用户名: 密码: 验证码:
化学注浆固砂体高压渗透性及其微观机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井溃砂地质灾害对煤矿井筒、巷道、采场等正常使用和安全生产构成了严重威胁。化学注浆固砂技术被普遍地应用于溃砂灾害治理中。注浆体的渗透性是其岩土工程性质的一个重要方面。本论文依托国家自然科学基金项目“矿井溃砂地质灾害化学注浆治理机制与过程监控(项目批准号:40772192)”,采用模型试验、高压渗透试验和微观分析等方法,对化学注浆浆液扩散规律、注浆固砂体渗透性分区、化学注浆固砂体的高压渗透性以及抗渗的微观机理进行了研究。主要工作和获得的认识如下:
     (1)在对数个矿区厚松散层的结构、层组特点、物质组成、物理力学性质等工程地质特性研究的基础上,重点分析了厚松散砂层的物理力学性质和渗透特性随着深度的变化,发现矿区深部砂层针对粒状注浆材料的可注性较差。
     (2)获得了半胶结砂岩化学注浆前和注浆后的渗透系数。注浆前半胶结砂岩的渗透系数和有效粒径及≥0.5mm粗粒含量呈近似指数函数关系;第一次注浆半胶结砂岩的可灌注性主要取决于试样的大开口孔隙率,第二次注浆后其抗渗性能趋于接近。
     (3)获得了化学浆液在半胶结砂岩柱体中的扩散规律,浆液渗透的界面呈中心略低,周边略高的曲面形状;注浆钻孔周边浆液随着时间基本上呈同心圆状扩展;在相同注浆压力下,浆液在不同渗透性介质中的扩散速度具有明显差异。
     (4)获得了化学浆液在松散砂中扩散浓度的变化。浆液的浓度随着距注浆孔距离有降低趋势,但是也存在局部富集现象。化学浆液浓度的分区必然会造成注浆砂体渗透性和抗渗性能的差异。
     (5)研制了气压控制式注浆试样制备装置。该装置可以模拟不同深度和不同压力环境下的双液或单液化学注浆。
     (6)进行了高围压和高渗透压差条件下的化学注浆固砂体的渗透试验研究。试验发现随着渗透压差的增大,渗透系数增大。但是,围压对渗透系数的影响表现出不同的特点,一般地,围压的增加导致含较大比例化学浆液的固砂体的渗透系数降低;高围压条件下,纯净的砂的化学注浆体,由于颗粒破裂,造成在高围压条件下渗透系数反而增加。
     (7)提出了化学注浆固砂体的微孔孔径结构的分类方案及其孔喉简化模型。化学注浆固砂体中的孔隙,主要是以大孔和超大孔为主,孔隙连通性好,少量半封闭孔隙,而化学注浆半胶结砂岩内存在着细颈瓶孔,连通性变差。孔喉结构模型揭示了化学注浆固砂体的防渗微观机理,明确了决定化学注浆固砂体抗渗性能的主要因素是孔隙的充填程度、颗粒内裂隙、浆液固结体内裂隙以及颗粒-浆液边界裂隙的发育程度。
     (8)获得了化学注浆固砂体的孔隙结构与渗透性的关系。随着浆液含量的增加,化学注浆固砂体的总孔隙体积、总孔比表面积增加,孔隙率增大,体积中值孔径、平均孔径减小;渗透系数随浆液含量增加而明显减小,渗透系数与孔隙喉道比、体积中值孔径、平均孔径成正比。
Quicksand or sand and water inrush in underground coalmines have threatened the production safety, regular service of shafts, tunnels and panels. Chemical grouting technology for seepage prevention and strata enforcement technologies has widely utilized in the treatment of shaft rupture and quicksand hazards prevention. Permeability of grouted sand is one of important geotechnical properties, This dissertation focuses on the permeability and anti-seepage mechanism of chemically grouted sands, Which is a part of the project“Mechanism and process control of chemical grouting treatment for quicksand hazards in coalmines”supported by National Natural Science Foundation of China (NSFC) under Grant No. 40772192. Chemical grouts propagation and permeability partitioning features of grouted sand, high pressure permeability of chemically grouted sands and its micro-mechanism of anti-seepage were studied through scaled model test, permeability test under high cofining pressure and microanalysis. The main understandings are as follows:
     (1) The engineering geological characteristics of thick unconsolidated formations in coal mining areas, such as structure, layer group characteristics, composition, physical and mechanical properties were analyzed in detail. Permeability for sand in the thick unconsolidated layers changes with depth were investigated from the view of penetration and groutability. And sand granulometric composition in several deep coal mining areas indicates their poor groutability for granular grouts.
     (2) Semi-cemented sandstone specimen were simulated, and permeability before and after chemical grouting for the specimen has been tested. Results show that the permeability for the semi-cemented sandstone specimen mainly depends on the effective grain size and the content of coarse sand. Hydraulic conductivity and effective grain size and coarse particle content have an approximate relationship of exponential function. Grouting simulation tests indicate that groutability to semi- cemented sandstone for the first time under certain osmotic pressure difference depends largely on the porosity with large opening (the water absorption at atmospheric pressure). After the second grouting, impervious performance of chemically grouted semi- cemented sandstone tends to be equivalent.
     (3) A simulated grouting experiment was conducted on semi-cemented sandstone and results show that interface of grout penetration in sandstone column is a curved surface with the surrounding slightly below the center. Grouting infiltration over time around the grouting borehole is basically a concentric circle-shaped extension. Grouts diffusion rate in the different permeability media at same pumping pressures have significant differences.
     (4) Grouts diffusion concentration variation was gained using image processing technology. Results show that the concentration is generally decreasing with the distance of grouting hole. Howeverthere is also local enrichment for grouts. Partition of grouts concentration strongly implies the differences in permeability and anti-seepage behavior.
     (5) Apatent aerostatic pressure controlled equipment for preparing mechanically grouted sand was developed, Which can be used to simulate grouting into soil mass at different depth with different pumping pressure.
     (6) Static high pressure triaxial test system was used to conduct permeability test in confining pressure conditions for chemically grouted sands in different grouting conditions and different grouts-sand ratio under different osmotic pressure and different confining pressures. Results suggest that hydraulic conductivity increased with the increase of osmotic pressure. However, the influence of confining pressure on hydraulic conductivity relating to specimen composition and confining pressure exhibit different characteristics. That is, in general, hydraulic conductivity reduction was induced by the confining pressure increase in chemically grouted sand containing a higher proportion of grouts. Under high confining pressure, hydraulic conductivity for chemically grouted sand increased with the increase of confining pressure due to the rupture of particles.
     (7) A micro-strucure classification for chemically grouted sands and a simplified pore and throat network conceptual model have been proposed based on micro structural characteristics of chemically grouted sand. Micropores in chemically grouted sand mainly consist of large and super-large pores. Retro-mercuometric curve for semi-cemented sandstone show a sudden drop, which indicates the existence of thin-neck-bottle-shaped pores and poor connectivity. The conceptual model of pore throat is a complex network system. It is clearly indicated from the conceptual model that the decisive influencing factors on permeability of chemically grouted sand include the degree of filling, cracks and fissures within particles, grouts and particle-grouts boundaries (interfacial cracks).
     (8) The relationship between micro-structue and permeability of chemically grouted sands is analyzed and results show that the total pore volume, pore area, porosity increase with increasing chemical grouts content, and medium pore diameter in volume and average pore diameter decrease, which result in a obvious decrease in permeability. Permeability has a directly proportiona to cavity to throat size ration, medium pores diameter in volume and average pore diameter.
引文
[1]周国庆.黄淮地区厚冲积层中立井井壁破裂灾害[A].见王思敬、黄鼎成主编《中国工程地质世纪成就》[C].北京:地质出版社,2004:677-686.
    [2]周国庆,程锡禄,崔广心.1991.粘土层中立井井壁附加应力的模拟研究[J].中国矿业大学学报,1991,20(3):87-91.
    [3]倪兴华,隋旺华,官云章,等.煤矿立井破裂井壁防治技术研究[M].徐州:中国矿业大学出版社,2005.
    [4]琚宜文,刘宏伟,王桂梁,等.卸压套壁法加固井壁的力学机理与工程应用[J].岩石力学与工程学报,2003,22(5):773-777.
    [5]杨平.卸压槽治理井壁破裂研究[J].岩土工程学报,1998,20(3):19-22.
    [6]吕恒林,崔广心.卸压法治理井壁破裂的力学机理[J].中国矿业大学学报,2000,29(4):343-347.
    [7]刘天泉.露头煤柱优化设计理论与技术[M].北京:煤炭工业出版社,1998.
    [8]隋旺华,董青红,狄乾生.工程地质模型在防水煤岩柱研究中的应用[J].中国矿业大学学报,1999,28(5):417-420.
    [9]Sui Wanghua, Yang Siguang. Study on the safety pillars under water-bearing strata of mining thick coal seam using fully mechanized sub-level caving method in Taiping coalmine, Shandong Province, China. Proc. of the 2nd international conference on NDRM[C]. USA:Rinton Press,2002: 487-490.
    [10]隋旺华,费芳草.松散含水层下采煤水砂突涌防治研究现状与展望[A].见:《第二届全国岩土与工程学术大会论文集》编辑委员会.第二届全国岩土与工程学术大会论文集[C].北京:科学出版社,2006:330-332.
    [11]隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10): 2084-2091.
    [12]董青红.近松散层开采水砂突涌机制及评价[D].徐州:中国矿业大学,2006.
    [13]隋旺华,董青红,蔡光桃,等著.采掘溃砂机理与预防[M].北京:地质出版社,2008.
    [14]隋旺华,董青红.近松散层开采孔隙水压力变化及其对水砂突涌的前兆意义[J].岩石力学与工程学报,2008,27(9):1908-1916.
    [15]Sui Wanghua, Liang Yankun, Wang Wenxue, Yang Binbin.Mechanism and risk assessment of sand flow hazards due to coalmining adjacent to unconsolidated aquifers[A]. Environmental Geosciences and Engineering Survey for Territory Protection and Population Safety. International Conference under the AEGIS of IAEG, Moscow, Russia, 2011:182(abstract), 581-585(full paper).
    [16]梁艳坤,隋旺华.地下松散层内疏放水钻孔溃砂量模拟试验[J].水文地质工程地质,2011,38(3):39-44.
    [17]洪伯潜.特殊凿井技术在我国的发展与前景[J].中国煤炭,2000,26(4):60-64.
    [18]许延春,席京德,官云章,等.兴隆庄矿井筒破坏防治工程效果的综合监测与分析[J].岩石力学与工程学报,2001,20(增):1204-1208.
    [19]坪井直道.化学注浆法的实际应用[M].北京:煤炭工业出版社,1980.
    [20]黄月文,等.高分子注浆材料应用研究进展[J].高分子通报,2000,(4):71-75.
    [21]E. A. Vik, L. Sverdrup, A. Kelley. Experiences from environmental risk management of chemical grouting agents used during construction of the Romeriksporten Tunnel[J]. Tunneling and underground space technology, 2000, 15(4):369-378.
    [22]隋旺华,张改玲,姜振泉,等.矿井溃砂灾害化学灌浆治理技术现状及关键问题研究途径探讨[J].工程地质学报,2008,16(增):73-77.
    [23]Sui W H, Zhang G L, Wang W X, Liu J Y. Chemical grouting for seepage control through a fractured shaft wall in an underground coalmine[A]. In: Geologically Active– Proceedings of the 11th IAEG Congress[C]. New Zealand: Tailor & Francis Group, 2010: 3617-3623.
    [24]Sverdrup, L. Kelley, A. E. Weideborg, M. Leakage of chemicals from two grouting agents used in tunnel construction in Norway: monitoring results from the tunnel Romeriksporten [J]. Environmental Science and Technology, 2000, 34(10): 1914-1918.
    [25]M.I. Yesilnacar. Grouting applications in the Sanliurfa tunnels of GAP, Turkey [J]. Tunnelling and Underground Space Technology, 2003, (18): 321-330.
    [26]蒋硕忠.绿色化学灌浆技术研究综述[J].长江科学院院报,2006,23(5):33-40.
    [27]左如松,朱岩华,姜振泉.化学注浆在兴隆庄煤矿西风井深井井筒微裂隙防渗中的应用[J].华东地质学院学报,2003,26(4):371-375.
    [28]蔡荣,姜振泉,梁媛,等.煤矿井筒重复破坏的化学注浆治理[J].煤田地质与勘探,2003,31(4):46-48.
    [29]朱岩华,姜振泉.用化学止水注浆法治理井壁破坏[J].江苏煤炭,2004,(2):78-79.
    [30]刘勇,王档良,赵庆杰.化学注浆治理太平煤矿主井井壁破裂[J].能源技术与管理,2004,(1):76-77.
    [31]隋旺华,李永涛,李冠田,等.煤矿立井微孔隙岩体注浆防渗及机理分析[J].岩土工程学报,2000,22(2):214-218.
    [32]柴新军,钱七虎,罗嗣海,等.微型土钉微型化学注浆技术加固土质古窑[J].岩石力学与工程学报,2008,27(2): 347-353.
    [33]Ishii, H. Study of rapid permeation grouting and its effectiveness with use of horizontal directional drilling [J]. Journal of the Society of Materials Science, Japan, 2008, 57(1): 28-31.
    [34]张农,许兴亮,程真富,等.穿435m落差断层大巷的地质保障及施工技术[J].岩石力学与工程学报,2008,27(增1): 3292-3297.
    [35] Uddin, Nasim. A technical note on stabilization and closure design of a salt mine in Detroit, USA [J]. Journal of Mining and Geology, 2007, 43(1):91-104.
    [36]柴新军,钱七虎,杨泽平,等.点滴化学注浆技术加固土遗址工程实例[J].岩石力学与工程学报,2009,128( Supp.1):2980-2985.
    [37]曹晨明,冯志强.低黏度脲醛注浆加固材料的研制及应用[J].煤炭学报,2009,34(4):482-486.
    [38]徐如意,曹杰,冯永杰,等.化学注浆材料治理无自稳破碎围岩的实践[J].煤炭工程,2009,(6):31-33.
    [39]秦定国,肖知国.化学注浆加固技术在采面冒顶防治中的应用[J].中州煤炭,2009,(7):80-85.
    [40]龚成明,王永义.高原高寒地区隧道内渗漏水整治与环境保护[J].铁道工程学报,2009,(3):33-37.
    [41]吉小明,谭文.饱和含水砂层地下水渗流对隧道围岩加固效果的影响研究[J].岩石力学与工程学报,2010,29(增2):3655-3662.
    [42]Keith La Rue. Permanent soil nail wall utilizing chemical grout stabilization[C]. Geotechnical Special Publication, Earth Retention Conference 3 - Proceedings of the 2010 Earth Retention, 2010, 384(208):244-251.
    [43]杨学样,李焰.三峡大坝基础帷幕化学灌浆技术及其效果分析[J].水利与建筑工程学报,2006,4(1):44-47.
    [44]DeJong, Jason T, Fritzges, Michael B.,Nuaslein,Klaus.Microbially induced cementation to control sand response to undrained shear [J].Journal of Geotechnical and Geoenvironmental Engineering,2006,132(11): 1381-1392.
    [45]夏可风,张志良.J31智能注浆记录仪和J31D多路注浆监测系统[J].水利水电科技进展,2000,20(1):58-59.
    [46]叶林宏,何泳生,冼安如,等.论化学灌浆液与被灌岩土的相互作用[J].岩土工程学报,1994,16(6):47-55.
    [47]张良辉,熊厚金,张清.浆液的非稳定流过程分析[J].岩石力学与工程学报,1997,16(6):564-570.
    [48]冯克强,康红普,杨景贺.裂隙岩体注浆技术探讨[J].煤炭科学技术,2005,33(4):63-66.
    [49]成虎林.水电工程化学灌浆对浆液扩散有效半径的控制方法[J].西北水电,2006,(1):33-37.
    [50]华萍,孙永明,漆尧平.改性乙二醛-水玻璃化学灌浆材料的研究[J].安全与环境工程学报, 2006,13(1):100-102.
    [51]陈洪光,冯坤.提高聚氨酯化学注浆材料性能的试验研究[J].石家庄铁道学院学报,2005,18(3):79-83.
    [52]Shen, C. K.; Smith, Scott S. Elastic and viscoelastic behavior of a chemically stabilized sand [J]. Transportation Research Record,1976, (593): 41-45.
    [53]Borchert, K. M., Mueleer-Kirchenbauer, H. Time-dependent strain behavior of silicate-grouted sand by compressive and tensile stress [A]. Proceedings of the European Conference on Soil Mechanics and Foundation Engineering[C],1983(1): 339-345.
    [54]Delfosse-Ribay, Estelle, Djeran-Maigre, Irini, Cabrillac, Richard, Gouvenot, Daniel. Factors affecting the creep behavior of grouted sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(4): 488-500.
    [55]Vipulanandan, Cumaraswamy, Krizek, Raymond J. Modeling grouted sand under torsional loading [J]. Transportation Research Record. 1986:33-42.
    [56]Krizek, Raymond J. , Michel, Dominique F., Hetal, Maan, Borden, Roy H. Engineering properties of acrylate polymer grout [J]. Geotechnical Special Publication, 1992, 1(30): 712-724.
    [57]Kumagai, Koji, Tokoro, Takehiko, Yanagisawa, Eiji.Factors affecting the unconfined compressive strength of sands stabilized by chemical grout [A]. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers [C], 1993(469 pt 3-23): 121-126.
    [58]Anagnostopoulos, Costas A. Physical and mechanical properties of injected sand with latex - Superplasticized grouts [J]. Geotechnical Testing Journal, 2006, 29(6):490-496.
    [59]Warner, James.Soil modification to reduce the potential for liquefaction[A]. Proceedings of the Seminar on Repair and Retrofit of Structures[C], 1981:342-355.
    [60]Graf, Edward D. Earthquake support grouting in sands [J]. Geotechnical Special Publication, 1992, 2(30): 879-888.
    [61]Maker, M.H., Ro, K.S.,Welsh, J.P. Cyclic undrained behavior and liquefaction potential of sand treated with chemical grouts and microfine cement (MC-500) [J]. Geotechnical Testing Journal, 1994, 17(2): 159-170.
    [62]Maker, M.H., Gucunski, N. Liquefaction, and dynamic properties of grouted sand [J]. Geotechnical Special Publication, Soil Improvement for Earthquake Hazard Mitigation, 1995, (49): 37-50.
    [63]Gallagher, Patricia M., Conlee, Carolyn T., Rollins, Kyle M. Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 186-196.
    [64]Dash, Umakant; Lee, Thomas S.; Anderson, Randy. Jet grouting experience at posey webster street tubes seismic retrofit project [J].Geotechnical Special Publication, 2003(,120): 413-417.
    [65]Kodaka, Takeshi, Oka, Fusao, Ohno, Yasutoshi, Takyu, Tsutomu, Yamasaki, Nobuhiro. Modeling of cyclic deformation and strength characteristics of silica treated sand [A]. Geotechnical Special Publication, Geomechanics: Testing, Modeling, and Simulation - Proceedings of the First Japan-U.S. Workshop on Testing, Modeling, and Simulation [C], 2005, (143): 205-216.
    [66]Berry, Dick. Soil grouting - There's only one way to view it [J]. Geotechnical News, 2006, 24(3): 39-47.
    [67]Mittag, Jens., Savidis, Stavros A. The groutability of sands - results from one-dimensional and spherical tests [J]. Geotechnical Special Publication, 2003, (120 II): 13721-382.
    [68]Ozgurel, H. Gurkan, Gonzalez, H.A., Vipulanandan, C..Two dimensional model study on infiltration control at a lateral pipe joint using acrylamide grout [A]. Proceedings of the Pipeline Division Specialty Conference [C], 2005: 631-642.
    [69]Ozgurel, H. Gurkan., Vipulanandan, Cumaraswamy. Effect of grain size and distribution on permeability and mechanical behavior of acrylamide grouted sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1457-1465.
    [70]Anagnostopoulos, C.A., Grammatikopoulos, I.N., Stavridakis, E.I.Improvement of physical and mechanical properties of fine sand with one-shot and two-shot process grouting [A]. Advances in Geotechnical Engineering: The Skempton Conference-Proceedings of a Three Day Conference on Advances in Geotechnical Engineering [C], 2004: 1019-1031.
    [71]Morikawa, Yoshito., Tokoro, Takehiko., Takahashi, Norio. Evaluation of the cohesion of chemically grouted sands [J]. Journal of the Society of Materials Science, Japan, 1998, 47(2): 148-151.
    [72]Costas A. Anagnostopoulos. Cement–clay grouts modified with acrylic resin or methyl methacrylate ester: Physical and mechanical properties [J]. Construction and Building Materials, 2007, (21):252-257.
    [73]Amin Falamaki., Nader Shariatmadari., Ali Noorzad. Strength Properties of Hexametaphosphate Treated Soils [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(8):1215-1218.
    [74]Soucek, K. Stas, L., Snuparek, R., Kroutilova, I. Laboratory testing of chemical grouting effects in rocks [A]. Proceedings of the 33rd ITA-AITES World Tunnel Congress [C], 2007, 1:353-3358.
    [75]Osman N. Ozdemir, Ebru F. Yildiz, Metin Ger. A numerical model for two-phase immisciblefluid flow in a porous medium [J]. Journal of Hydraulic Research, 2007, 45(2 ):279-287.
    [76]Bolisetti, T. Reitsma, S., Balachandar, R. Analytical solution for flow of gelling solutions in porous media [J]. Geophysical Research Letters, 2007, 34(24): 24401-1-3.
    [77]Uddin, M.K. Permeation grouting in sandy soils: Prediction of injection rate and injection shape [J]. Geotechnical Engineering, 2007, 38(1):1-7.
    [78]Tirupati Bolisetti, Stanley Reitsma, Ram Balachandar. Experimental Investigations of Colloidal Silica Grouting in Porous Media [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5):697-700.
    [79]Liaqat Ali,Richard D. Woods. Pendular Element Model for Contact Grouting [A]. GeoHunan International Conference [C], 2009:87-94.
    [80]Chen Yong-gui,Ye Wei-min,Zhang Ke-neng. Strength of copolymer grouting material based on orthogonal experiment [J]. J. Cent. South Univ. Technol. , 2009, 16: 143-148.
    [81]Adam Bezuijen. Compensation grouting in sand--Experiments, field experiences and mechanisms [D]. Delft: Delft University of Technology,2010.
    [82]郭密文,隋旺华.高压环境条件下注浆模型试验系统设计[J].工程地质学报,2010,18(5):720-724.
    [83]郭密文.高压封闭环境孔隙介质中化学浆液扩散机制试验研究[D].徐州:中国矿业大学,2010.
    [84]Karol, R.H. Chemical grouting and soil stabilization [M]. 3rd edition. Marcel Dekker-Taylor and Francis, CRE., 2003.
    [85]Akagi, Hirokazu., Kazuhito, Komiya., Shibazaki, Mitsuhiro. Long term field monitoring of chemically stabilized sand with grouting [A]. Geotechnical Society of Singapore - International Symposium on Ground Improvement Technologies and Case Histories, ISGI'09, 2010: 383-387.
    [86]Anagnostopoulos C. A, Papaliangas T., Manolopoulou S., Dimopoulos T. Physical and mechanical properties of chemically grouted sand[J]. Tunneling and Underground Space Technology, 2011, 26(6):718-724.
    [87]Mollamahmutoglu, Murat., Yilmaz, Yuksel.Engineering properties of medium-to-fine sands injected with microfine cement grout[J]. Marine Georesources and Geotechnology, 2011, 29(2): 95-109.
    [88]Yasuhara, H.,Hayashi, K., Okamura, M.Evolution in mechanical and hydraulic properties of calcite-cemented sand mediated by biocatalyst [A]. Geotechnical Special Publication, 2011, 211: 3984-3992.
    [89]Serge Ouellet., Bruno Bussière., Michel Aubertin., Mostafa Benzaazoua. Microstructuralevolution of cemented paste backfill: Mercury intrusion porosimetry test results[J]. Cement and Concrete Research, 2007, 37: 1654-1665.
    [90]桂和荣,陈兆炎,刘林等.淮河以北矿区地面沉降及其成因[J].煤田地质与勘探,1994,22(5):40-43.
    [91]中华人民共和国建设部.岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社,2002:10-13
    [92]中华人民共和国水利部.土的分类标准(GBJ145-90)[S].北京:中国建筑工业出版社, 1990.
    [93]王祯伟.论孔隙含水层的沉积特征与水文地质条件的关联机理[J].煤炭学报,1993,(2):81-88.
    [94]张改玲.矿区厚松散层土体结构特征研究[J].工程地质学报,2000,08(增):366-368.
    [95]张改玲,陈德俊.太平煤矿深厚土层的水文地质工程地质性质[J].煤田地质与勘探,1999,27(2):42-44.
    [96]R. H. Karol. Soils and Soil Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1960: 46-47.
    [97]Littlejohn G.S. Text material for Grouting Course sponsored by South African Institution of Civil Engineers at the University of Witwatersrand, Johannesburg,1983.
    [98]Karol R.H.. Grout Penetrability, Issues in Dam Grouting, Geotechnical Engineering Division, ASCE, New York, 1985.
    [99]Baker W.H.. Planning and performing structural chemical grouting [A]. Proceedings of the ASCE Specialty Conference Grouting in Geotechnical Engineering [C], ASCE, New York, 1982.
    [100]Huang, A.-B. Borden R. H., R. J. Krizek, Non-Darcian Flow of Viscous Permeants under High Gradients[R], Technical Report No. HB-4, Northwestern University, Evanston, 1979.
    [101]王档良.破壁化学注浆模拟试验研究及工程应用[D].徐州:中国矿业大学,2005.
    [102]安勇,牟永光,方朝亮.沉积岩的速度、衰减与岩石物理性质间的关系[J].地球物理学报,2006,41(2):188-192.
    [103]宛新林,杜赟,薛彦伟.等.岩石时频效应的实验研究[J].实验力学,2009,24(4):307-312.
    [104]GDS Instruments Ltd. The GDS triaxial testing system hardware handbook (advanced/standard) (R). 2001.
    [105]中华人民共和国水利部.土工试验规程(SL237-1999)(S).北京:中国水利水电出版社,1999.
    [106]GDS Instruments Ltd. GDSLAB V2- The GDS laboratory users handbook (R). 2003.
    [107]岳中文,杨仁树,孙中辉,等.伊犁一矿砾石土三轴渗透试验研究[J].中国矿业,2010,19(12):98-101.
    [108]赵天宇,张虎元,严耿升,等.渗透条件对膨润土改性黄土渗透系数的影响[J].水文地质工程地质,2010,37(5):108-117.
    [109]雷红军,卞锋,于玉贞,等.黏土大剪切变形中的渗透特性试验研究[J].岩土力学,2010,31(4):1130-1133.
    [110]Bolton A. J. Some measurements of permeability and effective stress on a heterogeneous soil mixture: implications for recovery of inelastic strains [J]. Engineering geology, 2000, 57(1-2): 95-104.
    [111]Sui Wanghua, Liu Jinyuan, Du Yong. Permeability and seepage stability of coal-reject and clay mix [A]. Procedia Earth and Planetary. The 6th International Conference on Mining Science & Technology [C]. 2009: 888-894.
    [112]Paola Bandini, Sittampalam Sathiskumar. Effects of Silt Content and Void Ratio on the Saturated Hydraulic Conductivity and Compressibility of Sand-Silt Mixtures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12):1976-1980.
    [113]Pender, M. J., Kikkawa, N. & Liu, P. Macro-void structure and permeability of Auckland residual clay [J]. Geotechnique, 2009, 59(9): 773-778.
    [114]Oda, M., Takemura, T.; Aoki, T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials, 2002, 34(6):313-331.
    [115]徐德敏,黄润秋,张强,等.高围压条件下孔隙介质渗透特性试验研究[J].工程地质学报,2007,15(6):752-756.
    [116]Danielle Palardy, Maria Onofreit, Gerard Ballivy. Microstructural changes due toelevated temperature in cementbased grouts [J]. Advanced Cement Based Materials, 1988, (8):132-138.
    [117]O'Connor, Kevin M.; Krizek, Raymond J.; Atmatzidis, Dimitrios K. Microcharacteristics of chemically stabilized granular materials[J]. ASCE J Geotech Eng Div, 1978, 104(7):939-952.
    [118]李云峰.粘性土孔隙分布改变的水文地质效应[A].见:西安工程学院.地质工程与水资源新进展[C].西安:陕西科学技术出版社,1997:222~227.
    [119]Mindess, S.,Young, J.F. Concrete [A].Prentice-Hall: Englewood Cliffs, NJ, 1981.
    [120]吴恩江,韩宝平,王桂梁,等.山东兖州煤矿区侏罗纪红层孔隙测试及其影响因素分析[J].高校地质学报,2005,11(3):442-452.
    [121]Yunlai Yang , Aplin, A.C. A permeability-porosity relationship for mudstones[J]. Marine and Petroleum Geology, 2010, 27(8):1692-1699.
    [122]David C., Menendez B., Zhu W., Wong T.F. Mechanical compaction, microstructures and permeability evolution in sandstones[J]. 2001, Phys Chem. Earth (A), 26(1-2):45-51.
    [123]Nelson, Philip H. Permeability-porosity data sets for sandstones [J]. Leading Edge (Tulsa, OK), 2004, 23(11):1143-1144.
    [124]雷祥义.中国黄土的空隙类型与湿陷性[J].中国科学B辑,1987,(12:):1309-1316.
    [125]近藤连一,大门正机.硬化水泥浆的相组成[A].第六届国际水泥化学会议论文集第二卷[C].北京:中国建筑工业出版社,1982.
    [126]Xoдoт.B.B.,宋世钊,王佑安译.煤与瓦斯突出[M].北京:中国工业出版社,1976.
    [127]郑求根,张育民,赵德勇.太康隆起下古生界碳酸盐岩孔隙类型及特征[J].河南石油,1996,10( 5):1-5.
    [128]Arve Lonoy. Making sense of carbonate pore systems [J].AAPG Bulletin, 2006, 90(9):1381-1405.
    [129]张绍槐,罗平亚.保护储集层技术[M].北京:石油工业出版杜,1993.
    [130]高辉,孙卫,费二战,等.特低-超低渗透砂岩储层微观孔喉特征与物性差异[J].岩矿测试,2011,3(2):244-250.
    [131]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986:47-48.
    [132]孙黎娟.砂岩孔隙空间结构特征研究的新方法[J].大庆石油地质与开发,2002,21(1):29-31.
    [133]张立娟,岳湘安.聚合物溶液在孔喉模型中的阻力特性[J].中国科学技术大学学报,2004,34(supp.): 12-28.
    [134]曹仁义,程林松,郝炳英,等.粘弹性聚合物溶液孔喉模型流变动力分析[J].高分子材料科学与工程,2008,24(3): 15-18.
    [135]童凯军,单钰铭,王道串,等.基于毛管压力曲线的储层渗透率估算模型-以塔里木盆地上泥盆统某砂岩组为例[J].石油与天然气地质,2008,29(6):812-819.
    [136]Teige, G. M. G., C. Hermanrud, W. L. H. Thomas, O. B. Wilson, H. M. Nordgard Bolas. Capillary resistance and trapping of hydrocarbons: a laboratory experiment [J]. Petrol. Geoscience, 2005, 11: 125-129.
    [137]Teige G. M. G., C. Hermanrud, H. G. Rueslatten. Membrane seal leakage in non-fractured caprocks by the formation of oil-wet flow paths [J]. Journal of Petroleum Geology, 2011, 34(1):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700