用户名: 密码: 验证码:
高压封闭环境孔隙介质中化学浆液扩散机制试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井溃砂灾害是煤矿建设和生产中的重大地质灾害。化学注浆是解决低渗透性松散层注浆和矿井水砂灾害防治的有效手段之一,对化学浆液在高压封闭条件下的扩散机理进行研究将为化学注浆实践的发展奠定理论基础。本文受国家自然科学基金研究项目“矿井溃砂地质灾害化学注浆治理机制与过程监控”的资助,对高压封闭条件下砂层化学注浆进行模拟试验研究。
     本文利用自行研制的高压注浆模拟试验设备,完成了九组高压封闭条件下砂层化学注浆模拟试验和一组低压封闭环境下注浆试验。通过(1)分析浆液在固化过程中渗透能力的变化;(2)分析注浆压力—孔隙水压力的变化特点;(3)分析注浆固结体形状特点;(4)对固结体进行解剖观察;(5)采用MATLAB和Photoshop软件对固结体图像进行处理分析;以及(6)与低压环境注浆结果、现场实测数据和他人研究成果进行对比等综合手段,研究浆液的扩散模式和机理。取得的主要成果有:
     (1)概化建立了第四系深部饱和砂层化学注浆的工程地质模型。
     (2)详细研究了高压注浆试验模型的实验需求和实现途径,并研制成功了高压注浆模型试验设备专利产品。
     (3)根据浆液在孔隙介质中渗透能力变化的特点,引入了“絮凝时间”的概念,并将其定义为:从主剂与固化剂混合开始至产生的絮体最大直径达到2.0 mm时为止所需要的时间,该定义对于分析粘时变浆液的渗透能力变化具有实际应用价值。根据分散相颗粒对浆液在孔隙介质中的渗透能力的影响程度,将浆液固化过程划分为四个阶段:凝聚;絮凝;胶凝;固化。
     (4)分析了高压封闭条件下化学注浆试验的相似准则。根据试验结果,提出了高压封闭环境下饱和孔隙介质中注浆浆液运动的三种扩散模式:球形扩散模式,指形扩散模式和面状扩散模式。
     (5)提出了在高压封闭条件下饱和孔隙介质中化学注浆的三种浆液扩散机理:“置换推进”机制,“优势路径”机制和“分层富集”机制。
     (6)建立了高压环境下浆液扩散的宏观过程概念模型,从注浆口至最外缘在空间上分区段阐述了浆液的运动特点。
     (7)建立了高压环境下浆液扩散的微观过程概念模型,从注浆开始至注浆结束在时间上分时段阐述了浆液的运动特点。
Quicksand is a common type of geological hazards in underground coalmines. Chemical grouting is one of the effective methods to prevent coalmines from quicksand hazard by grouting into the low permeable loose soil layers. The investigation of the propagation mechanism of chemical grout injection into porous media under a high pressure and closed environment will provide a theoretical basis for the grouting practice. Supported by National Natural Science Foundation of China, an experimental investigation of chemical grouting into sand under a high pressure and closed environment was carried out in this dissertation.
     The author has conducted nine scaled tests of chemical grouting under a high pressure and closed environment and one test under a low pressure. The spread model and propagation mechanism of chemical grout in porous media was investigated through a series approaches, which include: (1) analysis of the changes in permeability of the grouts during its curing process; (2) analysis of the changes of the pumping pressure and pore water pressure during grouting; (3) analysis of the characteristics of stabilized shapes; (4) anatomical observation on stabilized sand mass; (5) analysis of images by MATLAB and Photoshop software; and (6) comparison of the results with those from test under a low pressure, with in-situe measurements and the literature. The main achievements are as follows.
     (1) An engineering geological model for chemical grouting into saturated sand layer in the deep Quaternary System was established.
     (2) The design of high pressure grouting model was explained in detail, and a patented high-pressure grouting equipment was developed.
     (3) The concept of the“Flocculation time”was proposed according to the characteristics of the variations of grout infiltration capacity into porous media. The flocculation time was defined as the time interval from the moment the main agent and curing agent mixed until the moment the maximum diameter of the flocs was up to 2.0mm. This definition is useful for analyzing the infiltration capacity changes of time-dependent viscosity grout in practice. Based on the influence of dispersed particles on infiltration capacity of chemical grout in porous media, the grout curing process was divided into four stages: condensation; flocculation; gelling and curing.
     (4) The similarity for the scaled test of chemical grouting under a high pressure and closed enviromnet was analyzed. The experimental results show that the spread of chemical grout injection in saturated porous media under a high pressure and closed environment was categorized into three patterns. They are a) spherical spread, b) fingering spread and c) planar spread.
     (5) According to the analysis of experimental results, the propagation mechanism of chemical grouting under high pressure and closed environment into saturated porous medium was summarized into three types, and they are a) mechanism of“replacement to move forward”, b) mechanism of“preferred path”, and c) mechanism of“layering enrichment”.
     (6) The macro-process and micro-process conceptual model of grout spread under high pressure and closed environment were established, the movement characteristics of grout in space from grout-outlet to exterior margin and during the time from the beginning to the end of grouting were discussed in detail.
引文
[1]隋旺华,董青红,蔡光桃,等.采掘溃砂机理与预防[M].北京:地质出版社,2008.
    [2]隋旺华,张改玲,姜振泉,等.矿井溃砂灾害化学灌浆治理技术现状及关键问题研究途径探讨[J].工程地质学报,2008,16(suppl.):73-77.
    [3]周国庆.黄淮地区厚冲积层中立井井壁破裂灾害[G].//王思敬,黄鼎成.《中国工程地质世纪成就》.北京:地质出版社,2004:677-686.
    [4]苏俊,程桦.疏水沉降地层中井筒附加力理论分析[J].岩土工程学报,2000,19(3):310-313.
    [5]葛晓光.底部含水层疏水时表土层的流变作用及井壁受力模型[J].煤炭学报,2001,26(2):137-140.
    [6]吕恒林,崔广心.钢筋混凝土井壁与深厚围岩(土)耦合机理的研究[J].煤炭学报,2001,26(5):501-506.
    [7]琚宜文,刘宏伟,王桂梁,等.卸压套壁法加固井壁的力学机理与工程应用[J].岩石力学与工程学报,2003,22(5):773-777.
    [8]杨平.卸压槽治理井壁破裂研究[J].岩土工程学报,1998,20(3):19-22.
    [9]吕恒林,崔广心.卸压法治理井壁破裂的力学机理[J].中国矿业大学学报,2000,29(4):343-347.
    [10]倪兴华,隋旺华,官云章,等.煤矿立井井壁破裂防治技术研究[M].徐州:中国矿业大学出版社,2005.
    [11]隋旺华,董青红,狄乾生.工程地质模型在防水煤岩柱研究中的应用[J].中国矿业大学学报,1999,28(5):417-420.
    [12] Sui Wanghua, Yang Siguang. Study on the safety pillars under water-bearing strata of mining thick coal seam using fully mechanized sub-level caving method in Taiping coalmine, Shan- dong Province,China[C].//Proceedings of the 2nd international conference on NDRM.USA:Rinton Press,2002:487-490.
    [13]魏秉亮.神府矿区突水溃砂地质灾害研究[J].中国煤田地质,1996,8(2):28-30.
    [14]隋旺华,费芳草.松散含水层下采煤水砂突涌防治研究现状与展望[C].//《第二届全国岩土与工程学术大会论文集》编辑委员会.第二届全国岩土与工程学术大会论文集.北京:科学出版社,2006:330-332.
    [15]蔡光桃.采煤冒裂带上覆松散土层渗透变形研究[D].徐州:中国矿业大学,2005.
    [16]董青红.近松散层开采水砂突涌机制及评价[D].徐州:中国矿业大学,2006.
    [17]杨永平,白开圣,王方胜.地面注浆治理破坏井壁[J].煤炭科学技术,1997,25(10):26-28.
    [18]罗鹤年,杨启何.地面注浆治理井壁破坏技术[J].煤矿安全,1999,(8):8-9.
    [19]王国明,张斗群.鲍店矿副井井壁破坏地面注浆加固技术[J].建井技术,1997,18(5):4-8.
    [20]席京德,许延春.兴隆庄矿主副井筒破坏预防性治理的研究与经验[J].建井技术,1999,20(1):26-29.
    [21]杨俊杰,姚直书,刘全林,等.横河矿副井井筒修复加固设计与施工[J].建井技术,2001,22(2):1-4.
    [22]李文平.深厚表土中煤矿立井破裂工程地质研究[M].徐州:中国矿业大学出版社,2000.
    [23]周国庆.特殊地层含水层注浆加固参数与井壁垂直附加力关系的研究[D].徐州:中国矿业大学,1996.
    [24]周国庆,崔广心.含水层注浆加固治理井壁破坏机理研究[J].工程兵工程学院学报,1999,14(2):56-60.
    [25]葛晓光.地面与破壁注浆治理井壁破裂灾害的工程分析[J].煤炭学报,2002,27(1):41-44.
    [26]刘全林,程桦.立井壁后土层注浆加固机理及注浆参数研究[J].煤炭学报,2000,25(5):486-490.
    [27]黄月文,区晖.高分子灌浆材料应用研究进展[J].高分子通报,2000,(4):71-75.
    [28]杜嘉鸿,秦明武,肖荣久.国外化学注浆教程[M].北京:水利电力出版社,1987.
    [29] L. Sverdrup, A. E. Kelley, M. Weideborg, K. E. degaard and E. A. Vik . Leakage of chemi- cals from two grouting agents used in tunnel construction in Norway: monitoring results from the tunnel Romeriksporten[J]. Environmental Science and Technology,2000,34(10):1914- 1918.
    [30] M.I.Yesilnacar. Grouting applications in the Sanliurfa tunnels of GAP,Turkey[J]. Tunnelling and Underground Space Technology,2003,(18):321–330.
    [31] Houlsby, A.C. Construction and design of cement grouting --A guide to grouting in rock formation[M]. New York: John Wiley & Sons, Inc., 1990.
    [32] Kutzner,C. Grouting of Rock and Soil[M]. Rotterdam:A.A.Balkema Publishers,1996.
    [33] Nonveiller, E.,顾柏林译,灌浆的理论与实践[M].沈阳:东北工学院出版社,1991.
    [34]何修仁,石达民,刘斌.注浆加固与堵水[M].沈阳:东北工学院出版社,1990.
    [35]蒋硕忠,李长生,谭日升,等.化学灌浆与环境保护展与近期展望[J],长江科学院院报,2000,17(6):45-49.
    [36]蒋硕忠.绿色化学灌浆技术研究综述[J].长江科学院院报,2006,23 (5):33-40.
    [37]杜嘉鸿,赵顺生,陈兰云,等.环保型无铬盐木素类新化灌材料的探讨研究[J].探矿工程,2006,(11):5-8.
    [38] E. A. Vik, L. Sverdrup, A. Kelley. Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten Tunnel[J]. Tunneling and Underground Space Technology, 2000,15(4):369-378.
    [39]熊厚金,林天健,李宁.岩土工程化学[M].北京:科学出版社,2001.
    [40]蒋硕忠.我国化学灌浆的发展与近期展望[J].中国建筑防水,2005,(3):11-13.
    [41]蒋硕忠.我国化学灌浆技术发展与展望[J].长江科学院院报,2003,20(5):25-27.
    [42]葛家良,陆士良.注浆模拟试验及其应用的研究[J].岩土工程学报,1997,19(3):28-33.
    [43]谭日升,蒋硕忠,薛希亮.三峡大坝化学灌浆研究[J].长江科学院院报,2000,17(6):4-8.
    [44]杨国春,裴向军,阮文军.深基坑开挖中的化学注浆处理涌砂涌水[J].探矿工程,2001,(4) :29-30.
    [45]胡怡东.水性环氧在广州地铁1号线暗挖区间道床病害治理中的应用[J].新型建筑材料,2005,(12):73-74.
    [46]张帆.富水砂层隧道围岩止水施工技术[J].石家庄铁道学院院报,2005,18(1):99-102.
    [47]林江,左红军. LPL化学灌浆在三峡工程中的应用[J].浙江水利科技.2005,(5):71-72.
    [48]程鉴基.化学灌浆在岩石工程中的综合应用[J].岩石力学与工程学报,1996,15(2):186-192.
    [49] Fukushima, Shinji, Mochizuki, et al. Investigation of grouting effects to improve strength and water-proof of ground in shallow tunnel excavation by NATM[G]//Proceedings of the Japan Society of Civil Engineers,1994:319-327.
    [50]柴新军,钱七虎,杨泽平,等.点滴化学注浆技术加固土遗址工程实例[J].岩石力学与工程学报,2009,128(Supp1.):2980-2985.
    [51]曹晨明,冯志强.低黏度脲醛注浆加固材料的研制及应用[J].煤炭学报,2009,34(4): 482-486.
    [52]徐如意,曹杰,冯永杰,等.化学注浆材料治理无自稳破碎围岩的实践[J].煤炭工程,2009,(6):31-33.
    [53]龚成明,王永义.高原高寒地区隧道内渗漏水整治与环境保护[J].铁道工程学报,2009, (3):33-37.
    [54]隋旺华,李永涛,李冠田,等.煤矿立井微孔隙岩体注浆防渗及机理分析[J].岩土工程学报,2000,22(2):214-218.
    [55]左如松,朱岩华,姜振泉.化学注浆在兴隆庄煤矿西风井深井井筒微裂隙防渗中的应用[J].华东地质学院学报,2003,26(4):371-375.
    [56]蔡荣,姜振泉,梁媛,等.煤矿井筒重复破坏的化学注浆治理[J].煤田地质与勘探,2003,31(4):46-48.
    [57]朱岩华,姜振泉.用化学止水注浆法治理井壁破坏[J].江苏煤炭,2004,(2):78-79.
    [58]刘勇,王档良,赵庆杰.化学注浆治理太平煤矿主井井壁破裂[J].能源技术与管理,2004,(1):76-77.
    [59]韩羽.破碎煤体化学注浆加固模拟试验研究[D].徐州:中国矿业大学,2005.
    [60]王档良.破壁化学注浆模拟试验研究及工程应用[D].徐州:中国矿业大学,2005.
    [61]湛铠瑜.单一裂隙动水注浆模拟试验研究[D].徐州:中国矿业大学,2010.
    [62] J.Funehag, A. Fransson. Sealing narrow fractures with a Newtonian fluid: Model prediction for grouting verified by field study[J].Tunnelling and Underground Space Technology,2006,21(5):492-498.
    [63] Shingo Wakita, Kensuke Date, Takuji Yamamoto, et al. Effective grouting materials for tunneling through unconsolidated ground[J]. Tunnelling and Underground Space Techno- logy,2004,19(4-5):509-510.
    [64] M. Eriksson, H. Stille, J. Andersson,Numerical calculations for prediction of grout spread with account for filtration and varying aperture[J].Tunnelling and Underground Space Tech- nology,2000,15(14):353-364.
    [65]叶林宏,何泳生,冼安如,等.论化学灌浆液与被灌岩土的相互作用[J].岩土工程学报,1994,16(6):47-55.
    [66]张良辉,熊厚金,张清.浆液的非稳定流过程分析[J].岩石力学与工程学报,1997,16(6):564-570.
    [67] R.Snuparek, K.Soucek. Laboratory testing of chemical grouts[J]. Tunneling and under- ground space and technology,2000,15(2):175-185.
    [68]冯克强,康红普,杨景贺.裂隙岩体注浆技术探讨[J].煤炭科学技术,2005,33(4):63-66.
    [69]成虎林.水电工程化学灌浆对浆液扩散有效半径的控制方法[J].西北水电,2006,(1):33-37.
    [70]姚普.水泥基复合注浆材料工程性能及模拟试验研究[D].徐州:中国矿业大学,2007.
    [71]华萍,孙永明,漆尧平.改性乙二醛-水玻璃化学灌浆材料的研究[J].安全与环境工程学报,2006,13(1):100-102.
    [72]陈洪光,冯坤.提高聚氨酯化学注浆材料性能的试验研究[J].石家庄铁道学院学报,2005,18(3):79-83.
    [73] Shen C.K., Smith Scott S. Elastic and viscoelastic behavior of chemically stabilized sand[J]. Transportation Research Record,1976,(593):41-45.
    [74] Borchert K.M., Mueleer-Kirchenbauer H.Time-dependent strain behavior of silicate-grouted sand by compressive and tensile stress[J]. Proceedings of the European Conference on Soil Mechanics and Foundation Engineering,1983(1):339-345.
    [75] Costas A. Anagnostopoulos. Laboratory study of an injected granularsoil with polymer grouts[J].Tunnelling and Underground Space Technology,2005,20(6): 525-533.
    [76] Tirupati Bolisetti, Stanley Reitsma, Ram Balachandar. Experimental Investigations of Colloidal Silica Grouting in Porous Media[J]. Journal of Geotechnical and Geoenviron-mental Engineering,2009,135(5):697–700.
    [77] Liaqat Ali, Richard D. Woods. Pendular element model for contact grouting. GeoHunan International Conference,2009:87-94.
    [78] Chen Yonggui, Ye Weimin, Zhang Keneng. Strength of copolymer grouting material based on orthogonal experiment[J]. Journal of Central South University of Technology, 2009,16 (1): 143?148.
    [79] Estelle Delfosse-Ribay, Irini Djeran-Maigre, Richard Cabrillac, and Daniel Gouvenot. Factors affecting the creep behavior of grouted sand[J]. Journal of Geotechnical and Geo- environmental Engineering,2006,132(4):488-500.
    [80] Vipulanandan C., Krizek R.J.. Modeling grouted sand under tensional loading[J]. Transportation Research Record,1986,(1104):33-42.
    [81] RJ Krizek, DF Michel, M Hetal, RH Borden. Engineering properties of acrylate polymer grout[J]. Geotechnical Special Publication,1992,1(30): 712-724.
    [82] Kumagai Koji, Tokoro Takehiko, Yanagisawa Eiji. Factors affecting the unconfined compressive strength of sands stabilized by chemical grout[J]. Proceedings of the Japan Society of Civil Engineers,1993 (3):121-126.
    [83] Costas A. Anagnostopoulos and Evangelos I. Stavridakis. Development of Physical and Engineering Properties of Injected Sand with Latex - Superplasticized Grouts[J/OL]. The Electronic Journal of Geotechnical Engineering,2004,http://www.ejge.com/2004/Ppr0402/ Ppr0402.htm
    [84]李敏健,邵泉,胡志桥,等.广州新电视塔袖阀管双液注浆砂层地基加固技术[J].施工技术,2009,38(5):11-12
    [85]周海林.振动注浆中的砂土液化研究[D].长沙:中南大学,2002.
    [86] Graf. Edward D. Earthquake support grouting in sands[J]. Geotechnical Special Publication,1992,2(30):879-888.
    [87] Maker M. H., Ro K. S., Welsh J.P. Cyclic undrained behavior and liquefaction potential of sand treated with chemical grouts and microfine cement (MC-500)[J]. Geotechnical Testing Journal,1994,17(2):159-170.
    [88] Patricia M. Gallagher and James K.Mitchell. Influence of colloidal silica grout on liquefa- ction potential and cyclic undrained behavior of loose sand[J].Soil Dynamics and Earthquake Engineering,2002,22(9):1017-1026
    [89]何开明,周健,王兰民.化学灌浆黄土地基的抗液化性状研究[J].地震研究,2003,26(4):396-399.
    [90] Gallagher Patricia M., Conlee Carolyn T., Rollins Kyle M. Full-scale field testing ofcolloidal silica grouting for mitigation of liquefaction risk[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(2):186-196.
    [91] Dash Umakant, Lee Thomas S., Anderson Randy. Jet grouting experience at posey webster street tubes seismic retrofit project[J].Geotechnical Special Publication,2003(120):413-417.
    [92] Takeshi Kodaka, Fusao Oka, Yasutoshi et al. Modeling of cyclic deformation and strength characteristics of silica treated sand[C]//Geotechnical Special Publication, Geomechanics: Testing, Modeling, and Simulation -- Proceedings of the First Japan-U.S. Workshop on Testing, Modeling, and Simulation,2005(143):205-216.
    [93] Mittag Jens, Savidis Stavros A. The groutability of sands - results from one- dimensional and spherical tests[M]. Geotechnical Special Publication,2003(120):372-382.
    [94] Berry Dick. Soil grouting—There's only one way to view it[J]. Geotechnical News,2006,24(3):39-47.
    [95] H. Gurkan Ozgurel, H. A. González, C. Vipulanandan. Two dimensional model study on infiltration control at a lateral pipe joint using acrylamide grout[C]//Proceedings of the Pipeline Division Specialty Conference,2005: 631-642.
    [96] H. Gurkan Ozgurel, Vipulanandan Cumaraswamy. Effect of grain size and distribution on permeability and mechanical behavior of acrylamide grouted sand[J]. Journal of Geotech- nical and Geoenvironmental Engineering,2005,131(12):1457-1465.
    [97] Costas A. Anagnostopoulos,Grammatikopoulos I.N.,Stavridakis E.I. Improvement of phy- sical and mechanical properties of fine sand with one-shot and two-shot process grouting[C] // Proceedings of a Three Day Conference on Advances in Geotechnical Engineering,Skempton,2004:1019-1031.
    [98] Morikawa Yoshito, Tokoro Takehiko, Takahashi Norio. Evaluation of the cohesion of chemi- cally grouted sands[J]. Journal of the Society of Materials Science,Japan,1998,47(2): 148-151.
    [99] Osman N. Ozdemir, Ebru F. Yildiz, Metin Ger. A numerical model for two-phase immiscible fluid flow in a porous medium[J]. Journal of Hydraulic Research,2007,45(2):279-287.
    [100] Tirupati Bolisetti. Experimental and numerical investigations of chemical grouting in heterogeneous porous media[D]. Ontario:University of Windsor,2005.
    [101] Uddin M. K. Permeation grouting in sandy soils: Prediction of injection rate and injection shape[J].Geotechnical Engineering,2007,38(1):1-7.
    [102] R. Kleinlugtenbelt, A. Bezuijen, A. F. van Tol. Model tests on compensation grouting[J]. Tunnelling and Underground Space Technology,2006,21(3-4):435-436.
    [103] Estelle Delfosse-Ribay, Irini Djeran-Maigre, Richard Cabrillac, et al. Shear modulus and damping ratio of grouted sand[J].Soil Dynamics and Earthquake Engineering,2004,24(6):461-471.
    [104]熊进,祝红,董建军.长江三峡工程灌浆技术研究[M].北京:中国水利水电出版社,2003.
    [105]岩土注浆理论与工程实例协作组.岩土注浆理论与工程实例[M].北京:科学出版社, 2001.
    [106] J. S. Lee, C. S. Bang, Y. J. Mok, et al. Numerical and experimental analysis of penetration grouting in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(7):1027-1037.
    [107] Lars H?ssler, Ulf H?kansson, H?kan Stille. Computer-simulated flow of grouts in jointed rock[J].Tunnelling and Underground Space Technology,1992,7(4):441-446.
    [108] Janson T. et al. Grouting of jointed rock---A case study,Grouting in Rock and Concrete[M]. Widmann(ed),Balkema,Rotterdam,1993.
    [109]郑长成.裂隙岩体灌浆的模拟研究[D].长沙:中南工业大学,1999.
    [110]阮文军.浆液基本性能与岩体裂隙注浆扩散研究[D].长春:吉林大学,2003.
    [111]葛家良.基岩结构面特征及其注浆浆液扩散的GJL二维模型[J].广州化学增刊:全国基岩与混凝土裂缝化学灌浆处理学术研讨会论文集,2002,27.
    [112]陈彦生,董建军.电离子土壤强化剂施工指南[M].武汉:武汉工业大学出版社,1999.
    [113]张文煊.电离子土壤强化剂在交通道路工程中应用[M].武汉:武汉工业大学出版社,2000.
    [114]吴志广.电离子土壤强化剂(ISS)在防洪堤坝工程中应用(上、下册)[M].武汉:武汉工业大学出版社,2000.
    [115]陈彦生,董建军.电离子土壤强化剂(ISS)施工指南[M].武汉:武汉工业大学出版社,1999.
    [116]任克昌,杨道印,梅锦煜.化学灌浆的吸渗理论和WJ88浆材的研究[C]//第六届化学灌浆学术交流会文集.1994,(10):52-58.
    [117]谭日升.湿面粘结理论[J].中国胶粘剂,1994(5):27-31.
    [118]谭日升.在有水裂隙中提高化学灌浆效果的研究[J].水利学报,1981(5):66-72.
    [119]马海龙,杨敏,夏群.对基于渗透注浆理论公式的探讨[J].工业建筑,2000,(2),47-61.
    [120]曹作忠,朱君星,黄婉宣.劈裂注浆的机理及实践[J].矿业快报,2002,(4):3-4.
    [121] Chang Hong. Hydraulic fractures in particulate materials[D]. Atlanta: Georgia Institute of Technology, 2004.
    [122] R. te Grotenhuis. Fracture grouting in theory--Modelling of fracture grouting in sand[D]. Delft: Delft University of Technology,2004.
    [123] Adam Bezuijen. Compensation grouting in sand--Experiments, field fxperiences andmechanisms[D]. Delft: Delft University of Technology,2010.
    [124]张建山,仵彦卿,李哲.高压注浆渗流分析与工程应用[J].西北农林科技大学学报(自然科学版),2004,(12):96-99.
    [125]张建山,仵彦卿,李哲,等.高压注浆渗流解析分析[J].煤田地质与勘探,2005,(6):36-38.
    [126] Sung-Yul Ahn, Kyung-Chul Ahn, Se-Gu Kang. A study on the grouting design method in tunnel under ground water[J]. Tunnelling and Underground Space Technology,2006,21(3):400.
    [127]卓越.饱水砂层渗透注浆加固理论探讨[J].岩土工程技术,2002,(5):284-289.
    [128]杨坪,唐益群,彭振斌,等.砂卵(砾)石层中注浆模拟试验研究[J].岩土工程学报,2006,28(12):2134-2138.
    [129] Yun Sung Kim, Andrew J. Whittle. Particle network model for simulating the filtration of a microfine cement grout in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(2):224~236.
    [130] Au, S. K. A. Fundamental study of compensation grouting in clay[D].London: University of Cambridge, 2001.
    [131]杨峰.砂砾石层灌浆试验研究及渗流计算分析[D].北京:中国水利水电科学研究院,2005.
    [132] Eisa, K.. Compensation grouting in sand[D].London: University of Cambridge, 2008.
    [133]兖州煤业股份有限公司兴隆庄煤矿,煤炭科学研究总院西安研究院.兖州煤业股份有限公司兴隆庄煤矿下组煤第Ⅰ区勘探区水文地质补充勘探成果报告[R] .2007.
    [134]隋旺华.开采沉陷土体变形工程地质研究[M].徐州:中国矿业大学出版社,1999.
    [135]李文平.深厚表土中煤矿立井破裂工程地质研究[M].徐州:中国矿业大学出版社,2000.
    [136]沈钟,赵振国,王果庭.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004.
    [137]杨米加.随机裂隙岩体注浆渗流机理及其加固后稳定性分析[D].徐州:中国矿业大学,1999.
    [138]王档良,隋旺华,黄小明,等.岩体中灌浆压力变化规律试验研究[J].金属矿山,2008,(1):53-56.
    [139]郭密文,隋旺华,董青红.高压注浆模型试验装置:中国, ZL 2007 2 0310235.6[P]. 2008-10-08.
    [140]郭密文,隋旺华.高压环境条件下注浆模型试验系统设计[J].《工程地质学报》,2010,18(5):720-724.
    [141]闻德荪,魏亚东,李兆年,等.工程流体力学(水力学)[M].北京:高等教育出版社,2001.
    [142]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [143]张景松.流体力学[M].徐州:中国矿业大学出版社,2001.
    [144]伍悦滨.工程流体力学[M].北京:中国建筑工业出版社,2006.
    [145] K.C.巴斯宁耶夫等著;张永一,赵碧华译.地下流体力学[M].北京:石油工业出版社,1992.
    [146]苑莲菊,李振栓,武胜忠,等.工程渗流力学及应用[M].北京:中国建材工业出版社,2001.
    [147]潘丽军,陈锦权.试验设计与数据处理[M].南京:东南大学出版社,2008.
    [148] W. Sui, G. Zhang, W. Wang, et al. Chemical grouting for seepage control through a fractured shaft wall in an underground coalmine[C].//Proceedings of the 11th IAEG international conference. London:Taylor & Francis Group,2010:3617-3623.
    [149] Reuben H. Karol. Chemical Grouting and Soil Stabilization (Third Edition)[M]. New York: Marcel Dekker, Inc., 2003.
    [150] Liu, J. Visualization of 3-D deformations using transparent“soil”models[D]. Brooklyn: N.Y. Polytechnic University,2003.
    [151]刘尉宁.渗流力学基础[M].北京:石油工业出版社,1985.
    [152]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社.1999.
    [153] Tanguy Lhomme. Initiation of hydraulic fractures in natural sandstones[D]. Delft: Delft University of Technology,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700