用户名: 密码: 验证码:
辽宁太子河流域非点源污染模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展,辽宁太子河流域社会环境、流域河流污染问题日益突出,各类工农业污染源带来的有机污染、重金属、农药等污染物给流域水环境带来重大压力。随着太子河流域对点源污染控制能力的提高和技术的相对成熟,非点源污染已成为影响水环境恶化的主要来源。因此,针对非点源污染特征,开展污染负荷定量化研究,识别污染物来源和关键源区,研究不同水文条件、不同土地利用情况、水土保持措施和农业管理措施等对流域非点源污染负荷的影响,是进行水环境质量评估、风险评价及污染物削减的重要依据,也是有效控制水环境污染、保障用水安全的重要手段。本论文的主要研究内容及结论如下:
     (1)在详细的实地调查、资料收集和模型比选的基础上,基于SWAT模型(Soil and Water Assessment Tool)建立了太子河流域的分布式非点源污染模型。应用LH-OAT (Latin-Hypercube One-factor-At-a-Time)方法进行了参数的灵敏性分析,筛选并确定了模型中需要率定的相关参数,采用SCE-UA方法分别以河道径流量、输沙量和水质指标为目标变量率定相关参数,确定了模型水文、泥沙和水质参数值。率定期R2均大于0.58,NS大于0.60,验证期R2大于0.45,除南甸站以外NS均大于0.50,河道径流模拟效果较好,泥沙和水质模拟结果符合要求,表明模型在太子河流域适用性较好。
     (2)开展了太子河流域降水量、地表产水量、泥沙流失量和非点源污染物(总氮TN和总磷TP)入河量的时空动态分析,讨论不同水文年型不同降雨情况下,现状年(2008年)非点源污染物的时空变化规律,及土壤侵蚀的空间分布情况,识别污染关键源区。结果表明:1997~2008年流域年均降水量为92.17亿m3,地表产水量为31.35亿m3,泥沙流失量为229.50万t,TN负荷为17357.43t,TP负荷为7110.91t,流域降水量呈东南向西北减弱的趋势,最大值发生在降水量较大的2005年,TN和TP负荷分别为23030.00t、9346.35t。通过多年模型模拟结果,基本上可以确定太子河流域内非点源污染负荷关键源区是下游地区的灯塔市和辽阳县,氮磷负荷强度空间差异较大,全流域多年平均为13.20kg/hm2和5.41kg/hm2。氮磷负荷的时空分布与降水量关系较大,汛期(6-9月)负荷总量占全年的77.76%和80.00%。
     (3)分析了现状(2008年)经济、人口、气象等水平下,改进施肥方式(情景1)、减少50%施肥量(情景2)、采用水土保持措施(情景3)、增加城镇地区透水面积(情景4)和设置河岸缓冲带(情景5)不同措施对非点源污染负荷的控制效果。5种情景下泥沙流失总量分别减少1.69%、1.54%、33.84%、4.28%、29.62%,TN负荷总量减少7.41%、28.1%、24.38%、2.79%、28.0%,TP负荷总量减少11.39%、41.77%、37.93%、3.36%、36.49%,现状年的TN平均负荷强度为13.72kg/hm2,5种情景中平均负荷强度分别减少1.02kg/hm2、3.86kg/hm2、3.35kg/hm2、0.29kg/hm2、3.84kg/hm2;现状年的TP平均负荷强度为5.52kg/hm2,5种情景中分别平均负荷强度分别减少0.63kg/hm2.2.30kg/hm2、2.09kg/hm2、0.18kg/hm2.2.01kg/hm2,不同土地利用类型的单位面积负荷均不同程度的减少,情景2、3、5有较好的污染控制效果。
     (4)采用全国1km网格土地利用数据库(1980s,1995,2000)数据,分析了太子河流域在80年代、90年代土地利用情况的动态变化过程,并进一步研究了土地利用/覆盖变化(land useand land cover change, LUCC)对流域水文水资源和非点源污染的影响。1980s-2000年太子河流域内地类转化主要是在水田、旱地、疏林地、城镇用地和农村居民点用地之间,80年代至90年代中期土地利用变化比90年代后期变化要剧烈。1980s到2000年水田和疏林地减少40.81km2、112.34km2,旱地、农村居民点用地、城镇用地、工交建设用地分别增加113.30km2、16.73km2、19.50km2、10.04km2,水田转化为农村居民点用地、城镇用地和工交建设用地,而疏林地转变为早地。1980s土地利用情况下,1997~2008年多年平均地表产水量、泥沙流失量、TN和TP入河量分别为33.30亿m3、207.80万t、16756.68t和6666.70t,1995年土地利用情况下平均值分别为32.83亿m3、210.74万t、16917.52t和6643.84t,空间差异较大。与2000年土地利用情况下相比,1980s和1995年土地利用情况下地表产水量变化较大区域为观音阁水库上游、观音阁水库库区和下游海城地区,不同子流域的TN、TP污染负荷强度有增有减,总体上是负荷强度高的区域变化率较小。
With the rapid development of economy and society, the social and water environment problems of the Taizihe watershed in Liaoning province have become increasingly prominent. Organic pollutants, heavy metal pollutants, pesticide pollutants and other pollutants caused by all kinds of industrial and agricultural pollutions have brought tremendous pressure on the water environment. The water pollution can be divided into two types according to the sources of pollutants in rivers, lakes and reservoirs, which are point source pollution and non-point source (NPS) pollution. With the developing techniques and capabilities to control the point source pollution in the Taizihe watershed, the NPS pollution has an more impact on the water environment and the investigations on controlling NPS pollution become more and more urgent. Thus, according to the characteristics of NPS pollution, we carried out the quantitative study of the NPS pollution and identified the sources of pollutants and critical source area. Then, we assessed the effect and changes of NPS pollution under different hydrological conditions, different land use, different soil and water conservation measures or different agricultural management measures. All of these are important bases for water quality assessment, risk assessment and pollutant reduction, but also are an important tool to assess the effective control of water pollution and water security. The main research contents and results for this study are as follows:
     (1) After a detailed survey, data collection, model comparison and selection, a distributed NPS pollution stimulation model of the Taizihe watershed was constructed using the SWAT model (Soil and Water Assessment Tool). We applied the LH-OAT (Latin-Hypercube One-factor-At-a-Time) method for parameter sensitivity analysis and sensitivity ranks of parameters for each hydrological region was analyzed, which suggested the important parameters used for calibration. The model was successfully calibrated using the monthly observed data of discharge, sediment and water quality with SCE-UA method. R2was greater than0.58and NS was greater than0.60during the calibration period. Meanwhile, R2was greater than0.45, NS was greater than0.50except the Nandian hydrologic station during the validation period. Good agreement between the simulated and observed discharge, sediment and water quality verified the model's appropriateness in the Taizihe watershed.
     (2) The calibrated model was used to make the temporal and spatial dynamic analysis of precipitation, surface water yield, sediment loss and the NPS pollutants (TN and TP), to discuss the spatio-temporal change rule of NPS pollution in different hydrological year, to find out the spatial distribution of soil erosion, and to identify critical pollution source area. Results showed that the average annual precipitation was92.17hundred million cubic meter, surface water yield was3.135billion cubic meter, sediment loss was2.295million ton, TN load was17357.43ton, TP load was7110.91ton from1997to2008. Precipitation of the watershed had a weakening trend from southeast to northwest. Precipitation in the year2005is the maximum; meanwhile, TN and TP loads were maximum,23030.00ton and9346.35ton respectively. On the basis of model simulation results, it could be determined that the Dengta city and Liaoyang county located in the downstream areas were the critical NPS pollution source areas in the Taizihe watershed. Spatially, TN and TP loads differed greatly. The average annual values were13.20kg/hm2and5.41kg/hm2. The spatial and temporal distribution of nitrogen and phosphorus loads had an obvious relationship with the precipitation. The loads of flood season (from June to September) accounted for77.76%and80.00%.
     (3) The NPS pollution control effect under different measures about improved fertilization method (Scenario1),50%reduction in fertilizer (Scenario2), the use of soil and water conservation measures (Scenario3), an increase in urban permeable area (Scenario4) and set of the riparian buffers (scenario5) were simulated within the current (the year2008) economic situation, demographic structure, meteorological condition and so on. The total amounts of sediment loss were reduced by1.69%,1.54%,33.84%,4.28%and29.62%respectively within5kinds of scenarios. TN loads decreased7.41%,28.1%,24.38%,2.79%and28.0%, TP loads decreased11.39%,41.77%,37.93%,3.36%and36.49%, respectively. The average TN load per unit area was13.72kg/hm2, and was reduced by1.02kg/hm2,3.86kg/hm2,3.35kg/hm2,0.29kg/hm2and3.84kg/hm2in different scenarios. The average TP load per unit area was5.52kg/hm2, and was reduced by0.63kg/hm2,2.30kg/hm2,2.09kg/hm2,0.18kg/hm2and2.01kg/hm2in different scenarios. The pollution loads per unit area under different land use types had different levels of reduction. Scenarios2,3and5had better pollution control effects.
     (4) With the land use data of the1km grid National Land Use Database (1980s,1995,2000), the dynamic change process of land use in the1980s and1990s in the Taizihe watershed was analyzed. Then, the effect of LUCC (land use/cover change) on watershed hydrology, water resources and NPS pollution was researched. The main land use conversion in the Taizihe watershed during1980s to2000was the translation between paddy field, dry land, open forest land, urban land and rural residential land. The land use changes occurred in the late1990s were more tremendous the changes occurred from the1980s to mid-1990s. The areas of paddy field and open forest were reduced40.81km2and112.34km2from1980s to2000. At the same time, the areas of dry land, rural residential land, urban land and labor construction land were increased113.30km2,16.73km2,19.50km2and10.04km2respectively. The paddy field conversed into rural residential land, urban land or labor construction land, while open forest land conversed into dry land. Under the land use situations of1980s, the average annual values of surface water yield, sediment loss, TN and TP loads from1997to2008were33.30hundred million cubic meter,2.0780million ton,16756.68ton and6666.70ton,32.83hundred million cubic meter,2.1074million ton,16917.52ton and6643.84ton respectively within the situations of1995. Compared to the situation in2000, the regions which had significant changes in surface water yield under the situation in1980s and1995were located in the upstream and reservoir area of Guanyinge reservoir and Haicheng city. The changes of TN or TP pollution loads per unit area in different subbasins were increases or decreases. But generally speaking, the rate of changes in the regions that the pollution loads per unit area were high was smaller.
引文
Arabi M., Govindaraju R.S., Hantush M.M.. A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. Journal of Hydrology,2007,333(2-4): 459-471
    Arnold J.G., Allen P.M. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology,1996,176(1-4):57-77
    Arnold J.G., Srinivasan R., Muttiah R.S., et al. Large area hydrologic modeling and assessment part i:model development. Journal of the American Water Resources Association,1998,34(1):73-89
    Azocar G., Romero H., Sanhueza R., et al. Urbanization patterns and their impacts on social restructuring of urban space in Chilean mid-cities:the case of Los Angeles, Central Chile. Land Use Policy,2007,24(1):199-211
    Beasley D.B., Huggin L.F., Monke E.J. ANSWERS:a model for watershed planning. Trans, of ASAE,1980,23(4):938-944
    Bekele E.G., Nicklow J.W.. Multi-objective automatic calibration of SWAT using NAGA-II. Journal of Hydrology,2007,341(3-4):165-176
    Bhaduri B., Harbor J., Engel B., et al. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environmental Management,2000,26(6):643-658
    Bicknell B.R., Imhoff J.C., Kittle J.L, et al. Hydrologic simulation program-Fortran; user's manual for release 10. Athens:Environmental Research Laboratory, USEPA,1993
    Bouraoui F., Grizzetti B.. An integrated modeling framework to estimate the fate of nutrients: application to the Loire (France). Ecological modeling,2008,212:450-459
    Brown L.C., T.O. Barnwell Jr.. The enhanced water quality models QUAL2E and QUAL2E-UNCAS:documentation and user manual. EPA document EPA/600/3-87/007. USEPA, Athens, GA,1987
    Chaplot V., Saleh A., Jaynes D.B.. Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and NO3-N loads at the watershed level. Journal of Hydrology, 2005(312):223-234
    Chaplot V.. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology,2005(312):207-222
    Chaubey I., Cotter A.S.. Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes,2005(19):621-628
    Chen E., Mackay D.S.. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. Journal of Hydrology,2004(295): 211-224
    Borah D.K., Bera M.. Watershed-scale hydrologic and nonpoint-source pollution models:review of mathematical bsaes. Trans. of ASAE,2003,46(6):1553-1566
    Daniel E.L., Richard A.M. Deanna L.O., et al. Nonpoint sources. Water Environment Research, 1998,70(4):895-912
    David P., Darren S.. Towards integrating GIS and catchment models. Environmental Modeling and Software,2000,15(5):451-459
    Duan Q., Gupta V.K., Sorooshian S.. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resource Research,1992,28:1015-1031
    Eckhardt K., Arnold J.G.. Automatic calibration of a distributed catchment model. Journal of Hydrology,2001(251):103-109
    Eckhardt K., Fohrer N., Hans-Georg Frede.. Automatic model calibration. Hydrological Processes, 2005(19):651-658
    Edwin D. Ongley, Zhang Xiaolan, Yu Tao. Current status of agricultural and rural non-point source pollution assessment in China. Environmental Pollution,2010,58:1159-1168
    Gassman P.W., Reyes M.R., Green C.H., et al. The soil and water assessment tool:historical development, application, and future research directions. Transactions of the ASABE,2007,50 (4):1211-1250
    Gerald W.. Application of SWAT in the evaluation of salmon habitat remediation policy. Hydrological Processes,2005(19):839-848
    Gosain A.K., Rao S., Srinivasan R., et al. Return-flow assessment for irrigation command in the Palleru River Basin using SWAT model. Hydrological Processes,2005(19):673-682
    Griensven A.V., Meixner T., Grunwald S., et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology,2006(324):10-23
    Hamby D.M.. A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment,1994,32:135-154
    Hardy S., Koontz T.. Reducing nonpoint source pollution through collaboration:policies and programs across the US states. Environmental Management,2008,41(3):301-310
    Heuvelmans G., Juan F. Garcia-Qujano, Bart M., et al. Modeling the water balance with SWAT as part of the land use impact evaluation in a life cycle study of CO2 emission reduction scenarios. Hydrological Processes,2005(19):729-748
    Heuvelmans G., Muys B., Feyen J.. Regionalisation of the parameters of a hydrological model: comparison of linear regression models with artificial neural nets. Journal of Hydrology, 2006(319):245-265
    Holvoet K., van Griensven A., Seuntjens P., et al. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C,2005, 30(8-10):518-526
    Jarvis A., Reuter H., Nelson A., et al. Hole-filled seamless srtm data v3, international centre for tropical agriculture (CIAT). available from http://srtm.csi.cgiar.org,2006
    Kannan N., Santhi C., Arnold J.G.. Development of an automated procedure for estimation of the spatial variation of runoff in large river basins. Journal of Hydrology,2008,359(1-2):1-15
    Abbaspour K.C., Yang J., Maximov I., et al. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology,2007(333):413-430
    Kennedy J., Eberhart R.C.. Particle Swarm Optimization Proc. IEEE Intl. Conf. on Neural Networks Perth, Australia, IEEE Service Center, Piscataway, NJ,1995,Ⅳ:1942-1948.
    Kil Seong Lee, Eun-Sung Chung. Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed. Journal of Hydrology,2006(165):234-240
    Knisel W.G.. CREAMS:A field scale model for chemicals, runoff, and erosion from agricultural management systems. USDA Conservation Research Report No.26,1980
    Lenhart T., Eckhardt K., Fohrer N., et al. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth,2002,27:645-654
    Leonard R.A., Knisel W.G, Still D.A.. GLEAMS:Groundwater Loading Effects of Agricultural Management Systems. Trans, of ASAE,1987,30(5):1403-1418
    L6pez E., Bocco G., Mendoza M., et al. Predicting land-cover and land-use change in the urban fringe a case in Morelia city, Mexico. Landscape and Urban Planning,2001,55(4):271-285
    Luzio M.D., Arnold J.G.. Formulation of a hybrid calibration approach for a physically based distributed model with NEXRAD data input. Journal of Hydrology,2004(298):136-154
    Madsen H.. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources,2003,26(2):205-216
    Mauro D.L., Arnold J.G., Srinivasan R.. Effect of GIS data quality on small watershed stream flow and sediment simulations. Hydrological Processes,2005(19):629-650
    Metcalf and Eddy Inc., Univ. of Florida, Water Resources Engineers Inc.. Storm water management model-final report. Washington D.C.:USEPA,1971
    Monteith J.L.. Evaporation and the environment. The state and movement of water in living organisms, Ⅺ Ⅹth Symposium. Soc. For Exp. Biol., Swansea, Cambridge University Press,1965, 205-234
    Muleta M.K., Nicklow J.W.. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology,2005,306(1-4):127-145
    Muttiah R.S., Wurbs R.A.. Scale-dependent soil and climate variability effects on watershed water balance of the SWAT model. Journal of Hydrology,2002 (256):264-285
    Nash J., Sutcliffe J.. River flow forecasting through conceptual models Ⅰ. a discussion of principles. Journal of Hydrology,1970,10:282-290
    Ndomba P., Mtalo F., Killingtveit A.. SWAT model application in a data scarce tropical complex catchment in Tanzania. Physics and Chemistry of the Earth, Parts A/B/C,2008,33(8-13): 626-632
    Neitsch S.L., Arnold J.G., Kiniry J.R., et al. Soil and water assessment tool-theoretical documentation-version 2005. Grassland, Soil and Water Research Laboratory, Agricultural Research Service and Research Center, Texas Agricultural Experiment Station, Temple, Texas, 2005
    Novotny G., Chesters G.. Handbook of nonpoint source pollution:sources and management. Van Nostrand Reinhold Company,1981
    Rindfuss R. R., Walsh S. J., Turner Ii B.L., et al. Developping a science of land change:challenges and methodological issues. Proceedings of the National Academy of Sciences of the United States of America,2004,101(39):13976-13981
    Saeijs H., van Berkel M., Global water crisis:the major issue of the 21st century, a growing and explosive problem. European Water Pollution Control,1995,5(4):26-40
    Sarawuth N., Susanna T.Y. Tong. Environmental and economic implications of various conservative agricultural practices in the Upper Little Miami River basin. Agricultural Water Management,2013,119:65-79.
    Savai M.R., Flanagan D.C., Hebe B., et al. Application of WEPP and GIS-GRASS to a small watershed in Indiana. Journal of Soil and Water Conservation,1995,50(5):477-483
    Saxton K.. Soil water characteristics hydraulic properties calculator. USDA-Agricultural Research Service in cooperation with Department of Biological Systems Engineering, Washington State University, Pullman, WA. available from http://hydrolab.arsusda.gov/soilwater/Index.htm,2006
    Sophocleous M., Perkins S.P.. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrolog,2000,236:185-201
    Srinivasan R., Engel B.A.. A spatial decision support system for assessing agricultural non-point pollution. Water Resources Bulletin,1994,30(3):441-452
    Susanna T., Tong Y., Chen W.. Modelling the relationship between land use and surface water quality. Journal of Environmental Management,2002,66(4):377-393
    Tripathi M.P, Panda R.K., Raghuwanshi N.S.. Development of effective management plan for critical subwatersheds using SWAT model. Hydrological Processes,2005(19):809-826
    Tripathi M.P., Panda R.K., Raghuwanshi N.S., et al. Hydrological modeling of a small watershed using generated rainfall in the Soil and Water Assessment Tool model. Hydrological Processes, 2004(18):1811-1821
    Tripathi M.P., Raghuwanshi S.P.. Effect of watershed subdivision on simulation of water balance components. Hydrological Processes,2006(20):1137-1156
    US Environmental Protection Agency. Better assessment science integrating point and non-point source. Office of Water, EPA-823-B-98-006
    USA:Hydrologic Engineering Center. HEC. Storage, treatment, overflow, runoff model, STORM, generalized computer program 723-57-L7520. USA:United States Corps of Engineers,1977
    USDA Soil Conservation Service. Hydrology section 4. Washington DC:US Government Printing Office,1972
    USDA.GREAMS:A field scale model for chemicals, runoff, and erosion from agricultural management systems. Conservation research report No.26. USDA Washington.D.C.,1980
    Williams J.R., Dyke P.T., Fuchs W.W., et al. EPIC:Erosion Productivity Impact Calculator, model documentation, USDA-ARS Tech. Bull. No.1768. USDA-ARS Grassland, Soil and Water Research Laboratory, Temple, TX,1990:127
    Williams J.R.. Sediment-yield prediction with universal equation using runoff energy factor. Present and prospective technology for predicting sediment yield and sources:Proceedings of the sediment yield workshop, USDA Sedimentaiton Lab., Oxford, MS, November28-30,1972. ARS-S-40.1975, p244-252
    Yang J., Reichert P., Abbaspour K.C., et al. Hydrological modelling of the Chaohe basin in China: statistical model formulation and bayesian inference. Journal of Hydrology,2007,340:167-182
    Young R.A., Onstad C.A., Bosch D.D., et al. AGNPS, Agricultural nonpoint-source pollution model:a watershed analytical tool. Conservation Research Report No.35. Washington:USDA, 1987
    Young R.A., Onstad C.A., Bosch D.D., et al. AGNPS:A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conservat,1989,44(2):168-173
    Zhang X.S., Srinivasan R., Van Liew M.. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrological Processes, 2010,24(8):955-969
    百度百科http://baike.baidu.com/view/54383.htm
    蔡明,李怀恩,庄咏涛,等.改进的输出系数法在流域非点源污染负荷估算中的应用.水利学报,2004(7):40-45
    陈军锋,陈秀万SWAT模型的水量平衡及其在梭磨河流域的应用.北京大学学报:自然科学版,2004,40(2):265-270
    陈强,苟思,秦大庸,等.一种高效的SWAT模型参数自动率定方法.水利学报,2010,41(1):113~119
    陈星.流域水文响应与非点源污染物输移机理研究:[博士学位论文].南京:河海大学,2008
    陈友媛,惠二青,金春姬,等.非点源污染负荷的水文估算方法.环境科学研究,2003,16(1):10-13
    陈玉民.中国主要作物需水量与灌溉.北京:水利电力出版社,1995
    程声通.水污染防治规划原理与方法.北京:化学工业出版社,2010
    范丽丽,沈珍瑶,刘瑞民,等.基于SWAT模型的大宁河流域非点源污染空间特性研究.水 土保持通报,2008,28(4):133~137
    郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展.农业工程学报,2008,24(4):290-295
    郝芳华,程红光,杨胜天.非点源污染模型——理论方法与应用.北京:中国环境科学出版社,2006
    洪华生,曹文志,张上珍,等.九龙江典型流域氮磷流失的模拟研究.厦门大学学报:自然科学版,2004,43(1308):243-248
    胡连伍,王学军,罗定贵,等.基于SWAT2000模型的流域氮营养素环境自净效率模拟—以杭埠—丰乐河流域为例.地理与地理信息科学,2006,22(2):35-38
    胡远安,程声通,贾海峰,等.袁水上游小流域非点源污染研究—实验设计与数据初步分析.农业环境科学科学学报,2003,22(4):442-445
    胡远安,程声通,贾海峰.非点源模型中的水文模拟—以SWAT模型在芦溪小流域的应用为例.环境科学研究,2003,16(5):29-33
    胡远安,程声通,贾海峰.非点源污染模拟的空间分割优化.清华大学学报:自然科学版,2005,45(3):367-370
    黄虹,邹长伟,陈新庚.中国非点源污染研究评述.生态环境,2004,13(2):255-257
    黄金良,洪华生,杜鹏吃,等AnnAGNPS模型在九龙江典型小流域的适用性检.环境科学学报,2005,25(8):1135-1142
    黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(1):6-10
    黄满湘,章申,张国梁,等.北京地区农田氮素养分随地表径流流失机理.地理学报,2003,58(1):147-154
    惠二青,陈友媛,刘贯群,等.小清河流域无机氮非点源污染的量化研究.农业环境科学学报,2005,24,108-113
    惠二青,刘贯群,邱汉学,等.适用于中大尺度流域的非点源污染模型.农业环境科学学报,2005,24(3):552-556
    贾文锦.辽宁土壤.长春:辽宁科学技术出版社,1992
    贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践.北京:中国水利水电出版社,2005
    金相灿,姜霞,王圣瑞,等.水环境科学技术发展研究报告.中国环境科学学会.2006-2007环境科学技术学科发展报告.北京:中国科学技术出版社,2007
    李昌峰,高俊峰,曹慧.土地利用变化对水资源影响研究的现状和趋势.土壤,2002,(04):191-205
    李怀恩,邓娜,杨寅群,等.植被过滤带对地表径流中污染物的净化效果.农业工程学报,2010,26(7):81-86
    李怀恩,沈晋.非点源污染数学模型.西安:西北工业大学出版社,1996
    李怀恩,庄咏涛.预测非点源营养负荷的输出系数法研究进展与应用.西安理工大学学报,2003,19(4):307-312
    李怀恩.流域非点源污染模型研究进展与发展趋势.水资源保护,1996,2:14-18
    李家科,杨静媛,李怀恩,等.基于SWAT模型的陕西沣河流域非点源污染模拟.水资源与水工程学报,2012,(4):11-17
    李锦秀,马巍,史晓新,等.污染物排放总量控制定额确定方法.水利学报,2005,35(7)812-817
    李跃勋,徐晓梅,何佳,等.滇池流域点源污染控制与存在问题解析.湖泊科学,2010,22(5):633-639
    辽宁省葠窝水库信息网http://www.Inswsk.com/index.asp
    辽宁省水利水电勘测设计研究院.辽宁省水资源综合规划报告.沈阳:辽宁省水利水电勘测设计研究院,2008:1-55
    辽宁省水利水电科学研究院.辽宁省水资源规划报告.沈阳:辽宁省水利水电科学研究院,2008
    辽宁省水利水电科学研究院.内印辽宁省水功能区划报告.沈阳:辽宁省水利水电科学研究院,2009
    辽宁省水利厅.辽宁省水资源.沈阳:辽宁科学技术出版社,2006
    辽宁省水文水资源勘测局.辽宁省水资源公报.沈阳:辽宁省水文水资源勘测局,2007
    辽宁省水文水资源勘测局.辽宁省水资源公报.沈阳:辽宁省水文水资源勘测局,2008
    辽宁省汤河水库信息网http://www.thskglj.com/Index.asp
    辽宁省统计局.辽宁统计年鉴.北京:中国统计出版社,2000~2009
    辽宁水文信息网http://lnmwr.gov.cn.
    刘博,徐宗学.基于SWAT模型的北京沙河水库流域非点源污染模拟.农业工程学报,2011,27(5):52-61
    刘昌明.二十一世纪中国水资源若干问题的讨论.水利水电技术,2002,33(1):15~19
    刘枫.于桥水库流域非点源污染的量化识别与改善于桥水库水质的对策:[硕士学位论文].北京:北京师范大学,1986
    刘瑞,朱道林.基于转移矩阵的土地利用变化信息挖掘方法探讨.资源科学,2010,32(8):1544-1550
    茆峰,苏馈足,康加延,等.基于改进输出系数法的矿区重金属面源污染负荷核算模型.环境科学研究,2012,25(2):207-211
    孟伟.流域水污染物总量控制技术与示范.北京:中国环境科学出版社,2008
    庞靖鹏.非点源污染分布式模拟——以密云水库水源地保护为例:[博士学位论文].北京:北京师范大学,2007
    乔飞,孟伟,郑丙辉,等.长江流域污染负荷核算及来源分析.环境科学研究,2013,26(1):80-87
    秦福来,王晓燕,张美华.基于GIS的流域水文模型——SWAT (Soil and Water Assessment Tool)模型的动态研究.地理研究,2006,27(1):81-85
    邱斌,李萍萍,钟晨宇,等.海河流域农村非点源污染现状及空间特征分析.中国环境科学,2012,32(3):564-570
    芮孝芳.水文学原理.北京:中国水利水电出版社,2005
    沈晔娜.流域非点源污染过程动态模拟及其定量控制:[博士学位论文].杭州:浙江大学,2010
    史晓楠,王全九,黄国琴.施肥方式对土壤水肥分布特征影响.水土保持学报,2010,24(1):191-196
    史志华,张斌.汉江中下游农业面源污染动态监测信息系统的建立与初步应用.遥感学报,2002,6(5):382-386
    水利部松辽水利委员会信息网http://www.slwr.gov.cn/
    宋林旭,刘德富,肖尚斌,等.基于SWAT模型的三峡库区香溪河非点源氮磷负荷模拟.环境科学学报,2013,33(1):267-275
    苏保林,王建平,贾海峰,等.密云水库流域非点源模型系统.清华大学学报:自然科学版,2006,46(3):355-359
    苏保林,王建平,贾海峰,等.密云水库流域非点源污染识别.清华大学学报:自然科学版,2006,46(3):360-365
    汤洁,杨巍,李昭阳,等.辽宁大伙房水库汇水区农业非点源污染入库模拟.吉林大学学报(地球科学版),2012,42(05):1462-1468
    唐莉华,张思聪,林文婧,等.北京温榆河流域水污染控制情景模拟与分析.水力发电学报,2012,31(4):156-161
    万超,张思聪.基于GIS的潘家口水库面源污染负荷计算.水力发电学报,2003,2:62-68
    王伯伦,刘新安,陈健,等.1949年以来辽宁省水稻发展形势的分析.沈阳农业大学学报,2002,32(2):83-86
    王飞儿,吕唤春,陈英旭,等.基于AnnAGNPS模型的千岛湖流域氮、磷输出总量预测.农业工程学报,2003,19(6):281-284
    王光谦,王思远,陈志祥.黄河流域的土地利用和土地覆盖变化.清华大学学报(自然科学版),2004,44(09):1218-1222
    王少丽,王兴奎,许迪.农业非点源污染预测模型研究进展.农业工程学报,2007,23(5):265-271
    王书功.水文模型参数估计方法及参数估计不确定性研究.郑州:黄河水利出版社,2010
    王思远,刘纪远,张增祥,等.中国土地利用时空特征分析.地理学报,2001,56(06):631-639
    王秀兰,包玉海.土地利用动态变化研究方法探讨.地理科学进展,1999,18(01):81-87
    王云琦,齐实,孙阁,等.气候与土地利用变化对流域水资源的影响——以美国北卡罗莱纳州Trent流域为例.水科学进展,2011,22(1):51-58
    王中根,刘昌明,黄友波SWAT模型的原理、结构及应用研究.地理科学进展,2003,22 (1):79-86
    魏怀斌,张占庞,杨金鹏SWAT模型土壤数据库建立方法.水利水电技术,2007,38(6):15-18
    吴建强.不同坡度缓冲带滞缓径流及污染物去除定量化.水科学进展,2011,22(1):112-117
    吴永红,胡正义,杨林章.农业面源污染控制工程的“减源-拦截-修复”(3R)理论与实践.农业上程学报,2011,27(5):1-6
    夏青,庄大邦,廖庆宜.计算非点源污染负荷的流域模型.中国环境科学,1985,5(4):23-30
    夏智宏,周月华,许红梅.基于SWAT模型的汉江流域水资源对气候变化的响应.长江流域资源与环境,2010,19(2):158-163
    胥彦玲,秦耀民,李怀恩,等SWAT模型在陕西黑河流域非点源污染模拟中的应用.水土保持通报,2009,29(4):114-117
    薛金凤.流域分布式非点源污染水动力学模型研究:[博士学位论文].武汉:武汉大学,2003
    杨桂莲,郝芳华,刘昌明,等.基于SWAT模型的基流估算及评价——以洛河流域为例.地理科学进展,2003,22(5):463-471
    杨绍南.辽阳首山地下水开采漏斗存在问题及治理对策.中国地质灾害与防治学报,1998(11):387-391
    杨寅群,李怀恩,杨方社.基于数字模型的陕西黑河水源区植被过滤带效果评估.水科学进展,2013,24(1):42-48
    杨钰,钱新,张玉超,等.两种新型流域非点源污染负荷估算模型的比较.中国环境科学,2009,29(7):762-766
    于磊,朱新军.基于SWAT的中尺度流域土地利用变化水文响应模拟研究.水土保持研究,2007,14(4):53-56
    于涛,孟伟,Edwin Ongley,等.我国非点源负荷研究中的问题探讨.环境科学学报,2008,28(3):401-407
    战秀梅,韩晓日,王帅,等.不同施肥对春玉米源库特征及其干系的影响.土壤通报,2008,39(4):887-891
    张东,张万昌,朱利,等.SWAT分布式流域水文物理模型的改进及应用研究.水科学进展,2005,25(4):434-440
    张福锁,陈新平,陈清.中国主要作物施肥指南.北京:中国农业大学出版社,2009
    张静,何俊仕,周飞,等.浑河流域非点源污染负荷估算与分析.南水北调与水利科技,2011,57(6):69-73
    张维理,冀宏杰,Kolbe H,等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学,2004,37(7):1018-1025
    张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1017
    张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染 控制中存在问题分析.中国农业科学,2004,37(7):1026-1033.
    张雪松,郝芳华,杨志峰,等.基于SWAT模型的中尺度流域产流产沙模拟研究.水土保持研究,2003,10(4):38-42
    张玉斌,郑粉莉,武敏.土壤侵蚀引起的农业非点源污染研究进展.水科学进展,2007,18(1):123-132
    郑璟,方伟华,史培军,等.快速城市化地区土地利用变化对流域水文过程影响的模拟研究.自然资源学报,2009,24(9):1560-1572
    郑一,王学军.非点源污染研究的进展与展望.水科学进展,2002,12(1):105-110
    中国水利水电科学研究院.流域水生态承载力与总量控制技术研究课题实施方案.北京:中国水利水电科学研究院,2008
    中国主要农作物需水量等值线图协作组.中国主要农作物需水量等值线图研究.北京:中国农业科技出版社,1993
    朱营,鲁纪行,边金钟.农田径流非点源污染特征及负荷定量化方法探讨.环境科学,1985,6(5):6-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700