R J,Blickhan R,Ting L H.Leg Design in Hexapedal Runners.Journal of Experimental Biology,1991,158:369-390.
    [81] Autumn K,Hsieh S T,Dudek D M.Dynamics of geckos running vertically.Journal of Experimental Biology.2006,209:260-272.
    [82] Chui B W,Kenny T W,Mamin H J,et al.Independent detection of vertical and lateral forceswith a side wall-implanted dual-axis piezoresistive cantilever.Applied Physics Letter,1998,72(11):1388-1390.
    [83] Full R J,Kubow T,Schmitt J,et al.Quantifying Dynamic Stability and Maneuverability in Legged Locomotion.Integrative and Comparative Biology,2002,42(2):149-157.
    [84] Full R J,Yamauchia D L,Jindrich D L.Maximum Single Leg Force Production:Cockroaches Righting on Photoelastic Gelatin,Journal of Experimental Biology,1995,198:2441-2452.
    [85] Bartsch M S,Federleb W,Full R J,et al.Small Insect Measurements Using a Custom MEMS Force Sensor.The 12th International Conference on Solid Slate Sensors,Actuators and Microsystems,Boston:2003,1039-1042.
    [86] Irschick D J,Austin C C,Petren K,et al.A Comparative Analysis of Clinging Ability among Pad-bearing Lizards.Biological Journal of the Linnean Society,1996,59(l):21-35.
    [87] Fry S,Beyler F,Graetzel C,et al.Fruit Fly Flight Behavior Characterization Using MEMS Force Sensors.http://www.iris.ethz.ch/research/fly.php.
    [88] Gorb S N.Attachment of insects.The 4th Shanghai Roundtable,Nature as Engineer and Teacher:Learning for technology from biological systems,Oct. 8~11,2003.
    [89] 张为公.一种六维力传感器的新型布片和解耦方法.南京航空航天大学学报,1999,31(2):219-222.
    [90] 杨磊,高晓辉,姜力,等.微型五维指尖力/力矩传感器动态实验建模.高技术通讯,2004,3:79-82.
    [91] 唐慧强,黄惟一.智能化腕力传感器.机器人,2003, 25(1): 53-56.
    [92] 袁红艳,唐毅,宋光明,等.数字式铅球传感器的研制和应用.传感器技术,2004,23(9):61-63.
    [93] 陶宝祺,王妮.电阻应变式传感器.北京:国防工业出版社,1993,92-129.
    [94] 龚邦明,陈良麟,周汝忠.测力平台工作台结构优化.西南交通大学学报,1994,29(5):520-524.
    [95] 苏步霄,周士钟.敏感器件及其应用.北京:中国铁道出版社,1987,290-291.
    [96] National Instruments.SCXI-1001 User Manual.2001.
    [97] National Instruments.SCXI-1520 User Manual.2001.
    [98] 雷振山.LabVIEW 7 Express 实用技术教程.北京:中国铁道出版社,2005.
    [99] 王之芳.传感器应用技术.西安:西北工业大学出版社,1996,36~240.
    [100] 孙希任,许第昌,李增瑜.计算器在压力传感器性能指标计算中的应用.北京:航空工业部第三零一研究所,1987,7-10.
    [101] Joo J W,Na K S,Kang D I.Design and evaluation of a six-component load cell.Measurement, 2002,32:125-1333.
    [102] Abe K,Miwa T,Uchiyama A. Development of a 3-axis planer force/torque sensor for very small force/torque measurement. JSME International Journal,1999,42(2):376-382.
    [103] Abe K,Tanida Y,Konno A, et al.A Directional Deflection Sensor Beam.Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,Las Vegas, Nevada:2003, 1056-1061.
    [104] 鲁植雄.水牛步态研究.南京农业大学学报,1995,18(4):123-126.
    [105] 陈东辉,佟金,李重焕,等.人和动物的步态与步行机器人.吉林大学学报(工学版),2003,33(4):121-125.
    [106] 戴振东,于敏,吉爱红,等.动物驱动足摩擦学特性研究及仿生设计.中国机械工程,2005,16(16):1454-1457.
    [107] Wen Z,Wu Ying,Zhang Z.Development of an integrated vacuum microelectronic tactile Sensors.Sensors and Actuators A,2003,103:301-306.
    [108] Du L,Kwon G,Arai F,et al.Structure design of micro touch sensor array.Sensors and Actuators A,2003,107:7–13.
    [109] Vásárhelyi G,ádáma M,Vázsonyi é,et al.Effects of the elastic cover on tactile sensor arrays.Sensors and actuators A,2006,132(1):245-251.
    [110] 贾云得,李科杰.高柔性超高空间分辨力触觉传感器阵列的研究.科学通报,1994,39(6):561-563.
    [111] Heo J S,Chung J H,Lee J J.Tactile sensor arrays using fiber Bragg grating sensors.Sensors and Actuators A,2006,126:312-327.
    [112] Silva J G,Carvalho A A,Silva D D.A Strain Gauge Tactile Sensor for Finger-Mounted Applications.IEEE Transactions on Instrumentation and Measurement,2002,51(1):18-22.
    [113] 梅涛,戈瑜,倪礼宾,等.多功能阵列式触觉传感器的研究.高技术通讯,2000,(3):53-56.
    [114] 梅涛,倪礼宾,戈瑜,等.一种多功能类皮肤型传感器.发明专利号:ZL98111392.3
    [115] 肖世旭.大壁虎的三维步态实验及分析[硕士学位论文].南京:南京航空航天大学,2006.
    [116] 蔡煜东,吴伟,宫家文,等.传感器阵列信号处理的人工神经网络方法.分析测试仪器通讯,1995,1:43-47.
    [117] 孙传友,孙晓斌,李胜玉,等.测控电路及装置.北京:北京航空航天大学出版社,2002.
    [118] 杨乐平,李海涛,赵勇,等.LabVIEW 高级程序设计.北京:清华大学出版社,2002.
    [119] 中国野生动物保护协会.中国爬行动物图鉴.郑州:河南科学技术出版社,2002.
    [120] 杜世章,陈立侨,刘定震.中国壁虎属 Gekko 动物系统学研究进展.四川动物,2002,21(3):200-204.
    [121] 冯照军,李宗芸,张春海.无蹼壁虎繁殖生态生物学研究.动物学研究,2001,22 ( 1) : 83-84.
    [122] 韩德民,周开亚,王义权.从 12SrRNA 基因序列探讨中国 10 种壁虎的系统关系.动物学报,2001,47 (2) :139-144.
    [123] 杨金霞,王学美.壁虎治疗肿瘤的研究进展.世界华人消化杂志,2006,14(24):2428-2431.
    [124] 刘晓燕,戴振东,曾小龙,等.大壁虎附肢肌的定量研究.解剖学研究,2005,27(4):292-301.
    [125] Zaaf A,Herrel A,Aerts P,et al.Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria).Zoomorphology,1999,119:9-22.
    [126] Zaaf A , Damme V . Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): a hylogenetically informed analysis,Zoomorphology,2001,121:45–53.
    [127] Zaaf A,Damme V,Herrel A,et al.Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko, The Journal of Experimental Biology,2001,204:1233-1246.
    [128] 陈振昆,丁光.大壁虎腮节肌的解剖.动物学杂志,1993,28(3):12-14.
    [129] 丁光,陈振昆,大壁虎(Gekko gecko)附肢肌的解剖,云南农业大学学报,1995,(1):12-17.
    [130] 张秋金,郑辑,多疣壁虎和纵斑蜥虎骨骼系统的解剖与比较,福建师范大学学报,1993,10(2):67-74.
    [131] Alibardi L.Ultrastructural autoradiographic and immunocytochemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus (Gekkonidae, Reptilia).Tissue & Cell,2003,35:288-296.
    [132] 戴振东,于敏,吉爱红,等.动物驱动足摩擦学特性研究及仿生设计.中国机械工程,2005,16(16):1454-1457.
    [133] 戴振东,Stanislav Gorb.聚氨酯弹性体粘着性能的研究.南京理工大学学报,2004,28(1):38~51.
    [134] 戴振东, 惠 春,Stanislav Gorb.表面粗糙度对 4 种聚氨酯弹性体粘着性能的影响.摩擦学学报,2003,23(3):245~249.
    [135] 李明孜,戴振东,张杰.负法向力下聚氨酯粘着粘性的研究.聚氨酯工业,2003,18(2):21 ~24.
    [136] Jin M,Feng X,Feng L,et al.Superhydrophobic aligned polystyrene nanotube films with high adhesive force.Advenced material,2005,17:1977-1981.
    [137] 武汉大学,南京大学,北京师范大学.普通动物学.北京:高等教育出版社,1983,200-248.
    [138] 周尧.周尧昆虫图集.郑州:河南科学技术出版社, 2001.
    [139] 苏延英.黄斑蝽生物学特性及防止技术研究.林业科技开发,1997,5:519-523.
    [140] Frantsevich L.Artifactual Motility of the Subcoxal Axis in a Model Insect Leg with Skew Joint Axes.Journal of Theoretical Biology,1997,184(7):271-277.
    [141] Frantsevich L.Optimal leg design in a hexapod walker.Journal of Theoretical Biology,1995, 175(6):561-566.
    [142] Frantsevich L , Mokrushov P . Turning and righting in Geotrupes(Coleoptera ,Scarabaeidae).Journal of Comparative Physiology:A,1980,136,279-289.
    [143] Frantsevich L.Righting kinematics in beetles (Insecta: Coleoptera).Arthropod Structure & Development,2004,33(3): 221-235.
    [144] Frantsevich L,Shumakova I,Mokrushov P,et al.Insect rope-walkers: kinematics of walking on thin rods in a bug,Graphosoma italicum (Heteroptera,Pentatomidae) .J Zool Lond,1996, 238:713–724.
    [145] Frantsevich L,Cruse H.The Stick Insect,Obrimus asperrimus (Phasmida,Bacillidae) Walking on Different Surfaces.Journal of Insect Physiology,1997,43(9):447-455.
    [146] Niederegger S,Gorb S.Tarsal movements in flies during leg attachment and detachment on a smooth substrate.Journal of Insect Physiology,2003,49:611–620.
    [147] Frantsevich L,Gorb S.Structure and mechanics of the tarsal chain in the hornet,Vespa crabro (Hymenoptera:Vespidae):implications on the attachment mechanism.Arthropod Structure & Development,2004,(33):77-89.
    [148] Niederegger S,Gorb S,Jiao Y.Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae).Journal of Comparative Physiology A,2002,187:961-970.
    [149] 邢作山,孔德生,刘秀才.斑衣蜡蝉德发生规律与防治技术.植保技术与推广,2000,20(5):19.
    [150] Bush J,Hu D.Walking on water:Biolocomotion at the interface.Annual Review of Fluid Mechanics,2006,38:339-369.
    [151] 林志伟,孙连财,高鲁疆.水黾对灰飞虱的天敌效应.黑龙江八一农垦大学学报,2003,15(1):28-30.
    [152] Suter R B,Rosenberg O,Loeb S,et al.Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton.Journal of Experimental Biology,1997,200:2523-2538.
    [153] Hu D,Chan B,Bush J.The hydrodynamics of water strider locomotion.Nature,2003,424:663-666.
    [154] Gao X,Jiang L.Water-repellent legs of water striders.Nature,2004,432(4):36.
    [155] 江雷.从自然到仿生的超疏水纳米界面材料.科技导报,2005,23(2):4-8.
    [156] Goodwyn P,Fujisaki K.Sexual conflicts,loss of flight,and fitness gains in locomotion of polymorphic water striders (Gerridae).Entomology of Experimental Application,2007 (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700