用户名: 密码: 验证码:
大量程并联式六维力传感器基础理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量程高精度六维力传感器在航空航天、汽车、建筑及造船等许多领域十分急需并具有广泛的应用前景。并联机构具有刚度大、结构稳定、承载能力高、无误差积累、精度高等特点,是设计制造大量程、大测力板六维力传感器的最佳结构方案之一,特别是各向同性并联式六维力传感器更具有应用潜力。本文主要研究大量程并联结构六维力传感器的各向同同性问题,以及预紧式超静定并联式六维力传感器的关键理论和实验问题,丰富和完善并联式六维力传感器的设计理论,为设计制造具有自主知识产权的六维力传感器奠定理论与实验基础。主要研究内容如下:
     应用螺旋理论对静定Stewart结构六维力传感器进行静态受力分析,分析经典6/6型和3-3/3-3型双环Stewart结构六维力传感器的结构特点,提出一种等杆长6/3-3型Stewart结构六维力传感器,分别求解得到三种并联结构六维力传感器的静力映射矩阵以及其它关键特性矩阵的解析表达式。
     对传感器的各向同性性能指标进行系统分析,结合物理意义逐一分析和比较过去所采用过的各向同性性能评价指标,通过引入解耦性能约束条件,定义满足解耦性能的各向同性指标,引入力和力矩完全各向同性的概念;具体分析传感器满足力和力矩完全各向同性时各个分量的灵敏度和综合灵敏度指标;从整体刚度和灵敏度的角度,总结各向同性的物理意义,并推广到任意分支Stewart结构六维力传感器的性能评估。
     采用数学解析推导方法,应用满足解耦性能的各向同性度指标,系统分析经典6/6型Stewart结构六维力传感器的各向同性性能,证明该类结构不可能同时实现力和力矩完全各向同性的性能,进而权衡力和力矩各向同性度指标,得到综合性能指标的最优值;系统分析3-3/3-3型双环结构和6/3-3型结构Stewart力传感器的各向同性性能,推导得到传感器同时满足力和力矩完全各向同性时结构参数之间的解析表达式,确定各向同性解析表达式的有效性及有效区间,给出数值算例和结构实例。
     提出一系列整体预紧式六维力传感器结构,对预紧式Stewart结构力传感器的超静定力分配问题进行分析,综合考虑传感器整体刚度和位移协调关系,以简洁的符号表达式描绘出超静定结构各分支杆轴力与六维外力之间的映射关系,进一步从理论上解决了任意分支超静定Stewart结构的超静定受力难题。在此基础上,详细分析和比较采用推导的理论求解公式和基于静力映射矩阵的Moore-Penrose广义逆求解之间的区别和联系,给出了综合考虑分支刚度和静力映射矩阵的广义逆求解超静定受力的表达式。
     对预紧式超静定Stewart结构力传感器进行详细分析,完成超静定力传感器的各向同性设计,得到满足力和力矩完全各向同性时结构参数之间的解析表达式;为保证传感器结构稳定性和测量有效性,通过求解约束条件的拉格朗日方程的极值,得到预紧载荷与量程之间的数学关系;基于得到的完全各向同性解析表达式,确定出样机的关键结构参数;对传感器样机进行详细的结构设计,完成预紧支路和传感器的整体方案设计,研制出大量程大测力板六维力传感器样机。
     采用线性和非线性两种标定思路,讨论超静定六维力传感器的标定方法,提出一种超静定结构六维力传感器的静定标定方法,将神经网络标定方法用于超静定六维力传感器的标定,进行六维力传感器标定系统设计,研制静态标定加载试验平台,搭建数据采集软硬件系统,对传感器样机进行静态标定实验,给出各种标定方法的实验结果并进行分析比较。
     采用机理建模方法、有限元仿真方法和阶跃响应实验方法对传感器样机进行动态特性研究。建立传感器样机的动力学理论模型,推导传感器系统的无阻尼自由振动方程,得到系统的理论固有频率值和振型;借助有限元软件建立传感器样机有限元模型,并进行振动模态分析;对样机进行动态标定实验的初步研究,得到传感器样机的动态性能指标。
The large range and high accuracy six-axis force/torque sensor is urgently neededand has extensive application prospects in aviation, automobile, construction,shipbuilding and some other fields. Parallel mechanism is characterized by excellentrigidity, good structure stability, large load-carrying capacity, not-accumulative error andhigh accuracy. It is one of the best structure patterns in design and manufacture of largerange and dimension six-axis force sensors, especially fully isotropic parallel six-axisforce sensor has great application potentials. This paper focuses on isotropy analysis oflarge range parallel six-axis force sensor, key theory and calibration experiment ofstatically indeterminate pre-stressed six-axis force sensor, aiming to enrich and perfectthe design theory of parallel six-axis force sensor, as well as building the theoretical andexperimental basis for the design and manufacture of six-axis force sensor withindependent intellectual property rights.
     Statics analysis of statically determinate Stewart platform-based force sensor isconducted using screw theory. The structural features of six-axis force sensor based ontraditional 6/6 Stewart platform and two-circle 3-3/3-3 Stewart platform are analyzed andcompared, and a 6/3-3 Stewart platform-based force sensor with equal leg lengths isproposd. The mathematical expressions of force mapping matrices and other featurematrices for these three structures are obtained.
     Isotropy indices of six axis force sensor are studied systematically. In combinationwith physical significance, isotropy indices of the past are analyzed and compared one byone. By introducing decoupling performance constraint condition, the force and torqueisotropy indices satisfying decoupling performance are defined, and the concept of fullisotropy is proposed. The sensitivity indices in all directions and comprehensivesensitivity are analyzed concretely when full isotropy are satisfied. The physicalsignificance of isotropy is summarized from the viewpoint of global stiffness andsensitivity. The proposed isotropy indices and the concept of full isotropy are extended toevaluate Stewart platform-based force sensor with arbitrary limbs. By using analytic approach, the isotropy performance of the traditional 6-6 Stewartplatform-based force sensor is studied in detail based on the modified isotropy indicessatisfying decoupling performance, the result indicates that it is impossible to realize fullisotropy in theory, and the best comprehensive isotropy performance is obtained bycompromising the isotropy indices. The isotropy performance of the 3-3/3-3 and 6/3-3Stewart platform-based force sensors are studied systematically. The analytic relations ofkey structural parameters leading to fully isotropic configuration are obtained, classes ofisotropic configurations can be easily obtained from the analytic results. The validsolutions and the valid range of the solutions are determined by using a numericalalgorithm. The numerical examples and fully isotropic structural examples are given.
     A series of statically indeterminate pre-stressed six-axis force sensor are proposed.The force analysis of the statically indeterminate pre-stressed structure is carried out byconsidering the stiffness properties and compatibility in deformations, the analyticalrelationship between the axial force and the six-dimensional external force is obtained ina neat form. Furthermore, the statically indeterminate force-distribution difficult problemof Stewart platform with arbitrary limbs is solved thoroughly. On the basis of above, thedifference and relation between the deduced theoretical solution and the solution basedon force mapping matrix’s Moore-Penrose generalized inverse are analyzed andcompared detailedly. The solving formula based on Moore-Penrose generalized inverseincluding the effect of stiffness of all the limbs and force mapping matrix is given.
     Systematic analysis of statically indeterminate pre-stressed Stewart platform-basedforce sensor is presented. The fully isotropic design of statically indeterminate Stewartplatform-based force sensor is completed, and the analytic relations of key structuralparameters leading to fully isotropic configuration are obtained. To ensure the structuralstability and measurement validity, the mathematical relation between the pre-tighteningforce and expected range of external loads is obtained by solving the conditionalextremum of the Lagrange function. The key structure parameters of sensor prototype aredetermined based on the deduced analytical expression leading to full isotropy. The detaildesign of the pre-stressing limb and the whole design of sensor prototype are completed,and the prototype of large range six-axis force sensor is manufactured.
     The calibration methods of statically indeterminate six-axis force sensor arediscussed using linear and nonlinear scheme. A statically determinate calibration methodof statically indeterminate six-axis force sensor is proposed. The method based on neuralnetwork is introduced to calibrate the statically indeterminate six-axis force sensor. Thestatic calibration system of six axis force sensor is designed. The static calibration deviceis manufactured and the data acquisition hardware and software system is developed. Thestatic calibration experiments of sensor prototype are carried out, the comparison anddiscussion of the calibration results using the various calibration methods are presented.
     By means of mechanism modeling method, finite element method and step responseexperiment method, the dynamic characteristic of sensor prototype is studied. Thedynamics theory model of sensor prototype is built. The non damping free vibrationequation of the sensor system is derived out, and the theoretical natural frequency andvibration mode of the prototype are given. The finite element model of sensor prototypeis built and the modal analysis is presented. The preliminary study of dynamic calibrationexperiment is carried out and the dynamic performance indices of the sensor prototypeare obtained.
引文
1葛运建,张建军,戈瑜.无所不在的传感与机器人感知.自动化学报, 2002, 28 (12):125-133
    2 E. O. Doebelin. Measurement systems applications and design. McGraw Hill, New York, 2004
    3 E.R.Canavan, H.J.Park, J.W.Parke. A Superconducting Six-axis Accelerometer. IEEE Transactionon Magnetics, 1991, 27(2):3253-3256
    4 F. Lange,G.. Hirzinger. Learning accurate path control of industrial robots with jonit elasticity.IEEE Int conference on Robotics and automation, Detroit, Michigan, 1999:2084-2089
    5秦海峰,曹亦庆.多分量测力仪的研究.新技术新仪器, 2007, 27(1):14-16
    6 http://robot.me.saga-u.ac.jp/facilities/pa-10.gif
    7 http://www.cwm.it/html/Kyowa/Pdf/Auto/6_wtorque_e.pdf
    8 http://www.sunsortech.com/html/bigpic/p1.jpg
    9赵慧,张尚盈.基于Stewart平台的空间对接动力学模拟的稳定性研究.机床与液压, 2006, 8:48-50
    10张崇峰.空间对接六自由度半物理仿真的研究.航天控制, 1999(1):70-74
    11鞠玉涛,周长省,王政时.火箭发动机六分力试验台系统误差分析研究.弹箭与制导学报,2005, 25(4):63-65
    12姚智慧,张付祥.机器人六维力传感器研究概况及发展预测.广东自动化与信息工程, 2002,3:7-9
    13宋国民,张为公,秦文虎,等.基于车轮力传感器的汽车制动测试系统开发及应用.测控技术, 2001, 20(7):7-9
    14张美芹,王人成,胡晓.六分量应变式力传感器弹性体.中国康复医学杂志, 2005,20(10):768-769
    15高理富,宋宁,葛运建,等.航天机器人用六维腕力传感器动态特性研究, 2002,24(4):319-323
    16 G. Giovinazzo. Transducer with Six Degrees of Freedom. US Patent No. 4,320,392. March 16,1982
    17 A. Bazergui, N. E. Eryuzlu, J-P. Saucet. A Submersible 3-D load transducer platform. SpringConference on Experimental Mechanics Preliminary Technical Program, New Orleans, 1985
    18 S. Hirose, K. Yoneda. Development of Optical 6-Axial Force Sensor and It's Signal CalibrationConsidering Non-Linear Interference. IEEE International Conference on Robotics andAutomation, Cincinnati, OH, May 13-18, 1990: 46-53.
    19 P. C. Watson, S. H. Drake. Pedestal and Wrist Force Sensors for Automatic Assembly.Proceedings of the 5th International Symposium on Industrial Robots, Chicago, 1975:501-511
    20 H. Van Brussel, H. Belien, and H.Thielemans. Force Sensing for Advanced Robot Control. The5th International Conference on Robot Vision and Sensory Controls, Amsterdam, Neth,1985:59-68
    21 E. Kroll, R. Weill. Decoupling Load Components and Improving Robot Interfacing with anEasy-to-use 6-axis Wrist Force Sensor. The 7th World Congress Theory on Machines andMechanisms, Sevilla, Spain, 1987:1155-1158
    22 J. Schott. Tactile Sensor with Decentralized Signal Conditioning. The 9th IMEKO WorldCongress, Berlin, 1982
    23 T. Yoshikawa, T. Miyazaki. A six-axis force sensor with three-dimension cross-shape structure.IEEE International Conference on Robotics and Automation, Scottsdale, USA, 1989:249-255
    24 Philippe Coiffet, Michel Chirouze. An Introduction to Robot Technology. London, Kogan page ltd,1983
    25 S. Draisey. Multi-axes static/dynamic force sensor. NGST Science and technology Exposition,Hyannis, Massachusetts, 1999:l-12
    26 George Arthur Folchi. Six degree of freedom force transducer for a manipulator system. USPatent No. 3,948,093, April 6, 1993
    27 R. Little. Force/Toque Sensing in Robotic Manufacturing. Sensors, 1992, 9(11): 346–348
    28 Sheng A. Liu, Hung L. Tzo. A Novel Six-component Force Sensor of Good MeasurementIsotropy and Sensitivities, Sensors and Actuators A: Physical, 2002, 100:223-230
    29 V. Scheinman. Design of a computer controlled manipulator. Standford University M.S. Thesis.1969
    30干方建.基于多维力传感器的机器人动态特性若干问题的研究. [合肥工业大学博士学位论文]. 2003:3-4
    31 R. M.Voyles, J. D. Morrow, P. K. Khosla. A comparison of force sensors. Carnegie MellonUniversity Internal report, Advanced manipulators laboratory, 1994:l-14
    32 Paolo Dario. Sensors and Sensory Systems for Advanced Robots. Germany:Springer- VerlagBerlin Geidelberg,1988:429-445
    33 M. Uchiyama, E. Bayo, E. Palma-Villalon. A Systematic Design Procedure to Minimize aPerformance Index for Robot Force Sensors. Trans. ASME, Journal of Dynamic Systems,Measurement, and Control, 1991, l(113):388-394
    34 E. Bayo, J. R. Stubbe. Six-axis Force Sensor Evaluation and a new Type of Optimal Frame TrussDesign for Robotic Applicatons. Journal of Robotic Systems, 1989,6(2):191-208
    35 Lu-Ping Chao, Ching-Yan Yin. The six-component force sensor for measuring the loading of thefeet in locomotion. Materials and Design, 1999,20(5):237-244
    36 Chul-Goo Kang. Performance Improvement of a 6-Axis Force-torque Sensor via NovelElectronics and Cross-shaped Double-hole Structure. International Journal of Control,Automation, and Systems, 2005, 3( 3): 469-476
    37 Wei Shi, Stephen D Hall. A novel six-axis force sensor for measuring the loading of the racingtyre on track. 1st International Conference on Sensing Technology. Palmerston North, NewZealand, 2005: 408-413
    38 Gab-Soon Kim. Design of a six-axis wrist force/moment sensor using FEM and its fabrication foran intelligent robot. Sensors and Actuators A: Physical, 2007, 133(1): 27-34
    39 Gab-Soon Kim, Hi-Jun Shin, Jungwon Yoon. Development of 6-axis force/moment sensor for ahumanoid robot’s intelligent foot. Sensors and Actuators A: Physical, 2008, 141(1): 276-281
    40刘正士.机器人多维腕力传感器静、动特性若干基本问题的研究. [合肥工业大学博士学位论文]. 1996:1-12
    41葛运健.多维力传感器的研究现状和我们的任务.机器人情报, 1993, (3):27-30
    42黄心汉,胡建元,王健.一种非径向三梁结构六维腕力传感器弹性体及其优化设计.机器人,1992, 14(5):1-7
    43陈雄标,袁哲俊,姚英学.多维力传感器设计的评价准则与优化设计研究.哈尔滨工业大学学报, 1997, 29(4):88-92
    44陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究.机器人, 1997, 19(1):7-12
    45陈雄标,姚英学,袁哲俊.六维力传感器干扰及其标定方法.传感器技术, 1995, (2):37-40
    46唐毅,葛运建,高理富.基于一体化结构的全力测试平台的研制及其动态性能研究.仪器仪表学报, 2003,24(5):536-539
    47黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006:141-142,295-297
    48 J.-P. Merlet. Parallel Robots (Second Edition II). Berlin: Springer, 2006:265-266
    49 M. Uchiyama, K. A. Hakomori. Few Considerations on Structure Design of Force Sensor.Proceedings of the Third Annual Conference on Japan Robotics Society, 1985:17-18
    50 A. Bicchi, A.Caiti, D. Prattichizzo. Optimal design of dynamic multi-axis force/torque sensor. The38thconference on decision & control, phoenix, USA, 1999:2 981-2986
    51 A. Bicchi, A.Caiti, D.Prattichizzo. Dynamic force/torque sensors: theory and experiments. The8th International Conference on Advanced Robotics, Monterey, CA, USA, 1997:727-732
    52熊有伦.机器人力传感器的各向同性.自动化学报, 1996, 22(1):10-18
    53 Nicholas Krouglicof, Luisa M. Alonso, and William D. Keat. Development of aMechanically Coupled, Six Degree-of-freedom Load Platform for Biomechanics and SportsMedicine. IEEE International Conference on Systems, Man and Cybernetics, Hague, Netherlands,2004, 5:4426-4431
    54刘正士,陈心昭.机器人腕力传感器弹性体应力分析.机器人,1996, 18 (1):32-37
    55 Lu-Ping Chao, Kuen-Tzong Chen. Shape Optimal Design and Force Sensitivity Evaluation ofSix-axis Force Sensors. Sensors and Actuators A: Physical, 1997, 63(2):105-112
    56赵鲁平.多分量力感测器于人体步态运动时足部受力量测.工程科技通讯. 2000, (45): 65-68
    57 Yon-Kyu Park, Rolf Kumme,Dae-Im Kang. Dynamic Investigation of a Binocular Six-componentForce-moment Sensor. Measurement Science and Technology, 2002, 13(8):1311-1318
    58 Y. F. Li, X. B. Chen. On the Dynamic Behavior of a Force/Torque Sensor for Robots. IEEETransactions on Instrumentation and Measurement, 1998, 47(1):304-308
    59高晓辉,刘宏,蔡鹤皋,等.机器人手指尖六维力/力矩传感器的研制.高技术通讯, 2002,(3):67-69;95
    60 Jie Zhao, Xiaoyu Wang, Liang Zhang, Hegao Cai. Finite Element Analysis of Six-dimension StiffForce/Torque Sensor Elastomer for Robots. Proceedings of the Second International Symposiumon Instrumentation Science and Technology, Jinan, China, 2002, 3:272-275
    61徐科军,江敦明,王国泰.腕力传感器三维自适应动态补偿方法.中国机械工程, 1997,8(6):40-42;55
    62徐科军,殷铭.基于FLANN的腕力传感器动态建模方法.仪器仪表学报, 2000, 21(1):92-94
    63徐科军,李成,朱志能,等.机器人腕力传感器动态响应的实时补偿.自动化学报, 2001,27(5):705-709
    64 F. Aghili. On-orbit Calibration of the SPDM Force-moment Sensor. Proceedings of 2000 IEEEInternational Conference on Robotics and Automation, 2000, 4:3603-3608
    65李允明, C. S. George Lee.机器人腕部力传感器的标定.中国纺织大学学报, 1986,12(2):33-42
    66陈滨.机器人的手腕测力装置.机械工程学报, 1988, 24(2):63-70
    67张洁,黄惟一.用有限元法对腕力传感器弹性体的力学分析.传感器技术, 2002, 22(3):33-35
    68 H. G. Wang, M. Y. Zhao, L. J. Fang, B. Zhang, Z. G. Xu. Identification of Parameters for a StewartPlatform-based Force/Torque Sensor. Proceedings of 2004 IEEE International Conference onRobotics and Biomimetics, 2004:46-50
    69 Liu Zhengshi, Zhen hongmei, Chen Enwei, Gan Fangjian, etc .Auto calibration of Robot'sMulti-axis Wrist Force Sensor. The 2nd Intenrational Symposium on Instrumentation Science andTechnology, 20 02, 8: 387-393
    70郑红梅.机器人多维腕力传感器静、动态性能标定系统的研究. [合肥工业大学博士学位论文].2007:6-12
    71郑红梅,刘正士.机器人六维腕力传感器动态性能标定系统的研究.电子测量与仪器学报,2006, 20(3):88-92
    72姜力,刘宏,蔡鹤皋.多维力/力矩传感器静态解耦的研究.仪器仪表学报. 2004, 25 (3):284-287
    73 Pei-Yu Li, Da-Peng Tan, Guo Liu, and Mei-Yi Ying. Six-component Force Sensor and ItsCalibration System. Proceedings of IEEE Networking, Sensing and Control, Tucson, AZ, UnitedStates, 2005:889–893
    74 V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. FISITA Ninth International TechnicalCongress, 1962:117-137
    75 K. L. Cappel. Motion Simulator. US Patent No. 3,295,224, January 3, 1967
    76 D. Stewart. A Platform with Six Degrees of Freedom. IMechE, 1965, 180(15):371-386
    77 Bhaskar Dasgupta, T. S. Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanismand Machine Theory, 2000, 35:15-40
    78韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究.高技术通讯, 2001, (3):88-90
    79贾庆轩,魏秋霜,孙汉旭,等.并联微动机器人的研究现状.山东理工大学学报, 2003,17(6):98-102
    80贠远,徐青松,李杨民.并联微操作机器人技术及应用进展.机械工程学报,2008,44(12):12-23
    81 A. Hara, K. Sugimoto. Synthesis of parallel micromanipulators. Journal of MechanismsTransmissions, and Automation in Design, 1989, 111:34-39.
    82 M. Taniguchi, M. Ikrda, A. Inagaki, et al. Ulta precision wafer positioning by six-axismicro-motion mechanism. International Journal of Japan Society Precision Engineering, 1992,26(1):35-40
    83 T Tanikawa, T. Arai, P. OJala. Two-finger micro hand. The IEEE International Conference onRobotics and Automation, Nagoya, Japan, May 21-27, 1995:1674-1679
    84 J. C. Hudgens, D. Tesar. A fully-parallel six degree-of-freedom micromanipulator: kinematicanalysis and dynamic control. ASME Proc. of the 20th Biennial Mechanisms Conf., Kissimmee,Orlando, Septembre 25-27, 1988: 29-37
    85 Zhu Zhenqi, Cui Hongliang, Kishore Pochiraju. Flexible Parallel Manipulator for Nano-, MesoorMacro-Positioning with Multi-degrees of Freedom. US Patent No. 20080257096, October 23,2008
    86 Stefan Vorndran. Low-Inertia Parallel-Kinematics Systems for Submicron Alignment andHandling. 2002-9-5. http://www.parallemic.org/Reviews/Review012.html.
    87 Dong Wei, Sun Lining, Du Zhijiang. Design of a precision compliant parallel positioner driven bydual piezoelectric actuators. Sensors and Actuator A:Physical, 2007, 135(1):250-256
    88 K. H. Hunt. Kinematic Geometry of Mechanisms. Oxford:Claredon Press, 1978:
    89 E. F. Fichter. Stewart Platform-based Manipulator: General Theory and Practical Construction.International Journal of Robotics Research, 1986, 5(2):157-182
    90 Jean-Pierre Merlet. Force-feedback Control of Parallel Manipulators. IEEE InternationalConference on Robotics and Automation, 1988:1484-1489
    91 Hans-Juergen Warnecke, Reimund Neugebauer, Franck Wieland. Development of Hexapod BasedMachine Tool. CIRP Annals - Manufacturing Technology, 1998, 47(1):337-340
    92 K. Harib, K. Srinivasan. Kinematic and dynamic analysis of Stewart platform-based machine toolstructures. Robotica, 21(5):541-5554
    93房立金.并联机床发展探讨.航空制造技术, 2008,(17):74-77
    94哈量集团.并联机床:从航空航天到未来汽车制造.现代零部件,2008, (4):62-64
    95苏玉鑫.大射电望远镜精调Stewart平台的优化、分析与控制. [西安电子科技大学博士学位论文]. 2002:2-13
    96 R. Verhoeven, M. Hiller, S. Tadoroko. Workspace, stiffness, singularities and classification oftendon driven Stewart platforms. The International Symposium on Advances in Robot Kinematics,Salzburg, Austria, 1998:105-114
    97陆永华,赵东标,吕霞,等. Stewart六维力/力矩传感器弹性体的设计分析.南京航空航天大学学报, 2005, 37(3):376-380
    98 A. Gaillet, C. Reboulet. An Isostatic Six Component Force and Torque Sensor. Proceedings of the13th International Symposium on Industrial Robots, 1983
    99 D. R. Kerr. Analysis, Properties and Design of a Stewart-Platform Transducer. Mech. Transm.Autom. Design, 1989, 1 (11):25-28
    100 J. S. Dai, D. R. Kerr. A Six-component Contact Force Measurement Device Based on the StewartPlatform. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science, 2000, 214:687-697
    101 Charles C. Nguyen, Sami S. Antrazi, Zhen-Lei Zhou. Analysis and Implementation of a 6 DOFStewart Platform-based Force Sensor for Passive Compliant Robotic Assembly. IEEE Proceedingsof Southeastcon, Williamsburg, Virginia, 1991:880-884
    102 A. Romiti, M. Sorli. Force and moment measurement on a robotic assembly hand, Sensors andActuators A, 1992, 32(1): 531-538
    103 M. Sorli and N. Zhmud. Investigation of force and moment measurement system for a RoboticAssembly Hand, Sensors and Actuators A, 1993, 32(1):651-657
    104 M.Sorli, S. Pastorelli. Six-axis reticulated structure force/torque Sensor with adaptableperformances. Mechatronics, 1995, 5(5): 585-601
    105 Chul-Goo Kang, closed-form force sensing of a 6-axis force transducer based on the Stewartplatform. Sensors and Actuators A, 2001, 90(1):31-37
    106 T. A. Dwarrakanath, Bhaskar Dasgupta, T. S. Mruthyunjaya. Design and development of Stewartplatform based force-torquesensor, Mechatronics, 2001,11(7):793-809
    107 T.A. Dwarakanath, D. Venkatesh. Simply supported,‘Joint less’parallel mechanism basedforce-torques sensor, Mechatronics, 2006,16(9):565-575
    108 R. Ranganath, P.S. Nair, T.S. Mruthyunjaya, A. Ghosal. A force-torque sensor based on a Stewartplatform in a near-singular configuration. Mechanism and Machine Theory, 2004, 39(9):971-998
    109 U. Seibold, B. Kuebler, G. Hirzinger. Medical Robotics, chapter Prototypic force feedbackinstrument for minimally invasive robotic surgery. In: Bozovic, Vanja [Hrsg.]: Medical Robotics,I-Tech Education and Publishing, Vienna, Austria, 2008:377-400
    110 Nicholas Krouglicof, Luisa M. Alonso, and William D. Keat. Development of a mechanicallycoupled, six degree-of-freedom load platform for biomechanics and sports medicine. IEEEInternational Conference on Systems, Man and Cybernetics, Hague, Netherlands, 2004:4426-4431
    111杜铁军.机器人误差补偿器研究. [燕山大学工学硕士学位论文].1994:16-17
    112黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997:180-183
    113高峰,王洪瑞,金振林.一种具有弹性铰链的六维力与力矩传感器.中国专利:99102421.4,1999-09-29
    114 F. Gao, Y. Zhang, X.C. Zhao, W.Z. Guo. The design and applications of F/T sensor based onStewart platform. The 12th IFToMM World Congress, Besancon, France, June, 2007
    115赵现朝. Stewart结构六维力传感器设计理论与应用研究. [燕山大学工学博士学位论文].2002:11-16;76-80
    116高峰,金振林,刘辛军,赵现朝.并联解耦结构六维力与力矩传感器.中国专利:99119320.2,2000-09-27
    117 Z.L. Jin, F. Gao and X.H. Zhang, Design and analysis of a novel isotropic six-componentforce/torque sensor, Sens. Actuators A, 2003, 109 (1):17-20
    118姚裕,吴洪涛,张召明.基于Stewart平台的六维力传感器在风洞天平中应用.淮海工学院学报, 2002, 11(4):12-14
    119姚裕,吴洪涛,张召明.基于Kane方法的Stewart传感器动力学及固有频率分析.动力学与控制学报, 2004, 2(2):84-87
    120王宣银,尹瑞多.基于Stewart机构的六维力/力矩传感器,机械工程学报, 2008,44(12):118-130
    121尹瑞多. Stewart广义六维力传感器的研究. [浙江大学硕士学位论文]. 2006:4-5;18-19
    122王洪光,赵明扬,房立金,等.一种结构六维力/力矩传感器参数辨识研究.机器人,2008,30(6):548-553
    123赵铁石.并联6-UPUR六维测力平台.中国专利: 200610012602, 2006-09-06
    124 M. Uchiyama, K. A. Hakomori. Few Considerations on Structure Design of Force Sensor.Proceedings of the Third Annual Conference on Japan Robotics Society, 1985:17-18
    125 Masaru Uchiyama, Eduardo Bayo, and Enrique Palma-Villalon. A Systematic Design Procedureto Minimize a Performance Index for Robot Force Sensors. Journal of Dynamic Systems,Measurement and Control, Transactions of the ASME, 1991, 113(3):388-394
    126 Dasgupta B, Reddy S, Mruthyunjaya TS. Synthesis of a force–torque sensor based on the Stewartplatform mechanism. In: Proceedings of the national convention of industrial problems inmachines and mechanisms (IPROMM’94), Bangalore, India,1994:14–23.
    127侯雨雷.超静定并联式六维力与力矩传感器基础理论与实验研究. [燕山大学工学博士学位论文]. 2007:29-40
    128 Hongrui Wang, Feng Gao, Zhen Huang. Design of 6-axis Force/Torque Sensor Based on StewartPlatform Related to Isotropy. Chinese Journal of Mechanical Engineering (English Edition), 1998,11(3):217-222
    129王洪瑞,陈贵林,高峰,等.基于Stewart平台的6维力传感器各向同性的进一步分析.机械工程学报, 2000, 36 (4):49-52
    130金振林,赵现朝,高峰.新型灵巧手指六维力传感器参数设计方法研究.仪器仪表学报,2003, 24(4):371-374
    131金振林,高峰.新型六维腕力传感器弹性体敏感元件的灵敏度特性分析.燕山大学报,2000:7, 228-231
    132金振林,高峰,陈贵林.新型3-2-1正交结构机器人六分量腕力传感器设计.机械设计, 2001,(5):12-14
    133赵克定,杨灏泉,吴盛林,等.基于Stewart平台的六维力/力矩传感器各向同性的解析研究.航空学报, 2002,23(3):241-244
    134赵延治,赵铁石,温锐,等.并联结构六维力传感器性能分析与优化设计.中国机械工程,2006, 17(增刊):299-302.
    135张景柱,徐诚,郭凯.基于Stewart构型的六维力/力矩传感器刚柔度性能研究.机械设计,2007, 24(7):6-7,16
    136张景柱,徐诚,郭凯.基于灵敏度指标的Stewart型六维力传感器结构参数设计.南京理工大学学报, 2008,32(2):135-139
    137金振林,岳义. Stewart型六维力传感器的静态解耦实验.仪器仪表学报, 2006, 27(12):1715-1717
    138李海滨,隋春平,王洪光,等.基于Stewart平台六维力传感器的分区静态标定方法.传感技术学报, 2006,19(1):132-136
    139李海滨,段志信,周佳龙.基于坐标变换的六维力传感器静态标定方法.传感器与微系统,2006,25(3):74-80
    140龙驭球,包世华.结构力学教程(I).北京:高等教育出版社, 2000:18-32
    141 J.K. Salisbury, J.J. Craig. Articulated hands: force cotrol and kinematic issues. InternationalJournal of Robotics Research, 1982, 1(1):4-17
    142 Antonio Bicchi. A Criterion for Optimal Design of Multi-axis Force Sensors. Robotics andAutonomous Systems, 1992, 10(4)::269-286
    143邹慧君,高峰.现代机构学进展.北京:高等教育出版社,2007:186-187,166-167
    144 K.H. Pittens, R.P. Podhorodeski, A family of Stewart platforms with optimal dexterity. Journal ofrobotic systems, 1993, 10 (4): 463-479
    145 K.E. Zanganeh, J. Angeles. Kinematic isotropy and the optimum design of parallel manipulators.International Journal of Robotics Research, 1997,16 (2): 185-197
    146 A. Fattah, A.M. Hasan Ghasemi. Isotropic design of spatial parallel manipulators. InternationalJournal of Robotics Research, 2002, 21(9): 811-824
    147 Y. Yi, J. E. McInroy, F. Jafari. Generating classes of locally orthogonal Gough-Stewart platforms.IEEE Transactions on Robotics, 2005, 21(5): 812-820
    148 Sandipan Bandyopadhyay, Ashitava Ghosaly. An algebraic formulation of exact force-,moment-isotropy in spatial parallel manipulators. 12th IFToMM World Congress, Besancon, June18-21, 2007
    149 S. Bandyopadhyay, A. Ghosal. Geometric characterization and parametric representation of thesingularity manifold of a 6-6 Stewart platform manipulator, Mechanism and Machine Theory,2006, 41: 1377-1400
    150赵永生.整体预紧平台式六维力传感器.中国专利: CN99102526.1,1999-02-06
    151 L. Mihalyffy. An alternative representation of the generalized inverse of partitioned matrices.Journal of Linear Algebra and Its Applications,1971,4:95-100
    152周铁玲.大量程超静定并联六维力传感器及标定台结构设计与研究. [燕山大学工学硕士学位论文]. 2008: 21-36
    153阎志伟. Stewart平台式六维力传感器静态标定理论与实验研究. [燕山大学工学硕士学位论文]. 2004:53-68
    154 Lu Tien-Fu, Lin Grier C I, He Juan R. Neural–Network Based 3D Force/Torque SensorCalibration for Robot Applications. Engineering Applications of Artificial Intelligence, 1997,10(1): 87-97
    155周川,马勤弟.基于神经网络辨识的表面温度传感器动态标定及瞬态温度测量.应用科学学报, 1999, 17 (1):45-50
    156钱光耀.基于RBF神经网络的双目摄像机标定研究.计量技术, 2008, (1):3-6
    157秦伟伟,汪立新,熊陶,等.线性神经网络在加速度计静态模型标定的应用.电光与控制,2008,15(5):88-91
    158张立民.人工神经网络的模型及其应用.上海:复旦大学出版社, 1993:44-46
    159刘正士.机器人六分量腕力传感器加载试验台系统误差分析.计量学报,1998,19(1):44-49
    160张国伟,宋伟刚.并联机器人动力学问题的Kane方法.系统仿真学报, 2004, 16(7):1386-1391
    161李鹭扬,吴洪涛,朱剑英. Gough-Stewart平台高效动力学建模研究.机械科学与技术,2005.24(8):887-889
    162黄其涛,韩俊伟,何景峰.六自由度并联运动平台动力学建模及分析.机械科学与技术,2006,25(4):382-385
    163陈捷.大量程超静定六维力传感器动态特性的实验研究. [燕山大学工学硕士学位论文].2009:43-48
    164俞阿龙.基于仿生算法的机器人腕力传感器动态特性及相关技术研究. [东南大学博士学位论文]. 2005:48-50
    165周乐挺.传感器与检测技术.北京:高等教育出版社,2005:6-7
    166徐科军.传感器动态特性的实用研究方法.合肥:中国科学技术大学出版社,1999:1-85
    167秦刚.新型机器人腕力传感器的研究. [东南大学硕士学位论文].2004:26-51.
    168季梅.六维腕力传感器动态特性的研究. [东南大学硕士学位论文].2003:10-39
    169于靖军,刘辛军,丁希伦,等.机器人机构学的数学基础.北京:机械工业出版社,2008:327-328
    170 J. P. Merlet. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots.Journal of Mechanical Design, 2006, 128:129-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700