用户名: 密码: 验证码:
天然蛋白质可降解热塑膜及纺织浆料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于产量可观、价格低廉,且具有优异降解性、污染小等特征,农副产品和动物毛羽等废弃物受到了越来越多的重视,具有广泛的理论研究价值与实际应用潜力。废弃物中含有大量蛋白质,可作为纺织材料资源,有效降低纺织产业链的碳排放,降低纺织产业对石油资源的依赖性。
     研究者们从废弃物中提取生物降解天然高分子,如小麦蛋白、玉米蛋白和鸡毛角蛋白,然后对其进行改性以用于生产可生物降解薄膜,并对其在纺织领域中的应用进行了探讨,取得了诸多重要研究成果。然而,在研究过程中也存在一些问题,比如化学和/或物理改性的方法增加了蛋白类产品的成本,也不同程度地降低了其生物降解性;增塑剂的使用也不同程度地降低了蛋白类热塑产品的强伸性能和耐水性能。这些问题的存在制约了对废弃物组分利用的进一步研究。另外,对比了蛋白质浆料与PVA浆料的应用性能,评价了其作为替代浆料的可行性。这不仅为天然蛋白质生物材料的开发应用奠定基础,为绿色纺织资源的开发提供新思路,而且使天然资源得到科学利用,使纺织业对环境产生较少影响,实现可持续发展。
     本论文主要研究了以下五个问题:
     第一,探讨了蛋白质的提取工艺并对其影响因素进行研究。利用弱碱从农业副产品及废弃动物毛中提取出蛋白质,并利用碱剂控制蛋白质的水解产物。通过使用不同浓度的碱预处理蛋白质,得到不同的蛋白质多肽链段,进而控制蛋白质的熔融与溶解程度,并影响蛋白质热塑膜和蛋白质浆料的应用性能。
     第二,研究了蛋白质热塑薄膜的制备条件并对其性能进行评价。利用热压法将提取出的蛋白质样品制备成可生物降解的蛋白质薄膜,并对其热塑性、耐水性及脆性进行评价。通过甘油和热压两种处理方式,来改善蛋白质热塑膜的热塑性、耐水性及脆性。同时,为了进一步提高蛋白质热塑膜的耐水性能,采用柠檬酸处理与热压来处理蛋白质薄膜。通过采用扫描电子显微镜(SEM)、差示扫描量热法(DSC)、热重分析法(TGA)、图像等手段表征了热塑膜的热塑性能,并以热塑膜的断裂强度、断裂伸长率、弹性模量为量化指标,分析和探讨了热压时间、热压温度、甘油浓度、交联剂浓度对蛋白质热塑膜强伸性能和耐水性能的影响。
     第三,探索了蛋白质浆料与纱线的相互作用机理及其影响因素。首先用制得的蛋白质样品,在未使用增塑剂的条件下通过浇铸法制备出大豆蛋白、面筋蛋白和鸡毛角蛋白薄膜,以薄膜的断裂强度和断裂伸长率为量化指标评估蛋白质薄膜的强伸性能,并探索蛋白质预处理的碱浓度、温度和时间对浆纱使用性能的影响。首先利用碱剂方法制备出一系列具有不同分子量大小的蛋白质(大豆蛋白、面筋蛋白和鸡毛角蛋白)浆料,对蛋白质浆料进行粘度测试,分析和探讨了蛋白质浆料的水解产物与浆料粘度的内在关系;同时,用此系列蛋白质浆料给聚酯和聚酯/棉(65/35)的粗纱、细纱和织物分别上浆,并以上浆率、浆纱的最大断裂强力、断裂伸长率、耐磨次数及面料的耐磨次数为量化指标,探讨蛋白质预处理条件(碱浓度、温度和时间)和相对湿度对聚酯及聚酯/棉混纺纤维的粘附性能、耐磨性能的影响,为蛋白质浆料的实际应用提供参考依据;本论文也通过水浴退浆的方法,以退浆率为量化指标,研究了固浴比、温度、漂洗次数对蛋白质浆料退浆性能的影响。结果表明,大豆蛋白、面筋蛋白和鸡毛角蛋白薄膜有良好的成膜能力,且薄膜具有一定的延伸度;蛋白质浆料的粘度可控,可以渗透入纱线内部,与纤维材料之间有良好的粘附性;可以提供给浆纱合适的强度、可延伸性和良好的耐磨性能;易退浆;对相对湿度的变化不敏感,因而蛋白质可作为新型纺织浆料,给以聚酯和聚酯/棉为材质的纱线上浆。
     第四,评价了蛋白质浆料对环境的影响。论文用废水污泥处理蛋白质浆料,以化学需氧量(COD),生化需氧量(BOD5), BOD5/COD为量化指标,揭示了蛋白质浆料相应工艺过程所产生的废水在活性污泥中的生物降解性;同时,为了确保蛋白质降解以后释放的氮不会影响活性污泥的处理过程,导致新的生物降解性问题,论文提出以总氮和氨氮的浓度变化为进一步量化指标,揭示蛋白质降解过程对蛋白质浆料环保性能的影响。结果表明,在废水处理过程中,大豆蛋白、面筋蛋白和鸡毛角蛋白浆料大分子链都被微生物降解,且降解过程中释放的总氮和氨氮都很少,这表明蛋白质的降解不会对废水处理厂的运行造成负面影响,蛋白质浆料具有良好的可生物降解性。
     第五,为了评估新型蛋白质浆料取代PVA浆料给聚酯和聚酯/棉纤维上浆的可行性,本论文用商业用PVA浆料做为对比样,分别给聚酯和聚酯/棉细纱、粗纱和织物上浆,并对比分析了PVA浆料与蛋白质(大豆蛋白、面筋蛋白和鸡毛角蛋白)浆料性能、浆纱性能、退浆性能及可生物降解性能。结果表明,蛋白质纺织浆料的上浆效果与PVA浆料上浆效果相比,可以提供相当或更好的浆纱性能,且蛋白质浆料具有良好的退浆性能和可生物降解性。因此,简单的制备方法,良好的浆纱性能,容易退浆和在废水处理厂的完全降解都使得蛋白质浆料可作为PVA浆料的理想替代品,降低纺织厂对环境的污染。
     本论文的研究成果重在理论与应用基础的创新,开发利用我国资源丰富的农/农副产品和动物毛羽等废弃物,研究成果将有助于推动生物降解材料学科的发展,推动我国天然资源的科学利用,解决我国纺织业面临的生态问题,具体创新之处如下:
     第一,基于蛋白质降解理论,利用碱剂从花生粕和鸡毛中制备出不同分子量大小的蛋白质。此方法可用于从农副产品和废弃物中提取动植物蛋白质,拓宽了提取动植物蛋白质的思路,也开发出制备蛋白质浆料的新途径,既可解决环境污染和资源紧缺问题,又有助于实现纺织业的生态转型和可持续发展。
     第二,使用碱剂水解蛋白质,得到不同分子量大小的蛋白质,进而控制蛋白质的熔融。此研究可解决一类动植物蛋白质的熔融问题,并制备出生物降解性良好的蛋白质塑料。
     第三,利用尽可能少的增塑剂和高的热压温度制备出蛋白质热塑膜,此方法可用于提高蛋白质生物降解塑料的强度性能和水稳定性。
     第四,提出用柠檬酸交联与热压一步完成的方法制备蛋白质热塑膜,在热压过程中实现蛋白质与交联剂的共价交联反应,且利用柠檬酸和蛋白质交联与热压制备的蛋白质薄膜具有良好的水稳定性。
     第五,用碱剂溶解的方法制备出蛋白质浆料,并将其与传统PVA浆料进行对比,探讨了其作为替代PVA浆料的可行性。此研究可解决PVA浆料的难以去除、环境污染等问题,为开发绿色纺织浆料开拓一条新途径。
     第六,提出非传统蛋白质浆料环保性能的评估指标,评估了蛋白质浆料在废水污泥中处理前后混合液的BOD5, COD,氨氮和总氮值。根据测定结果,评估蛋白质浆料的环保性能,减少浆料排放对环境造成的污染。
The coproducts of processing cereal crops and waste are available in abundance, inexpensive, biodegradable and are derived from renewable resources. They don't need to special grown and have the utilization of the low value. Therefore, these renewable materials and eco-friendly processing with clean technologies are paid more and more attention in scientific theory research and practical application research. If these resources are reasonable to be used in textile materials, it will effectively reduce the carbon discharge from the textile industry complex from the beginning and weaken the dependence on petroleum resources for textile industry.
     Attempts have been made to use proteins, such as wheat gluten, zein and chicken feather to develop thermoplastic films. Since proteins have poor thermoplasticity, plasticizers such as glycerol or chemical modifications are inevitably used to develop thermoplastics from proteins. However, there are limited industrial applications and further research. The research is that plasticizers such as glycerol commonly used to plasticizing proteins are hydrophilic, absorb considerbale amounts of water and therefore substantially decrease the mechanical properties and also reduce the water resistance of the thermoplastics, and the chemical modification increase the cost of protein-based products. This research will lay the foundation for the development of natural protein based biomaterials, develop a new thought to get green textile materials from natural resources, which make textile industry less impact on the environment and achieve sustainable development.
     To sum up, the following five problems are mainly studied in this paper.
     First, we demonstrate alkali hydrolysis approach of controlling the melting performance and dissolving performance of proteins. Proteins were hydrolyzed using various concentrations of alkali and the hydrolyzed proteins were compression molded into films and prepared for textile sizing. Different molecular weight of hydrolyzed proteins influenced the application performances of thermoplastic films and protein sizes.
     Second, the preparation condition and performances of thermoplastic protein films were studied. The thermoplasticity, water stability and tensile properties of films were improved by controlling concentration of glycerol and temperature of hot-press. The thermoplastic performance was characterized by the means of SEM, DSC, TGA and pictures. The effect on tensile properties and water stability of films of time, temperature, concentration of glycerol and crosslinking agent was evaluated by breaking stress, breaking elongation and modulus of films.We show that the protein samples can be compression molded into thermoplastic films with good tensile strength and water stability using low glycerol concentration but high molding temperatures. Furthermore, the citric acid crosslinking occurs at the temperature range used to compression mold the films, enabling a one-step crosslinking-compression-molding process, which is helpful to improve the water stability of the films.
     Third, the interaction mechanism and effect factors between protein sizes and sized material were researched. We developed the soy protein, wheat gluten and chicken feather protein films using casting solution method and evaluated the mechanical properties of protein films with peak load and peak elongation. Furthermore, the protein (soy protein, wheat gluten and chicken feather protein) sizes were prepared by alkali hydrolysis method and the effects of alkali concentration, temperature and time on performance of sized material were studied. Firstly, different treatment conditions of alkaline hydrolysis decreased the molecular weight and made the proteins suitable to develop textile sizes, which influenced the viscosity of protein sizes. Secondly, we have used the hydrolyzed proteins to size polyester and polyester/cotton rovings, yarns and fabrics. The effect of sizing conditions on the adhension properties and abrasion resistance properties of the sized materials was studied based on peak load, peak elongation, abrasion times of sized material, which provide the guidance to practical application of protein sizes. Thirdly, the simplicity to desize of the protein sizes with water have been studied according to percent desizing ratio, including the effect of ratio of fabric and water, temperature and rinse times on desizing performance. The research demonstrates the ability to form films and the feasibility to be textile sizes from soy protein, wheat gluten and chicken feather proteins. Protein sizes can penetrate into yarns and have good adhension on fibers with controlling viscosity. Low cost, excellent film forming properties, adhesiveness, insensitive to humidity and easy desizing make proteins a very attractive choice as a textile sizing agent for polyester and their blends.
     Fourth, the environmental performance of protein sizes was evaluated. Protein sizes were treated in activated sludge and assessed the biodegradability of proteins with the changes of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), and total nitrogen and ammonia nitrogen value before and after treated. The results show that soy protein, wheat gluten and chicken feather protein sizes were digested by microorganism. The total nitrogen and ammonia nitrogen released during degradation was little, which demonstrate that the degradation of protein sizes has not negative effects on operation of water treatment plant.
     Fifth, it is very important to evaluate the feasibility for protein sizes to substitute PVA sizes for sizing polyester and polyester/cotton materials. Commercially used PVA sizes have been used to size polyester/cotton (65/35) and polyester rovings, yarns and fabrics. The properties of PVA sizing agent, sized materials, desizing and biodegradable have been compared with the same materials sized with protein sizes. The results show that protein sizes provide the desired sizing properties, biodegradability, simplicity to preparation and cost-effective substitute to PVA for sizing synthetic fibers and their blends, which can decrease the pollution to environment for textile plants.
     This research results have innovations based on theory and application of biodegradable material subject, which is reflected in the scientific utilization of natural bioresources and coproducts from agricultural products. These findings will solve the ecological problems meeted in textile industry. This innovation is mainly reflected in the following aspects:
     First, we extracted peanut proteins with controlling molecular weight from peanut meal by alkaline hydrolysis based on the theory of protein degradation. Alkaline hydrolysis method can be used for extracting proteins from coproducts from processing crops and waste, which can solve the environmental pollution and resource shorage problems to make textile industry sustainable development.
     Second, the proteins were hydrolyzed using alkali and then compression molded into thermoplastic films.The alkaline hydrolysis method can solve the melting problems for many plant and animal proteins and make them into biodegradable thermoplastics.
     Third, thermoplastic films with good tensile strength and water stability were compression molded using low glycerol concentration but high molding temperatures from the wheat proteins (gluten, gliadin, glutenin and pure glutenin), peanut proteins and chicken feather proteins.
     Fourth, a one-step crosslinking-compression-molding process was developed, which can improve the water stability for protein films. The non-toxic crosslinking with citric acid can save cost and the films could be used for food and medical applications.
     Five, protein sizes for textile were prepared by alkaline hydrolysis method which have been studied in comparison to commercially available PVA based sizes, which was expected to provide the desired sizing properties, biodegradability and cost-effective substitute to PVA for sizing synthetic fibers and their blends. This result can solve the problems of removing PVA sizes and environmental pollution, also develope a novel resource for green textile sizes.
     Fifth, environmental performance for protein sizes were evaluated based on the changes of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), and total and ammonia nitrogen value before and after treated in activated sludge. The result is helpful to reduce the pollution to environment from size effluents from textile plants.
引文
[1]中国产业信息网,2013-2017年中国小麦蛋白市场全景调查及未来发展趋势报告[EB].2013, http://research.chyxx.com/201304/199029.html.
    [2]Ezpeleta I, Irache JM, Stainmesse S, et al. Gliadin nanoparticles for the controlled release of all-trans-retinoic acid[J]. International journal of pharmaceutics.1996,131 (2):191-200.
    [3]Arangoa MA, Ponchel G. Bioadhesive potential of gliadin nanoparticulate systems[J]. European journal of pharmaceutical sciences.2000,11(4):333-341.
    [4]马永强,韩春然,石忠志.小麦醇溶蛋白的研究进展[J].食品科学.2006,27(12):p.813-817.
    [5]Ornebro J, Wahlgren M, Eliasson A, et al. Adsorption of [alpha]-,[beta]-[gamma]-and [omega]-Gliadins onto Hydrophobic Surfaces[J]. Journal of Cereal Science.1999,30 (2):105-114.
    [6]Wrigley CW. Giant proteins with flour power. NATURE,1996.381(6585):p. 738-739.
    [7]吴芳,潘志芬,余懋群.小麦低分子量麦谷蛋白亚基研究进展[J].西北植物学报.2006,(4):p.864-870.
    [8]生意社,2012年国内大豆分析[EB].2012.http://www.100ppi.com/forecast/detail-20121231-29576.html
    [9]Kinsella JE. Functional properties of soy proteins[J]. Journal of the American Oil Chemists' Society,1979,56(3):242-258.
    [10]刘大川,杨国燕,翁利荣等.超滤膜法制备大豆蛋白工艺研究[J].中国油脂,2003,28(11):30-34.
    [11]Wolf WJ, Babcock GE, Smith Ak. Ultracentrifugal differences in soybean protein composition[J]. Nature,1961,191:1395-1396.
    [12]高丽,张声华.大豆蛋白凝胶前后SDS-PAGE图谱比较分析[J].粮油食品科技.2009,(3):25-27.
    [13]Zhang SB, Lu QY, Yang H, et al. Aqueous Enzymatic Extraction of Oil and Protein Hydrolysates from Roasted Peanut Seeds[J]. Journal of the American Oil Chemists' Society.2011,88(5):727-732.
    [14]花生油门户.花生粕的作用和使用方法[EB].2012.http://www.hsymh.com/news/11378989-1.html
    [15]Batal A, Dale N, Cafe M. Nutrient composition of peanut meal[J]. The Journal of Applied Poultry Research.2005,14 (2):254-257.
    [16]Huda S, Yang Y. Feather fiber reinforced light-weight composites with good acoustic properties[J]. Journal of Polymers and the Environment.2009,17 (2):131-142.
    [17]Saber WIA, El-Metwally MM. Keratinase Production and Biodegradation of Some Keratinous Wastes by Alternaria tenuissima and Aspergillus nidulans[J]. Research Journal of Microbiology.2010,5(1):21-35.
    [18]Mokrejs P, Svoboda P, Hrncirik J. Processing poultry feathers into keratin hydrolysate through alkaline-enzymatic hydrolysis[J]. Waste Management & Research.2011,29(3):260-267.
    [19]Sun P, Liu ZT, Liu ZW. Chemically modified chicken feather as sorbent for removing toxic chromium (VI) ions[J]. Industrial & Engineering Chemistry Research.2009,48(14):6882-6889.
    [20]Martinez-Hernandez AL, Santiago-Valtierra AL, Alvarez-Ponce MJ. Chemical modification of keratin bio fibres by graft polymerisation of methyl methacrylate using redox initiation[J]. Materials research innovations.2008, 12(4):184-191.
    [21]Lagrain B, Goderis B, Brijs K, Delcour JA. Molecular basis of processing wheat gluten toward biobased materials[J]. Biomacromolecules.2010,11(3): 533-541.
    [22]Reddy N, Yang YQ, Novel protein fibers from wheat gluten[J]. Biomacromolecules.2007,8 (2):638-643.
    [23]Reddy N, Y Yang. Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications [J]. Journal of materials science: materials in medicine.2008,19(5):2055-2061.
    [24]Reddy N, Y Yang. Completely biodegradable soyprotein-jute biocomposites developed using water without any chemicals as plasticizer[J]. Industrial Crops and Products.2011,33 (1):35-41.
    [25]Reddy N, Y Yang. Biocomposites developed using water-plasticized wheat gluten as matrix and jute fibers as reinforcement [J]. Polymer International. 2011,60(4):711-716.
    [26]Reddy N, Y Yang. Potential of Plant Proteins for Medical Applications [J]. Trends in Biotechnology.2011,29(10):490-498.
    [27]Reddy N, Y Yang. Novel Green Composites Using Zein as Matrix and Jute Fibers as Reinforcement [J]. Biomass and Bioenergy.2011,35(8):3496-3503.
    [28]Reddy N, Jiang Q, Yang Y. Novel Wheat Protein Films as Substrates for Tissue Engineering [J]. Journal of Biomaterials Science:Polymer Edition. 2011,22(15):2063-2077.
    [29]Yang Y, Xu W, Reddy N, Process Of Extracting High Quality Proteins From Cereal Grains And Their ByProducts Using Acidic Medium And A Reducing Agent[P]. United States,11/862,339,2009.
    [30]Reddy N, Yang Y. Potential and Properties of Plant Proteins for Tissue Engineering Applications[J]. IFMBE Proceedings.2009,23:1282-1284.
    [31]Reddy N, Li Y, Yang Y. Wet Cross-Linking Gliadin Fibers with Citric Acid and a Quantitative Relationship between Cross-Linking Conditions and Mechanical Properties[J]. J. Agric. Food Chem.2009,57 (1):90-98.
    [32]Yang Y, Reddy N, Li Y, Process for the production fo high quality fibers from wheat proteins and products made from wheat protein fibers[P], European, 2008.
    [33]Xu W, Karst D, Yang W,Yang Y. Novel zein-based electrospun fibers with the water stability and strength necessary for various applications[J]. Polymer International.2008,57(10):1110-1117
    [34]Reddy N, Yang Y. Self-crosslinked gliadin fibers with high strength and water stability for potential medical applications [J]. Journal of materials science: Materials in medicine.2008,19(5):2055-2061.
    [35]Reddy N, Yeanching T, Li Y, Yang Y. Effect of Glutaraldehyde Crosslinking Conditions on the Strength and Water Stability of Wheat Gluten Fibers[J]. Macro molecular Materials and Engineering.2008,293(7):614-620.
    [36]Li Y, Reddy N, Yang Y, A new crosslinked protein fiber from gliadin and the effect of crosslinking parameters on its mechanical properties and water stability[J]. Polymer International.2008,57(10):1174-1181.
    [37]Reddy N, Yang Y. Novel protein fibers from wheat gluten[J]. Biomacromolecules.2007,8 (2):638-643.
    [38]Huda SN. Composites from chicken feather and cornhusk---preparation and characterization[EB].2008. http://digitalcommons.unl.edu/dissertations/AAI3297863/
    [39]Huda S, Yang Y, Composites from ground chicken quill and polypropylene [J]. Composites Science and Technology.2008,68(3-4):790-798.
    [40]Reddy N, Yang Y. Structure and Properties of Chicken Feather Barbs as Natural Protein Fibers[J]. Journal of Polymers and the Environment.2007,15 (2):81-87.
    [41]奚柏君,姜永峰,宣光荣,楼利琴,郭跃.再生蛋白纤维的研制及性能分析[J].上海纺织科技.2002,6,13-15
    [42]俞丹,何瑾鑫.大豆蛋白纤维的低损伤染整工艺研究[D].上海:东华大学,2004.
    [43]徐伟杰.蚕蛹蛋白纤维阳离子改性及性能研究[D],上海:东华大学,2004.
    [44]王秋霞.牛奶蛋白纤维混纺纱的工艺及产品性能研究[D],苏州:苏州大学,2007.
    [45]王坚.再生蛋白纤维非织造布生产工艺与性能研究[D],无锡:江南大学2008.
    [46]荆妙蕾.再生蛋白纤维/棉混纺纱多元交织物的产品开发[D].天津:天津工业大学,2007.
    [47]Reddy N, Yang Y. Soyprotein fibers with high strength and water stability for potential medical applications[J]. Biotechnology progress.2009,25(6):1796-1802.
    [48]Asquith RS, Leon NH. Chemical Reaction of Keratin Fibers. Chemistry of Protein fibers[M], Spring US:Plenum Press.1977:193-198.
    [49]Xie HB, Li SH, Zhang SB. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chemistry.2005,7(8):606-608.
    [50]Aebi U, Flower WE, Rew P, et al. The Fibrillar Substructure of Keratin Filaments Unraveled[J]. Journal of Cell Biology.1983,97(4):1131-1143.
    [51]Schuringa GJ, Schooneveldt C, Konings T, The Reaction of Combined Cystine of Wool with Sodium Bisulfite [J]. Textile Research Journal.1951, 21(5):281-285.
    [52]Rao GS, Gorin G. Reaction of Cystine with Sodium Sulfide in Sodium Hydroxide Solution[J]. Journal of Organic Chemistry.1959,24(6):749-753.
    [53]Barone JR, Schmidt WF, Gregoire NT. Extrusion of feather keratin[J]. Journal of Applied Polymer Science.2006,100 (2):1432-1442.
    [54]Cegarra J, Gacen J, Caro M. The Action of Sodium Laurylsulfate in the Bleaching of Wool with Hydrogen-Peroxide in an Acidic Medium[J]. Journal of the Textile Institute.1983,74(6):351-356.
    [55]Weston GJ. The Infra-Red Spectrum of Peracetic Acid-Treated Wool[J]. Biochimica Et Biophysica Acta.1955,17(4):462-464.
    [56]Reddy N, Hu C, Yan K, et al. Thermoplastic films from cyanoethylated chicken feathers[J]. Materials Science and Engineering:C.2011,31(8):1706-1710.
    [57]Zhao R, Torley P, Halley PJ. Emerging biodegradable materials:starch-and protein-based bio-nanocomposites[J]. Journal of materials science.2008,43(9): 3058-3071.
    [58]Verbeek CJR, Van Den Berg LE. Extrusion Processing and Properties of Protein-Based Thermoplastics[J]. Macromolecular materials and engineering. 2010,295 (1):10-21.
    [59]Liu C, Chen Y, Wang X et al. Improvement in physical properties and cytocompatibility of zein by incorporation of pea protein isolate[J]. Journal of materials science.2010,45(24):6775-6785.
    [60]Reddy N, Yang Y, Potential of plant proteins for medical applications [J]. Trends in Biotechnology.2011,29(10):490-498.
    [61]Zhang H, Mittal G. Biodegradable protein-based films from plant resources:a review[J]. Environmental Progress and Sustainable energy.2010,29 (2): 203-220.
    [62]Guerrero P, Retegi A, Gabilondo N, et al. Mechanical and thermal properties of soy protein films processed by casting and compression[J]. Journal of Food Engineering.2010, (100):145-151.
    [63]Mangavel C, Rossignol N, Perronnet A,et al. roperties of microstructure of thermo-pressed wheat gluten films:a comparison with cast films[J]. Biomacromolecules.2004, (5):p.1596-1601.
    [64]Wang X, Tang C, Li B, et al. Effects of high-pressure treatment on some physiochemical and functional properties of soyprotein isolates [J]. Food Hydrocolloids.2008, (22):506-567.
    [65]Swain SN, Biswal SM, Nanda PK, et al. Biodegradable soy-based plastics: opportunities and challenges [J]. Journal of Polymers and the Environment. 2004,12 (1):35-42.
    [66]Otaigbe JU, Goel H, Babcock T. Processability and properties of biodegradable plastics made from agricultural biopolymers[J]. Journal of Elastomers and Plastics.1999, (31):56-71.
    [67]Guerrero P, Caba K. Thermal and mechanical properties of soy protein films processed at different pH by compression[J]. Journal of Food Engineering. 2010, (100):261-269.
    [68]Sun S, Song Y, Zheng Q. Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten[J]. Food Hydrocolloids.2007, (21):1005-1013.
    [69]Sun S, Song Y, Zheng Q. Thermo-molded wheat gluten plastics plasticized with glycerol:Effect of molding temperature [J]. Food Hydrocolloids.2008, (22):1006-1013.
    [70]Hu C, Reddy N, Yan K, et al. Acetylation of Chicken Feathers for Thermoplastic Applications[J]. Journal of Agricultural and Food Chemistry. 2011,59(19):10517-10523.
    [71]Hu C, Reddy N, Luo Y, et al. Thermoplastics from acetylated zein-and-oil-free corn distillers dried grains with solubles[J]. Biomass and Bioenergy.2011, 35 (2):884-892.
    [72]Jin E, Reddy N, Zhu Z, et al. Graft Polymerization of Native Chicken Feathers for Thermoplastic Applications[J]. Journal of Agricultural and Food Chemistry.2011,59(5):1729-1738.
    [73]Gallestedt M, Mattozzi A, Johansson E, et al. Transport and tensile properties of compression molded wheat gluten films[J]. Biomacromolecules.2004, (5): 2020-2028.
    [74]Kunanopparat T, Menut P, Morel MH, et al. Reinforcement of plasticized wheat gluten with natural fibers:from mechanical improvement to deplasticizing effect [J]. Composite Part A.2008,39(5):777-785.
    [75]Gallestedt M, Mattozzi A, Johansson E, et al. Transport and tensile properties of compression molded wheat gluten films[J]. Biomacromolecules.2004, (5): 2020-2028.
    [76]Sun S, Song Y, Zheng Q. Morphology and mechanical properties of thermo-molded bioplastics based on glycerol-plasticized wheat gliadins[J]. Journal of cereal science.2008,48(3):613-618.
    [77]Song Y, Zheng Q. Preparation and properties of thermo-molded bioplastics of glutenin-rich fraction[J]. Journal of cereal science.2008,48 (1):77-82.
    [78]Pommet M, Redl A, Guilbert S, et al. Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials[J]. Journal of cereal science.2005,42 (1):81-91.
    [79]Ogale AA, Cunningham P, Dawson PL, et al. Viscoelastic, thermal and microstructural characterization of soy protein isolate films[J]. Journal of Food Engineering.2000,65(4):672-679.
    [80]Wu Q, Zhang L. Properties and structure of soy protein isolate-ethylene glycol sheets obtained by compression molding[J]. Industrial and Engineering Chemistry Research.2001, (40):1879-1883.
    [81]Wu Q, Zhang L. Effects of the molecular weight on the properties of thermoplastics prepared from soy protein isolate[J]. Journal of Applied Polymer Science.2001, (82):3373-3380.
    [82]Otaigbe JU, Jane J. Pressure-volume-temperature relationships of soy protein isolate/starch plastic [J]. Journal of Environmental Polymer Degradation.1997, 5 (2):75-80.
    [83]Zhang J, Jiang 1, Zhu L. Morphology and properties of soy protein and polylactide blends[J]. Biomacromolecules.2006, (7):1551-1561.
    [84]Wang Y, Cao X, Zhang L. Effects of cellulose whiskers on properties of soy protein thermoplastics[J]. Macromolecular Bioscience.2006, (6):524-531.
    [85]Foulk JA, Bunn JM. Properties of compression molded acetylated soy protein films[J]. Industrial Crops and Products.2001, (14):11-22.
    [86]Jangchud A, Chinnan M. Properties of peanut protein film:sorption isotherm and plasticizer effect[J]. LWT-Food Science and Technology.1999,32 (2): 89-94.
    [87]Jangchud A, Chinnan MS. Peanut Protein Film as Affected by Drying Temperature and pH of Film Forming Solution[J]. Journal of Food Science. 1999,64 (1):153-157.
    [88]Liu CC, Tellez-Garay AM, Castell-Perez ME. Physical and mechanical properties of peanut protein films[J]. LWT-Food Science and Technology. 2004,37(7):731-738.
    [89]Reddy N, Jiang Q, Yang Y. Preparation and properties of peanut protein films crosslinked with citric acid[J]. Industrial Crops and Products.2012,39:26-30.
    [90]Schrooyen PMM, Dijkstra PJ, Oberthur RC, et al. Partially carboxymethylated feather keratins.2. Thermal and mechanical properties of films[J]. Journal of Agricultural and Food Chemistry.2001,49 (1):221-230.
    [91]Huda S, Yang Y, Composites from ground chicken quill and polypropylene[J]. Composites Science and Technology.2008,68(3):790-798.
    [92]Barone JR, Schmidt EF, Gregoire N. Extrusion of feather keratin[J]. Journal of Applied Polymer Science.2006,100 (2):1432-1442.
    [93]Reddy N, Yang Y. Light-weight polypropylene composites reinforced with whole chicken feathers[J]. Journal of Applied Polymer Science.2010,116(6): 3668-3675.
    [94]. Rocha Placido Moore G, Maria Martelli C, Gandolfo C, et al. Influence of the glycerol concentration on some physical properties of feather keratin films[J]. Food Hydrocolloids.2006,20(7):975-982.
    [95]Barone JR, Schmidt WF, Liebner CFE, Thermally processed keratin films[J]. Journal of Applied Polymer Science.2005,97(4):1644-1651.
    [96]Maria Martelli S, Moore G, Silva Paes S. Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films[J]. LWT-Food Science and Technology.2006,39(3):292-301.
    [97]Tanabe T, Okitsu N, Yamauchi K. Fabrication and characterization of chemically crosslinked keratin films[J]. Materials Science and Engineering:C. 2004,24(3):441-446.
    [98]Ullah A, Vasanthan T, Bressler D, et al. Bioplastics from Feather Quill[J]. Biomacromolecules.2011,12(10):3826-3832.
    [99]Su JF, Huang Z, Zhao YH, et al. Moisture sorption and water vapor permeability of soy protein isolate/poly (vinyl alcohol)/glycerol blend films[J]. Industrial Crops and Products.2010,31 (2):266-276.
    [100]Orliac O, Rouilly A, Silvestre F, et al. Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins[J]. Industrial Crops and Products.2003,18 (2):91-100.
    [101]Choi WS, Han JH. Physical and mechanical properties of pea-protein-based edible films[J]. Journal of food science.2006,66 (2):319-322.
    [102]Viroben G, Barbot J, Mouloungui Z, et al. Preparation and characterization of films from pea protein[J]. Journal of Agricultural and Food Chemistry.2000, 48(4):1064-1069.
    [103]Tang CH, Xiao ML, Chen Z. Influence of succinylation on the properties of cast films from red bean protein isolate at various plasticizer levels[J]. Journal of Applied Polymer Science.2011,120(4):1934-1941.
    [104]周永远.浆料生产和应用的基本情况[EB].现代纺织上浆.2008.http://www.docin.com/p-285061034.html
    [105]Vassallo JC. Spun sizing chemicals and their selection[J]. AATCC review. 2005,5(12):25-28.
    [106]Cacho J. CMC Warp Sizing vs. Polyvinyl Alcohol[J]. Textile Chemist Colorist.1980,12:78.
    [107]Anandjiwala RD, Hall DM, Textile Sizing[M]. United States:Taylor & Francis,2004.
    [108]赵其明.预湿对浆纱性能影响的研究[D].上海:东华大学,2006.
    [109]刘红玉.纯PVA模拟上浆织物的PVA降解酶退浆研究[D].上海:东华大学,2010.
    [110]张迟,于少明,高香兰.国内外绿色纺织浆料研究进展[J].纺织科技进展.2008,(6):15-16.
    [111]洪仲秋.纺织浆料助剂的功能及应用[J].棉纺织技术.2002,30(2):13-16.
    [112]祝志峰.浆料的混溶性与粘着性能[J].纺织学报.2005,26(1):120-122.
    [113]Savin II, Butnaru R. Wastewater characteristics in textile finishing mills [J]. Environmental Engineering and Management Journal.2008,7(6):859-864.
    [114]Hamilton LE, Chiweshe A. Textile pigment printing binders prepared by modifying wheat gluten with methyl acrylate[J]. Starch-Starke.1998,50(5): 213-218.
    [115]Kalliala E, Talvenmaa P. Environmental profile of textile wet processing in Finland[J]. Journal of Cleaner Production.2000,8 (2):143-154.
    [116]Du G, Liu L, Song Z, et al. Production of polyvinyl alcohol-degrading enzyme with Janthinobacterium sp. and its application in cotton fabric desizing[J]. Biotechnology journal.2007,2(6):752-758.
    [117]Matos J, Rosales M, Garcia A, et al. Hybrid photoactive materials from municipal sewage sludge for the photocatalytic degradation of methylene blue[J]. Green Chemistry.2011,13(12):3431-3439.
    [118]李宏伟,侯万禄.浆料回收系统的设计与使用[J].棉纺织技术.2004,32(6):51-52.
    [119]Hebeish A, Higazy A, El-Shafei A. New sizing agents and flocculants derived from chitosan[J]. Starch-Starke.2006,58(8):401-410.
    [120]Opwis K, Knittel D, Kele A, et al. Enzymatic Recycling of Starch-Containing Desizing Liquors[J]. Starch-Starke.1999,51(10):348-353.
    [121]Liu RR, Lu XJ, Tian Q, et al. The performance evaluation of hybrid anaerobic baffled reactor for treatment of PVA-containing desizing wastewater [J]. Desalination.2011,271 (1):287-294.
    [122]Sun W, Tian J, Chen L, et al. Improvement of biodegradability of PVA-containing wastewater by ionizing radiation pretreatment[J]. Environmental Science and Pollution Research.2012,19(8):3178-3184.
    [123]Schonberger H, Baumann A, Keller W. Study of microbial degradation of polyvinyl alcohol (PVA) in wastewater treatment plants[J]. American dyestuff reporter.1997,86(8):9-18.
    [124]Li M, Zhu Z, Pan X. Effects of starch acryloylation on the grafting efficiency, adhesion, and film forming properties of acryolated starch-g-poly(acrylic acid) for warp sizing[J]. Starch/starke.2011,63(11):638-691.
    [125]Phugare SS, Kalyani DC, Surwase SN, et al. Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium[J]. Ecotoxicology and environmental safety.2011,74(5):1288-1296.
    [126]El-Sayed Mohamed Z, Amr A, Knittel D, et al. Synthesis and application of new sizing and finishing additives based on carboxymethyl cellulose[J]. Carbohydrate Polymers.2010,81(4):769-774.
    [127]Moore SB, Ausley LW. Systems thinking and green chemistry in the textile industry:concepts, technologies and benefits[J]. Journal of Cleaner Production. 2004,12(6):585-601.
    [128]Stegmaier T, Wunderlich W, Hager T, et al. Chitosan-A Sizing Agent in Fabric Production-Development and Ecological Evaluation[J]. CLEAN-Soil, Air, Water.2008,36(3):279-286.
    [129]Tanabe T, Okitsu N, Tachibana A, et al. Preparation and characterization of keratin-chitosan composite film[J]. Biomaterials.2002,23(3):817-825.
    [130]Bisschops I, Spanjers H. Literature review on textile wastewater characterisation[J]. Environmental technology.2003,24(11):1399-1411.
    [131]Lin S, Lan W. Ultrafiltration recovery of polyvinyl alcohol from desizing wastewater[J]. Journal of Environmental Science & Health Part A.1995,30(7): 1377-1386.
    [132]Hill P, Brantley H, Van Dyke M. Some properties of keratin biomaterials: Kerateines[J]. Biomaterials.2010,31(4):585-593.
    [133]Liu RR, Tian Q, Yang B, et al. Hybrid anaerobic baffled reactor for treatment of desizing wastewater[J]. Int. J. Environ. Sci. Tech.2010,7 (1):111-118.
    [134]Varma LSJ. Analysis of physical and chemical parameters of textile waste water[J]. J. Intl. Acad. Phys. Sci.2011,15 (2):1-7.
    [135]Volmaher-Valh JM, Vajnhandl S, Jeric T, et al. Water in the textile industry[J]. Treatise on Water Science.2011, (4):685-706.
    [136]Gartiser S, Wallrabenstein M, Stiene G. Assessment of several test methods for the determination of the anaerobic biodegradability of polymers [J]. Journal of Polymers and the Environment.1998,6(3):159-173.
    [137]Ahmad A, Hameed B. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater[J]. Journal of hazardous materials.2010,173 (1):487-493.
    [138]Behera B, Gupta R. Comparative analysis of desizability and retro gradation behavior of various sizing materials[J]. Journal of Applied Polymer Science. 2008,109 (2):1076-1082.
    [139]Ren X, Development of environmental performance indicators for textile process and product[J]. Journal of Cleaner Production.2000,8(6):473-481.
    [140]Robinson T, McMullan G, Marchant R, et al. Remediation of dyes in textile effluent:a critical review on current treatment technologies with a proposed alternative[J]. Bioresource technology.2001,77(3):247-255.
    [141]Zhu Z, Jin E, Yang Y. Incorporation of aliphatic units into aromatic water-soluble polyesters to improve the performances for warp sizing [J]. Fibers and Polymers.2009,10(5):583-589.
    [142]Vlasveld DPN, Vaidya SG, Bersee HEN, et al. A comparison of the temperature dependence of the modulus, yield stress and ductility of nanocomposites based on high and low MW PA6 and PA66[J]. Polymer.2005, 46(10):3452-3461.
    [143]Zarate-Ramirez LS, Inmaculada I, Romero A, et al. Wheat gluten-based materials plasticised with glycerol and water by thermoplastic mixing and thermomoulding[J]. Journal of the Science of Food and Agriculture.2011, 91(4):625-633.
    [144]Tonin C, Zoccola M, Aluigi A, et al. Study on the conversion of wool keratin by steam explosion[J]. Biomacromolecules.2006,7(12):3499-3504.
    [145]Katoh K, Shibayama M, Tanabe T, et al. Preparation and physicochemical properties of compression-molded keratin films[J]. Biomaterials.2004,25(12): 2265-2272.
    [146]Yang Y, Reddy N. Biothermoplastics from soyproteins by steaming[J]. Industrial Crops and Products.2012,36 (1):116-121.
    [147]Foulk JA, Bunn JM. Properties of compression-molded, acetylated soy protein films[J]. Industrial Crops and Products.2001,14 (1):11-22.
    [148]American Public Health Association AWA. Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, in Biochemical oxygen demand 1999 [S].
    [149]LG602. Standard operating procedure for toatal nitrogen in sediments by alkaline persulfate oxidation digestion 2004 [S].
    [150]Method L. Stand operating procedure for ammonia 1994[S].
    [151]Moreau J. Polymeric sizing agents for cotton yarn[J]. Textile Chemist and Colorist.1981,13(12):273-278
    [152]Zeiner M, Rezic T, Santek B, et al. Removal of Cr, Mn and Co from textile wastewater by horizontal rotating tubular bioreactor[J]. Environmental science & technology.2012:10690-10696.
    [153]Zhu Z, Cheng Z. Effect of inorganic phosphates on the adhesion of mono- phosphorylated cornstarch to fibers[J]. Starch-Starke.2008,60(6): 315-320.
    [154]Cai Z, Qiu Y, Zhang C, et al. Effect of atmospheric plasma treatment on desizing of PVA on cotton[J]. Textile research journal.2003,73(8):670-674.
    [155]Babu BR, Parande A, Raghu S, et al. Textile Technology[J]. Jour. of Cotton Sci.2007,11:141-153.
    [156]Zhu Z, Lin X, Long Z, et al. Adhesion, film, and Anti-flocculation Behavior of Amphoteric Starch for Warp Sizing[J]. AATCC review.2008,8(4):38-43.
    [157]张振宇.吉林化纤股份公司“绿色纤维”工程研究与应用[D].吉林:吉林大学,2008.
    [158]王德拥.棉纺用锥形筒管的注塑成形[J].模具技术.1993,3:13.
    [1 59]郑会英.聚碳酸酯纱管注射成型工艺[J].塑料工程.1992,(003):51-53.
    [160]焦训铎.塑料在纺织工业中的应用—塑料纱管[J].纺织器材.1982,1:26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700