用户名: 密码: 验证码:
西藏墨竹工卡县弄如日金矿围岩蚀变特征与成矿模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围岩蚀变带发育在金矿体的周围,是寻找金矿体和预测隐伏矿体的重要标志和直接标志。研究围岩蚀变带,不仅能提高金矿成矿预测能力,也能通过围岩蚀变的类型和特征分析,加深对该矿床的成因和成矿作用的认识。
     西藏墨竹工卡县弄如日金矿大地构造位置处于青藏高原南部,冈底斯—喜马拉雅构造区的南冈底斯构造—复合岩带东段中部。研究区内出露地层较简单,为中上侏罗—下白垩统林布宗组,主要以变质砂岩、板岩、千枚岩为主的浅变质岩石;燕山期—喜马拉雅期岩活动强烈,主要表现为酸性岩的侵入。区内地质构造复杂,断裂、劈理、节理极度发育,后期断裂总体上沿近SN向平行展布,叠加在早期东西向构造上,形成本区的基本构造格局。研究表明,近SN向的断裂是该矿床重要的导矿、容矿构造,与金矿床的形成密切相关。
     矿区内围岩蚀变发育,受断裂控制明显,基本分布在断裂的附近和两侧,蚀变主要类型有黄铁矿化、绢云母化、硅化、钠长石化、雄黄化、毒砂化和粘土化、碳酸盐化,其中绢云母化、硅化、黄铁矿化、毒砂化、雄黄化,发育在矿化体内部,与金矿化关系密切,是找矿的重要标志。蚀变带形成与构造有关,由于构造热液多期次活动,蚀变种类不断增多,蚀变强度增强,各类型蚀变常叠加出现,围岩蚀变分带并不明显。
     金矿化受近SN向展布的断裂带及花岗斑岩体的控制.通过分析金矿化特征与围岩蚀变特征,认为与金矿化关系密切的热液蚀变活动主要分为四个阶段,即早期绢云母-石英-黄铁矿阶段、中期的含金-石英(绢云母)-黄铁矿阶段与含金-石英-辉锑矿-雄(雌)黄阶段、晚期的石英-碳酸盐阶段。其中金-石英-辉锑矿-雄(雌)黄阶段是矿床主要的成矿阶段。
     通过类周边矿床与国内相似矿床,结合本矿床的金矿化特征、围岩蚀变特征及蚀变矿物组合,认为弄如日金矿成矿流体来自古构造-岩热液,也有可能有大气降水的参加;成矿显示中低热液的成矿温度、浅成矿深度等特征,属于典型的浅成中低温热液型矿床。矿床形成与喜马拉雅期岩活动密切相关,其岩热液不仅是金矿床的成矿物质的主要来源,也为金矿床的形成提供部分热动力条件。随之而来的近南北向构造运动,一方面形成热液上升通道,另一方面构造运动形成的构造—热液流体,在热力和构造动力驱动下,沿有利的断裂不断的上升,通过扩散、渗透交代,不断萃取活化成矿物质,随着温度、压力等因素的改变,含矿溶液的性质发生改变,最终在适宜的物理化学环境下沉淀富集成矿。
Wall rock alternation grows from the surroundings of gold ore body, which is the significant and direct symbol for exploring the gold ore body and concealed ore body. We can not only improve the ability to predict the gold mineralization, and also deepen our knowledge on genesis of ore deposits and mineralization by analyzing the types and characteristics of wall rock alternation.
     Nongruri gold mine of Tibetan Maizhokunggar County locates the position of earth structure in the eastern section of southern Gangdise compound tectonomagmatic zone of Gangdise - Himalayan tectonic zone in Qinghai-Tibet Plateau. The open ground layer of the targeted area, with a Linbuzong formation of the upper middle layer of Jura and Lower Cretaceous Series, which is constituted by Epimetamorphic rocks mainly of metasandstone, slate and phyllite; strong Phase of Yanshan - Himalaya magrnatism mainly presents as acid magmatic intrusion. In this area, the geologic structure is complicated. Rupture, cleavage and diaclases develop greatly, and rupture of late stage parallel distribute along with nearly SN direction generally and superposition on the east-west direction structure of early period, which forms the basic tectonic framework of this area. Studies have shown that rupture in nearly SN direction is the important guiding mine and host structure of the deposits, which has a close relationship of formation of gold mine deposits.
     The development of wall rock alternation in the mining area is obviously controlled by rupture, distributing generally in the surroundings and both sides of the rupturing place. The main types of alternation includes pyritization, sericitization, siliconization, albitization, realgarization, cinnabarization, clayzation and carbonatization, among which, sericitization, siliconization, pyritization, cinnabarization and realgarization develop inside the mineralized bodies, have the closest relations with gold mineralization, and is a significant symbol for exploring mines. The form of alteration zone is relevant to the structure. Since the tectonic hydrothermal is acting for many times, they alternation types and strength are increasing, with frequent superposition of types of alternations, which make the zoning of wall rock alternation not obvious.
     Gold mineralization in controlled by the rupture zone distributed in nearly SN direction and Granodiorite porphyry. By analyzing the characteristics of gold mineralization and wall rock alternation, it is found that the hydrothermal alternation closely related to the gold mineralization can be divided into four stages, early sericite - quartz - pyrite period, medium-term gold-bearing - quartz (sericite) - pyrite period, gold-bearing - quartz - stibnite - realgar (orpiment) period, and later period quartz - carbonate period, among which the gold-bearing - quartz - stibnite - realgar (orpiment) period is the main mineralization period.
     By means of analogy of surrounding deposits and domestic similar deposits, combining with the characteristics of gold mineralization and wall rock alternation and the alternated mineral assemblage, it is found that the ore-forming fluid of Nongruri gold mine originates from paleostructure-endomagmatic hydrothermal, as well as atmospheric precipitation possibly; in the mineralization the characteristics of low hydrothermal temperature and low mineralization depth shows that it belongs to typical hypergene epithermal hydrothermal gold deposit. The formation has a close relationship with magmation of Himalaya period. The magmatic hydrothermal is the main source of the mineralization materials of gold deposit, and also provides part of the thermodynamic conditions for the formation of gold deposit. For the following NS tectogenesis, on the one hand, it forms the rising passage of hydrothermal, on the other hand, the structure, hydrothermal fluid, formed in the tectogenesis, driving by the thermal force and structural dynamics, is uprising continuously along the favorable rupture, and extracting activated mineralization materials by means of diffusion, penetration and altera-tion. Along with the change of the temperature, pressure and some other elements, the property of ore-bearing solution has changed, which finally precipitates, concentrates and mineralizes under the appropriate physical and chemical environment.
引文
[1]肖序常,李延栋,许志琴等.青藏高原构造演化.中国地质科学院院报,1990.
    [2]朱弟成,潘桂棠,王立全等.西藏冈底斯带中生代岩岩的时空分布和相关问题的讨论.地质通报,2008,(09).
    [3]潘桂棠,王立全,李兴振等.青藏高原区域构造格局及其多岛弧盆系的空间配置.沉积与特提斯地质,2001,(09).
    [4]李汉光,葛良胜,邹依林等.西藏冈底斯地块中新生代中酸性侵入岩特征与构造环境.矿产与地质,2005,(04).
    [5]方维萱,胡瑞忠,苏文超等.初论特提斯构造域一些大型超大型金属矿床集中区聚矿构造.北京:矿物岩石地球化学通报,2000,(10).
    [6]李光明,曾庆贵,雍永源等.西藏冈底斯成矿带浅成低温热液型金锑矿床的发现及其意义.2005.
    [7]李光明.西藏雅鲁藏布江成矿区中新生代构造演化与矿床成矿系列研究,2007,(04).
    [8]唐菊兴,黄勇,李志军等.西藏谢通门县雄村铜金矿床元素地球化学特征.矿床地质.2009,(01).
    [9]杜光树,冯孝良,陈福忠,等.1993.西藏金矿地质[M].成都:西南交通大学出版社.1993.
    [10]江元生等.两藏冈底斯中段措勤地区中新生代构造岩演化与成矿.西北地质科学.2007,(11).
    [11]聂凤军,胡朋,江思宏等.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报,2005,(06).
    [12]郑有业,赵永鑫,范文玉等.藏南金锑成矿带成矿规律研究及找矿取得重大进展.中国地质大学学报,2003,(12).
    [13]沈远超,刘铁兵,李光明等.中国金矿床成矿预测的理论与方法.北京:科学出版社,2001.
    [14]李舒等.中国金矿床工业类型及其特征.地震出版社,1999.
    [15]陈纪明等.1997.中国金地质概论.北京:地质出版社,12-78.
    [16]LINDGREN W.Mineral Deposits[M].4th ed.New York:McGraw Hill,1933.1-930.
    [17]江思宏,聂凤军,张义等.浅成低温热液型金矿床研究最新进展.地学前缘,2004,(04).
    [18]张德会.浅成热液成矿系统模型研究评述.地球科学进展,1996,12.
    [19]林宝钦.中国东部冰长石一绢云母型低温浅成热液金矿[J].贵金属地质,1992,1 (4):199-206.
    [20]鄢云飞,谭俊等.中国浅成低温热液型金矿床地质特征及研究现状.资源环境与工程.2007,(12).
    [21]沙德铭,苑丽华.浅成低温热液型金矿特点、分布和找矿前景[J].地质与资源,2003,12(2):115-124.
    [22]刘连登,陈国华,吴国学,等.我国浅成低温热液金矿的分类探讨[J].长春科技大学学报,1999,29(3):222-226.
    [23]张德全,余宏泉,李大新,等.紫金山地区的斑岩-浅成热液成矿系统[J].地质学报,2003,77(2):253-261.
    [24]Eaton P C,Setterfield IN.The relationship between ep ithermal and porphyry hydrothermal systems within the Tavua Caldera,Fiji[J].Econ Geol,1993,88:1 053 - 1 083.
    [25]CORBETT G.Epithermal gold for explorationists[J].AIGJournal--Applied Geoscientific Practice and Research in Australia,2002,April:1226.
    [26]毋瑞身.1993.低温浅成热液金矿若干问题讨论.贵金属地质.第1期.
    [27]李景春等.1993.中国火山热液型金矿成矿地质背景及找矿方向,火山岩、火山作用及有关矿床.北京:地质出版社.
    [28]马启波等.1994.中国热液金矿床含金建造及成矿作用与找矿方向.北京:地质出版社.
    [29]涂光炽.1891.金矿若千地质问题的探讨.金的经济地质学.北京:科学出版社.
    [30]寸硅等.1995.中国典型金矿床.北京:地质出版社.
    [31]李光明,王爱国,董随亮等.西藏墨竹工卡县弄如日金矿详查报告.成都地质矿产研究所,2009.
    [32]王全海,王保生,李金高.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估.矿质通报.2002,(01).
    [33]王先儒.对金的工艺矿物学工作规范化一些问题的建议.黄金.NO.2,p.12-15.1984.
    [34]张振儒等编著,金矿研究.p.28-42,中国工业大学出版社.1989.
    [35]蔡长金.金矿物鉴定手册.原子能出版社.1993.
    [36]蔡长金,中国金矿物产出地质特征.铀矿地质,No.1.p7-13.1988.
    [37]刘英俊,马东升,金的地球化学[M],科学出版社,1991年第一版.
    [38]刘英俊,孙承辕,马东升.江南型金矿及其成矿地球化学背景[M].南京:南京大学出版社.1993.171-193.
    [39]胡受奚.交代蚀变岩岩相学[M].北京:地质出版社,1980.
    [40]胡受奚,叶瑛,方长泉.交代蚀变岩岩石学及其找矿意义[M].北京:地质出版社,2004.
    [41]任云生,粟登逵,张金树.西藏甲马铜多金属矿床金的叠加成矿.吉林大学学报(地球科学版).2007.07.
    [42]侯增谦,曲晓明,王淑贤等.2003b.西藏高原冈底斯斑岩铜矿带辉铝矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),33(7):609-618.
    [43]李光明,芮宗瑶.2004.两藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,28(2):165-170.
    [44]孟祥金,侯增谦,高永丰等.2003.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J].矿床地质,22(3):246-252.
    [45]尹安.2001.喜马拉雅一青藏高原造山带地质演化--显生宙亚洲大陆生长[J].地球学报,22(3):193-230.
    [46]张德会.成矿流体中金的沉淀机理研究述评[J].矿物岩石,1997,17(4):122-130.
    [47]张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997,16(3):53-58,
    [48]张德会.关于成矿流体地球化学研究的几个问题[J].地质地球化学,1997,25(3):49-57.
    [49]胡受奚.交代蚀变岩岩学及其找矿意义[M].北京:地质出版社,2004.
    [50]杨敏之.金矿床围岩蚀变带地球化学[M].北京:地质出版社,1998.
    [51]张德会,龚庆杰.初论元素富集成矿的地球化学机理-以岩热液矿床的形成为例[J].地质地球化学,2001,29(3):8-12.
    [52]R.W.博伊尔.金的地球化学及金矿床[M].北京:地质出版社,1984.
    [53]林文蔚.水岩反应中成矿流体的浓缩作用及其应用.矿物岩石地球化学通报,1999,18(1):10-13.
    [54]刘斌,沈昆.流体包体热力学.北京:地质出版社,1999.
    [55]王驹.碳硅泥岩型金(铀)床成矿富集地球化学.北京:原子能出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700