用户名: 密码: 验证码:
微型燃烧器内甲烷催化燃烧特性数值研究及实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微电子机械系统(MEMS)技术日新月异的发展,微器件对许多领域的影响日趋明显,装置的微型化与微型系统的研究已成为当今研究的重要课题。近年来,国内外科研机构相继开展了微动力机电系统和微发动机的研究工作。它具有能量密度高、寿命长、体积小、重量轻、结构简单等优点。国内该领域的研究始于二十世纪九十年代中期,需要解决的科技难题还有很多。如微空间内可燃气体的流动、燃烧时间、燃烧效率和稳定性等可能与大空间内的燃烧有着完全不同的特性,这都需要进一步深入研究。甲烷燃料容易获得、价格低廉,在未来数十年内将是微型机电系统和气体发动机的主要燃料。微型燃烧器的尺寸较小、散热速率较大,可能使常规空间反应无法稳定进行,因此,研究微型燃烧器内甲烷预混流动和催化燃烧特性,可为微型发动机碳氢燃料燃烧技术打下基础。
     本文针对微系统内流动与燃烧的研究现状和存在问题,提出了微型燃烧器内碳氢燃料旋流预混催化重整燃烧技术,分析了微细尺度流动特性、催化重整及催化燃烧的反应机理。提出以燃料入口直径,旋、直流槽数量,次级燃料入口距离、数量等几方面因素来研究提高微型燃烧器预混腔的预混效果。探讨了了各参数变化时,各燃气出口速度、燃气出口速度分布均匀性、出口预混系数的变化规律,为设计快速高效的微型预混器提供理论依据。
     对预混方式及微燃烧器结构进行优化设计,增加了燃气在燃烧器内的停留时间,得到了甲烷、水蒸气在镍催化剂作用下在预混腔发生催化重整、积碳特性的变化规律。得出了影响其特性变化的控制参数(如催化温度、水碳比和质量流量)的适宜范围。针对不同的目的和催化反应,提出在微型燃烧器的预混腔和燃烧腔分别涂敷不同种类催化剂的催化燃烧策略。首次对滑移区内气体的流动与传热特性与Kn数关系进行了研究。
     提出可用反应对CO和CO_2选择性的指标,来辅助评价和分析各因素变化时甲烷催化燃烧效率和热值利用率的高低。微细尺度条件下可以忽略空间反应对整个催化反应的影响。得到了催化壁面温度、nCH_4/O_2摩尔比和质量流量变化时,甲烷催化燃烧效率、反应对CO和CO_2选择性、热值利用率的影响规律。对如何提高微细尺度下催化燃烧的燃烧效率和热值利用率具有重要的参考价值。
     首次考察了燃烧腔不同催化壁面、流动不均匀性、混合不均匀性对催化燃烧的影响。得到了在文中特定燃烧腔结构下,催化温度、甲烷与氧气摩尔比和甲烷质量流量各因素变化时,不同催化壁面对甲烷催化燃烧效率的贡献情况。为了兼顾催化燃烧效率和催化成本,提出了催化剂在不同催化壁面的涂敷策略。得到了流动不均、混合不均以及氢气量对甲烷催化燃烧和催化剂使用寿命的影响规律。为提高微细尺度下催化燃烧效率和降低催化成本提出了有效的解决措施。
     对微型燃烧器的预混腔和燃烧腔进行了结构优化设计,采用电火花加工工艺加工微燃烧器,搭建了微型燃烧器实验台,优化了系统,提高了微细尺度燃烧的稳定性、燃烧效率和可操作性。对不同微孔、不同流量下甲烷的扩散和预混燃烧火焰进行了实验研究。研究分析了不同工况下微火焰的形状、分布和颜色的变化情况。实验得到了火焰长度随甲烷流量、微孔孔径、微孔出口处雷诺数的变化规律。探讨了吹熄速度、淬熄速度、火焰的稳燃范围随孔径变化关系以及火焰长度/孔径之比随微孔出口雷诺数的变化规律。在实验系统提供的稳定高温环境下,研究了催化温度、CH_4/O_2摩尔比以及质量流量等不同因素对甲烷催化燃烧效率的影响,并分析了与数值模拟的异同。进一步揭示了散热损失在微细尺度催化燃烧中的重要作用。为微细尺度下碳氢燃料催化燃烧特性的研究提供重要的参考价值和实验基础。
     本文较系统地研究了微细尺度内流动、预混,催化重整及燃烧问题、研究分析了微孔燃烧火焰形状、结构及熄灭特性,微型燃烧器在稳定的高温环境中的催化燃烧等,提出了提高微细尺度预混、催化重整燃烧效率、充分利用微空间换热、减少散热损失的措施,并得到了相关影响因素的变化规律。有助于推进微细尺度催化燃烧特性的深入研究,充实和丰富了微细尺度催化燃烧的研究成果,也为相关技术(微旋流预混技术、微细尺度催化重整与燃烧等)的开发与应用提供了重要的参考依据。为微型发动机碳氢燃料燃烧技术打下基础,对推动微型发电动力系统的发展,具有重要的学术价值和工程应用价值。
With the development of the micro-electronics machine system (MEMS) technique, the micro machine has an important influence on many areas. Researches on miniaturization and the miniature system have become an important study in recent years. The domestic and international research organizations have developed the research about micro-electronics machine system and micro-engine. With the advantages of high power density, long life span, small volume, light weight and simple fabric. At the beginning of its study from the middle of the 1990's in China, there are still a number of scientific and technical problems need to be resolved. For instance,the flows,combustion time, combustion efficiency and stability of fuels in micro space may have a completely different combustion characteristics in the large space, which require further study. Methane which has the advantages of high power density and cheap cost will be the main fuel of micro-gas-engine in next decades. Because of small dimension and high rate of heat removal, regular homogeneous reaction can not carry through steadily. The study of the flow and catalytic combustion of methane in micro-combustor lays the foundation for the technology of hydrocarbon-fueled combustion in micro-engine.
     Based on the analyzing of the study status and main problems of flow and combustion in micro-system,the technology of rotational flow,premixed,catalytic reforming and combustion in micro combustor is presented. The characteristics of micro-flow and mechanism of catalytic reforming and combustion reaction are analyzed. The premixed effect in micro-premixed chamber is investigate using the several factors of fuel inlet diameter, numbers of arc-shaped and straight channel, the distance and number of subordinate fuel inlets. The influence of different factor on export velocity, uniformity coefficient of flow distribution and premixing coefficient in the export of the chamber are discussed. Which provides a theoretical basis for the designing a high efficient micro-premixed device.
     The premixing methods and structure of micro combustor are optimized to increase the gas settle time in combustion chamber. Under the nickel catalyst, the catalytic reforming and coking characteristics of methane and water vapor in the premixed chamber have been gained. The appropriate range of the control parameters (such as catalyst temperature, stream/methane ratio and the quality flow) has been gained. For different purposes and catalytic reaction, the catalytic combustion strategy of the micro-premixed chamber and combustion chamber were coated with different types catalyst is proposed. The relations of Kn and the characteristics of gas flow and heat transfer in slip area are firstly studied.
     The standard of reaction for the selective of CO and CO_2 can be used to assistantly assess and analyze the methane catalytic combustion efficiency and the utilization level of heat. Under the conditions of micro-scale, the impact of space reaction on the whole catalytic reaction can be ignored. The influence of catalytic surface temperature, nCH_4/O_2 mole ratio and mass flow rate on the methane catalytic combustion efficiency has been gained. The influence of the reaction on CO and CO_2 selectivity and utilization level of heat has been gained. It has an important reference value for improving the micro-scale catalytic combustion efficiency and thermal utilization level.
     The influence of different catalytic wall, flow nonuniformity and mixing nonuniformity on catalytic combustion are firstly studied in the combustion chamber. In the combustion chamber structure of text, when the catalytic surface temperature, CH_4/O_2 mole ratio and mass flow rate changes, the influence of different catalytic wall on the methane catalytic combustion efficiency has been gained. Accounting the efficiency of catalytic combustion and catalytic cost, the catalytic coating strategy on different catalyst walls is put forward. The influence regularity of flow nonuniformity, mixing nonuniformity and hydrogen on catalytic combustion and catalyst life are gained. It offers effective measures for the enhancing catalytic combustion efficiency and reduces catalyst costs in micro-scale.
     The micro-premixing chamber and combustion chamber are optimization designed and fabricated using EDM processing technology. The experiment system of the micro combustor has been set up and the pipeline connections are simplified, which improved micro-scale combustion stability, combustion efficiency and operability. Under different micropore diameter and methane flux conditions, the methane diffusion and premixed flame were experimentally investigated. The change regularity of flame length with methane flux, micropore diameter and Reynolds number is found. The relation of the blow-off and quenching speed of methane diffusion flame and stable combustion regions and the aperture diameter was discussed. The relation of flame length/micropore diameter ratio (L/d) and the Reynolds number was gained. In the stability of high temperature environments provided by the experimental systems, the influence of the catalytic temperature, CH_4/O_2 molar ratio and the methane flux on the methane catalytic combustion efficiency has been studied and compared with the numerical simulation results. It further revealed the heat loss plays an important role in the micro-scale catalytic combustion. It also affords an important reference and experimental foundation for the study of hydrocarbon fuel combustion characteristics in micro-scale systems.
     This paper studies the micro-scale flow, premixed, catalytic reforming and burning issues and analyzes micro flame shape and structure, quenching characteristics and catalytic combustion in constant temperature environment. The measures of improving micro-scale premixed, catalytic reforming, combustion efficiency, micro-space heat exchange and heat loss reduction are put forward. And the change relation of they and the influencing factors have been gained. It is helpful for deeper investigation of the micro-scale catalytic combustion. The results not only enrich the researches on micro-scale catalytic combustion, but also provide reference for the development and application of relative technologies. It also establishes the foundation for the micro-engine hydrocarbon fuel combustion technologies and promotes the development of micro-generation power system. The results have an important academic value and engineering applications.
引文
[1]苑伟政,马炳和.微机械与微细技工技术[M].西安:西北工业大学出版社,2000.
    [2]辛吉良,杨春生等.微机电系统及其相关技术[M].上海:上海交通大学出版社,1999.
    [3]丁衡高,袁祖武.微机电系统技术的实际应用——微型仪器[J].微米纳米科学与技术, 1999.4(1):15.
    [4]刘光辉,亢春梅. MEMS技术的现状和发展趋势[J].传感器技术, 2001, 20 (1) : 52.
    [5] Hua Jinsong, Wu Meng, Kurichi K. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part I: Fundamental study[J]. Chemical Engineering Science, 2005, 60(13): 3497-3506.
    [6] Hua Jinsong, Wu Meng, Kurichi K. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part II: CFD analysis for a micro-combustor[J]. Chemical Engineering Science, 2005, 60(13): 3507-3515.
    [7] Furjes P, Bognar G, Barsony I, Powerful tools for thermal characterisation of MEMS[J]. Sensors and Actuators B, 2006, 120(1): 270 -277.
    [8] Yuasa S, Shimi K O, Nose H, et al. Concept and combustion characteristics of ultra-micro combustors with flame[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2455-2462.
    [9] Yang Wenming, Chou Siawkiang, Shu Chang, et al. Effect of wall thickness of micro-combustor on the performance of micro-thermophotovoltaic power generators[J]. Sensors and Actuators A 119 (2005): 441-445.
    [10]曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧[J].化工学报, 2004, 55(1): 42-47.
    [11]覃川,傅维标.表面催化重整反应对热棒点燃预混气影响的理论分析[J].燃烧科学与技术, 2001, 7(4): 279-282.
    [12]覃川,王越男,傅维标.催化重整反应加氢对预混气火焰传播速度的影响[J].燃烧科学与技术, 2002, 8(1): 49-54.
    [13]梁德旺,黄国平.厘米级微型涡轮喷气发动机主要研究发展[J].燃气涡轮实验与研究, 2004, 17(2): 9-13.
    [14]王瑞金,林建中,李志华等.影响微槽道流动扩散特性因素的研究[J].中国机械工程, 2005, 16(4): 345-349.
    [15]乐军,陈光文,袁权.微混合技术的原理与应用[J].化工进展, 2004, 23(12): 1271-1276.
    [16] Spadaccini C M, Zhang Xin, Christopher P C, et al. Preliminary development of a hydrocarbon-fueled catalytic micro-combustor[J]. Sensors and Actuators, 2003, 103(1-2): 219-224.
    [17] Norton D G, Vlachos D G. Combustion characteristics and flame stability at the microscale: A CFD study of premixed methane/air mixtures[J]. Chemical Engineering Science, 2003, 58(21): 4871-4882.
    [18] Kaoru M, Koichi T, Sitzki L, et al. Catalytic combustion in micro-channel for MEMS power generation[C]. The Third Asia-Pacific Conference on Combustion, Seoul, Korea, 2001.
    [19] Bo Xu, Yiguang Ju. Concentration slip andits impact on heterogeneous combustion in a micro scale chemical reactor[J]. Chemical Engineering Science, 2005, 60: 3561-3572.
    [20]岑可法,姚强,骆仲泱,李珣天.高等燃烧学[M].浙江大学出版社,杭州, 2002第一版.
    [21]王关晴,程乐鸣,骆仲泱,高温空气燃烧技术中燃烧特性的研究进展[J].动力工程, 2007, 27(1):81-89.
    [22]胡国新,王明磊,李艳红.一种微细型腔内氢气与空气预混燃烧的实验研究[J].中国电机工程学报, 2004, 24(1):201-204.
    [23]李战华,崔海航微尺度流动特性[J].机械强度.2001, 23 (4):476-480.
    [24] Beskok A. Validation of a new velocity-slip model for separated gas micro flows[J]. Numerical Heat Transfer, 2001, Part B, 40(6): 451~471.
    [25]程勇,汪军.微型燃气轮机燃烧室内三维流动过程的数值模拟[J].上海理工大学学报2004.5:425-428.
    [26]程勇,汪军.旋流燃烧室内湍流流动的PIV实验研究[J].上海理工大学学报, 2004.5:454-456.
    [27]徐洁,谷传纲,王彤.微槽道内气体流动的数值模拟[J].上海交通大学学报, 2004.10: 1695-1698.
    [28]唐桂华,陶文铨.微细管内气体流动特性实验研究及影响因素分析[J].工程热物理学报, 2004.11:1025-1027.
    [29]刘志刚,赵耀华.微型管内流动特性的实验研究[J].工程热物理学报, 2005.9:835-837.
    [30]武东健,贾建援,王卫东.微细管道内的流体阻力分析[J].电子机械工程, 2005.4:38-40.
    [31]王瑞金,林建忠,李志华.影响微槽道流动扩散特性因素的研究[J].中国机械工程, 2005.2:345-349.
    [32] Tuckerman D B, Pease R F W. High performance heat sinking for VLSI. IEEE Electron Device Letters , EDL ,1981. 126~129.
    [33] Pfahler J, Harley J , Bau H H. Liquid and gas trasport in small channels[J]. Sensors and Actuauors DSC ,1991 ,32 :49~59.
    [34]辛明道,师晋生.微矩形槽道内的受迫对流换热性能实验[C].中国工程热物理学会第八届年会,北京, 1992.
    [35]张培杰,辛明道.微尺寸管内流体流动与换热[C].中国工程热物理学会第八届年会,北京, 1992.
    [36]孙宏伟,顾维藻,刘文艳.速度滑移和温度阶跃对微尺度流动和换热的影响[J].工程热物理学报, 1998(1):93-96.
    [37]张保柱,吴健康.弯曲微通道周期性流动和液体混合效率分析[J].华中科技大学学报2005.5:20-23.
    [38]徐洁,谷传纲,王彤.微槽道内气体流动的数值模拟[J].上海交通大学学报. 2004.10:1695-1698.
    [39]邬小波,过增元.微细光滑圆管内气体的流动与传热特性研究[J].工程热物理学报, 1997 ,18 (5) : 326–330.
    [40]秦丰华,姚久成,孙德军等..微尺度圆管内气体流量的实验测量[J].实验力学2001 ,16 (2) :119– 126.
    [41]杜东兴.可压缩性及粗糙度对微细管内流动及换热特性的影响[D].北京:清华大学工程力学系, 2000.
    [42]李勇,江小宁,周兆英等.微管道流体的流动特性[J].中国机械工程, 1994 ,5 (3) :24 - 25 ,43.
    [43]姜明健,罗晓惠,刘伟力.水在微尺度槽道中单相流动和换热研究[J].北京联合大学学报1998 ,12 (1) :71- 75.
    [44] Harley J, Bau H H, Zemel J, et al. Fluid Flow in Micron and Submicron Channels[C]. Proceeding of the IEEE. 89-TH0249-3: 275-281.
    [45] Choi S B et al. Fluid Flow acrd Heat Transfer in Microtubes. Micromechanical Sensors[J]. Actuators and Systerms ASME-DSC 32: 123-133, 1991.
    [46] Yu Fa et al. An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Mierbtzrbes[C]. Proc. 4th ASME/JSME Thermal Engineering Joint Conf.,1995.
    [47] Aspen Technology Inc. Utilities optimization and advanced control [EB/OL]. http://www.aspentech.com /2005.
    [48]王健康,刘树法,陈方等.制氢催化剂研究进展[J]. .分子催化,2005, 19(6):511-516.
    [49]胡捷,贺德华,李映伟等. Ni/ ZrO2催化剂上甲烷水蒸气重整反应的研究[J]..燃料化学学报, 2004, 1(32):98-103.
    [50]胡捷,贺德华.制备条件对水蒸气重整甲烷Ni/Z rO 2催化剂性能的影响[J].郑州大学学报(理学版), 2005, 3(37):64-67.
    [51]吴俊明,杨汉培,秦正龙.低镍Ni-Mg-O低水碳比的甲烷水蒸气重整[J].江苏化工, 2003, 31(4):38-41.
    [52] Dupont V, Zhang S H, Williams A.Experiments and simulations of methane oxidation ona platinum surface[J].Chemical Engineering Science, 2001, 56(8):2659-2670.
    [53] Warnatz J,Allendorf R J et al.A model of elementary chemistry and fluid mechanics in the combustion of hydrogen on platinum surface[J].Combustion and Flame,1994,96:393.
    [54] Deutschmann O,Behrendt F, Warnatz J.Modelling and simulation of heterogeneous oxidation of methane on a plantinum foil[J].Catalysis today,1994,21:461-470.
    [55]许家睿.白金触媒微管之特性讨论与研究[D].台湾国立成功大学,硕士论文. 2003.
    [56]张力,闫云飞,冉景煜,修恒旭..天然气汽车三效催化器流场均匀性数值模拟及催化剂优化[J].化工学报. 2005.56(9):1679-168.
    [57]朱文彦,孙立胜,张雨等.含铂汽车尾气三效催化剂的研究[J].宁夏大学学报.2001.6(2):199-200.
    [58] Wegeng Robert S., Pederson Larry R., TeGrotenhuisWard E., . etal. Compact fuel p rocessors for fuel cell powered automobiles based on microchannel technology [J]. Fuel Cells Bulletin, 2001, 3 (28):8 -13.
    [59] A.Y. Tonkovich, . S. Perry, Y. Wang, . D. Qiu, T. LaPlante, W.A. Rogers, Microchanel process technology for compact methane steam reforming[J].Chem. Eng. Sci. 59 (22-23) (2004) :4819–4824.
    [60] CHEN Guangwen, . YUAN Quan, LI Shulian. Microchannel Reactor for Methanol Autothermal Reforming[J]. Chinese Journal of Catalysis, 2003 (6) : 491-492.
    [61] Waitz A. Combustors for Micro-Gas Turbine Engines[J]. Journal of Fluids Engineering, 1998, 120(3):109-117.
    [62] A.H. Epstein, S.D. Senturia, et al. Power MEMS and micro engines[C]. In: IEEE Transducers’97 Conference, Chicago: IL, June 1997:753-756.
    [63] C. Groshenry. Preliliminary sduty of a micro-gas turbine engine[D]. In: S.M. thesis, Mass. Inst. Techno. Cambridge: 1995.
    [64] Amit Mehra, Arturo A. Ay′on, et al. Micro fabrication of High-Temperature Silicon Devices Using Wafer Bonding and Deep Reactive Ion Etching[J]. Journal of micro electromechanical systems, 1999, 8(2):152-159.
    [65] Mehra, Xin Zhang, et al. A Six-Wafer Combustion System for a Silicon Micro Gas Turbine Engine[J]. Journal of micro electromechanical systems, 2000, 9(4):517-527.
    [66] Christopher M. Spadaccini, Xin Zhang, et al. Preliminary development of a hydrocarbon- fueled catalytic micro-combustor[J]. Sensors and Actuators, 2003, A103:219–224.
    [67] Fu K. Microscale Combustion Research for Application to MEMS Rotary Engine[C]. 2001 National Heat Transfer Conference, Anaheim, CA. 2001:12-16.
    [68] L. Sitzki, K. Borer, E. Schuster, P. Ronney. Combustion in microscale heat recalculatingburners[C]. The Third Asia-Pasfic Conference on Combustion, Seoul, Korea, 2001:56-61.
    [69] Allen M. G. Ceramic Micromachining Technology. DARPA Workshop on Combustion based MEMS Power Generation on the Microscale[C]. Washington , DC , 1998.
    [70] H. T. Aichlmayr , D. B. Kittelson , M. R. Zachariah. Micro HCCI combustion : experimental characterization and development of a detailed chemical kinetic model with coupled piston motion[J]. Combustion and Flame , 2003 , 135 , 227~248.
    [71] Gedel Hak M. The fluid mechanics microdevices the Freeman Scholar Lecture[ J ]. Journal and Fluids Engineering, 1999, 121.
    [72] Werner J.A. Dahm etc. Micro Internal Combustion Swing Engine (MICSE) for Portable Power Generation Systems[C]. AIAA Paper No. 2002 - 0722 presented at the 40th AIAA Aerospace Sciences Meeting , January 14-17 , 2002 , Reno , NV.
    [73] Holladay J . D. , Jones E. O. , Phelps M. , Hu J . High efficiency microscale power using a fuel processor and fuel cell[J]. SPIE Micromachining & Microfabrication. Paper 4559220 ,San Francisco , 2001 ,October.
    [74] London A. p. , Ayon A. A. , Epstein A. h. , Spearing S. M. , Harrison T. , Peles Y. , Kerrebrock J . L. Microfabrication of a High Pressure Bipropellant Rocket Engine[J]. Sensors and Actuators A ,2001 ,92 ,351~357.
    [75] London A. P. , Epstein A. H. , Kerrebrock J . L. High Pressure Bipropellant Microrocket Engine[J]. Journal of Propulsion and Power , 2001 , 17 (4).
    [76] Yetter R. a. , Yang V. , Milius D. L. , Aksay I. A. , Dryer f . L. Decelopment of a Liquid ropellant Microthruster for Small Spacecraft. Proc. Eastern States Section[J] , The Combustion Institute ,Hilton Head Is. , S. C. , Dec. 225 ,2001.
    [77] Yang W M, Chou S K, Xue H, et al. Micro Combustion Research For Micro Thermo photovoltaic Systems [A]. International Mechanical Engineering Congress and Exposition. New Orleans, 2002: 17- 22.
    [78]张杨林. MEMS技术的发展现状及应用[J]机械工人, 2005.4 :56-58.
    [79] D. G. Norton, D.G. Vlachos. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures[J]. Chemical Engineering Science,2003, 58: 4871– 4882.
    [80] Choi, K.H., Na, H.B., Lee, D.H., Kwon, S., Numerical simulation of flame propagation near extinction condition in a micro-combustor [J]. Microscale Thermophysical Engineering 2004, 8: 71–89.
    [81] Jinsong Hua, MengWu, Kurichi Kumar. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part I: Fundamental study[J]. ChemicalEngineering Science 2005,60:3497–3506.
    [82] Jinsong Hua, MengWu, Kurichi Kumar. Numerical simulation of the combustion of hydrogen–air mixture in micro-scaled chambers Part II: CFD analysis for a micro-combustor[J]. Chemical Engineering Science, 2005, 60: 3507– 3515.
    [83] Ban H, Venkatesh S, Saito K.Convection-diffusion controlled laminar micro flames [J]. .J of Heat Transfer, 1994, 116:954-959.
    [84] Nakamura Y, Kubota A, Yamashita H , et al. Near extinction flame structure of micro-diffusion flames [C]. The Int Sym on Micro-mechanical Engineering.Japan, 2003, ISMME 2003-111.
    [85] Ida T, Fuchihata M, Mizutani Y. Microscopic diffusion flame structure with micro flames [C]. Proceedings of the Third International Symposium on Scale SME3Modeling.Nagoya, Japan, 2000, ISME3.
    [86] Matta L M, Neumeirie Y, Lemon B, et al. Characteristics of microscale diffusion flames [J]. Proceedings of Combustion Institute, 2002, 29:939-993.
    [87] Yang W M, Chou S K, Xue H, et al. Microscale combustion research for application to micro thermophoto voltaic systems [J]. Energy Conversion and Management, 2003,44:2625-2634.
    [88] L iao S Y, J iang D M, Cheng Q. Determination of Laminar Burning Velocities for Natural Gas [J]. Fuel, 2004, 83 (9) : 1247 - 1250.
    [89] Yu G, Law C K, Wu C K. Laminar Flame Speeds of Hydrocarbon + Air Mixtures with Hydrogen Addition[J]. Combustion and Flame, 1986, 63 (1 /2) : 339-347.
    [90] Law C K, Kwon O C. Effects of Hydrocarbon Substitu2tion on Atmospheric Hydrogen2Air Flame Propagation [J]. International Journal of Hydrogen Energy, 2004,29 (8) : 867-879.
    [91]胡国新,王明磊,李艳红.一种微细型腔内氢气与空气预混燃烧的实验研究[J].中国电机工程学报,2004,24(1):202-204.
    [92]胡国新,王明磊.微细通道内可燃气体预混燃烧实验与微型发动机燃烧方案[J].热能动力工程,2003,18(4):352-431.
    [93]曹海亮,徐进良.微尺度环形燃烧室的燃烧特性[J].自然科学进展,2006,16(7):874-880.
    [94]钟北京,伍亨..甲烷/空气预混气体在微通道中催化转化的数值模拟[J].燃烧科学与技术,2005,11(1):1-5.
    [95]钟北京,伍亨..甲烷在逆流换热微燃烧器内催化燃烧的数值模拟[J].工程热物理学报, 2005, 26(2):351-353.
    [96]李德桃,潘剑锋,邓军等.微型发动机德燃烧模型和数值模拟[J].燃烧科学与技术,2003,9(2):183-185.
    [97]李德桃,潘剑锋,邓军等.微型发动机燃烧室的模拟研究[J].机械工程学报, 2002,38(10):59-61.
    [98]邓军,李德桃,潘剑锋等.微型火焰管中燃烧的研究[J].工程热物理学报, 2004, 25(3):537-539.
    [99]覃川,傅维标.表面催化重整反应对热棒点燃预混气影响的理论分析[J].燃烧科学与技术,2001,7(4):279-282.
    [100]覃川,王越男,傅维标.催化重整反应加氢对预混气火焰传播速度的影响[J].燃烧科学与技术,2002,8(1):49-54.
    [101]伍亨,钟北京.空间反应和入口速度对甲烷催化反应的影响[J].清华大学学报(自然科学版),2005,45(5):670-672,676.
    [102]王国锋,钟北京.微细通道中甲烷预混火焰传播的实验[J].清华大学学报(自然科学版),2006,46(2): 276-279.
    [103]冉景煜,胡建红,张力等.微细通道内甲烷湿空气催化重整多元气体组分生成特性[C].中国工程热物理学会多相流学术会论文集,重庆2006.8.
    [104] Jing-yu Ran, Li-xiang Niu, Qiang Tang, et al. The Characters of CH4-Vapor Catalytic Reforming Reaction Considering CO2 and CH4 Reaction in the Micro-Chamber[C]. Proceedings of the Fifth International Conference on Nanochannels, Microchannels and Minichannels, Pueblo, Mexico, 2007:18-20.
    [105] Li Zhang, Yunfei Yan, Yun Qiu. Numerical investigation of the gas premixing and flow resistance in the micro gas turbine engine premix chamber[C]. 2006 ASME International Mechanical Engineering Congress and Exposition, Chicago, USA, 2006:5-10.
    [106]张永生,周俊虎,杨卫娟等. T型管道内氢气空气预混燃烧实验研究[J].中国电机工程学报, 2005, 21(25):128-131.
    [107]石庚辰.微机电系统技术[M].北京国防工业出版社,2002, 174-194.
    [108] Yongsheng Gao,etc. Detachment modeling of a novel workpiece micro-positioning table under preloaded hertz contact[J] Precision Engineering Journal of International Societies for Precision Engineering and Nanotechnology,2002(26):83-92.
    [109]莫锦秋,梁庆华,汪国宝等.微机电系统设计与制造[M].北京:化学工业出版社, 2004.
    [110]蒋中伟,袁大军,陈荣刚等..双光子三维微细加工重要工艺参数的实验研究[J].微细加工技术, 2003,2: 59 -63.
    [111]施文轩,张明歧等.电液束加工工艺的研究及其发展[J].航空制造技术, 2001, 6: 25-27.
    [112]魏冰阳,王立公,杨建军邓效忠.超声加工及其在齿轮制造中的应用与展望[J].现代制造工程2004.7 :101-104.
    [113] R.Muller-Fiedler, U.Wagner, W. Bernhard Reliability of MEMS-a methodical approach , Microelectronics Reliability 2003.43:1049-1060.
    [114]张帅,贾育秦. MEMS技术的研究现状和新进展[J].现代制造工程, 2005 (9):109-112.
    [115]张文普,丰镇平.微型燃气轮机环型燃烧室的设计研究[J].中国电机工程学报, 2005, 5(3):150-153.
    [116]张孝友,卫尧,李德桃等.开发微型发动机燃烧器遇到的问题和解决途径[J].内燃机工程, 2003, 24(4): 70-73.
    [117]匡龙,卫尧,吴建.微动力机电系统研究开发以及面临的问题[J].河南科技大学学报(自然科学版), 2004, 25(5): 25-29.
    [118]陶然,权晓波,徐建中.微尺度流动研究中的几个问题[J].工程热物理学报,2001,(5):575– 5771.
    [119] Kasemo B, Ljungstrom S, Rosen A. Mathematic model and experimental results for H2O and OH procudtion rates on Pt Surface Science,1987,189/190:851-860.
    [120] James, Miller A, Melius CF. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels[J]. Combustion and Flame, 1992, 91:21-39.
    [121] Hellsing B, Kasemo B. Kinetic model study of OH desorption during H2O production on Pt[J]. Chemical Physics Letters, 1998, 56(10):148-156.
    [122] Deutschmann O, Warnatz J. Modeling of catalytic combustion and conversion of methane[J]. Comb. Sci. Tech., 2000, 125:42-58.
    [123] Pfefferle L. D, Pfefferle W. C., Catalysis in combustion[J]. Catal. Rev. Sci. Eng. 1987,29,219-267.
    [124]姜圣阶.合成氨工业[M].北京:石油化学工业出版社, . 1976: 167.
    [125] Hou KH, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O3 catalyst[J]. Chemical Engineering Journal, 2001, 82(1-3): 311-328.
    [126] Harrison B K, Ernst W R.Combust Sci Tech, 1978, . 19:3l一34.
    [127] Oh S H, Mitchell P J, Siewert R M., Catalytic Contral of Air Pollution[J], ACS Symposium Series, 1992, 12, 495-509
    [128] Deutschmann O, Schxnidt R, Behrendt F, et al. Numerical modeling of catalytic ignition[C]. Proceedings of the Combustion Institute, 1996, 26:1747-1754.
    [129] W.Martir,J.H.Lunsford,J.Am.Chem.Soc.103(1981)3728.
    [130] S.C.Su,J.N.Cartens,A.T.Be11,J.Cata1.176(1998)125.
    [131] K.LFujimoto,FH.Riberio,M.Avalos-Borja,E.Iglesia,J.Cata1.179(1998}31.
    [132]覃川催化重整反应对烃类燃料燃烧的影响[D]北京:清华大学, 2000.
    [133]陈吉祥,王日杰,李玉敏等.镍基气凝胶催化CH4—CO2重整制取合成气反应的研究Ⅲ.影响催化剂积碳性能因素的探讨[J].燃料化学学报, 2002.10:448-453.
    [134]董国兴,张鎏. Ni系水蒸气转化催化剂上积炭和消炭的机理探讨[J].催化学报,1995.5:183-189.
    [135] S. Rakass , H. Oudghiri-Hassani, P. Rowntree , , N. Abatzoglou.Steam reforming of methane over unsupported nickel catalysts[J]. Journal of Power Sources.2006 (158): 485–496
    [136] Weltens H, Bressier H, Terres F. Optimization of Catalytic Converter Gas Flow distribution by CFD Prediction. SAE Paper 930780, 1993.
    [137] Tuckermann D B, Pease R F. Optimized Convective Cooling Using Micromachined Structure[J]. Electro-Chemical Society, 1982,129(3):98-105.
    [138] Wu Peiyi, Little W A. Measurement of Friction Factor For the Flow of Gases in Very Fine Channel Used For Microminiature Joule-Thomson refrigerators[J].Cryogenices, 1983,23(5): 273-277.
    [139] Pfahler J, Harley J, Bau H, et al. Gas and Liquid Flow in Small Channels[R].ASME Winter Annual Meetings, Atlanta,GA,1991.
    [140] Beskok A, Karniadakis G E. Simulation of slip-flow in complex micro-geometries[J]. ASME DSC, 1992, 40: 355-370.
    [141] Barron R F, Wang X M, Ameel T A, Warrington R O. The Graetz Problem Extended to Slip-Flow[J]. International Journal of Heat and Mass Transfer, 1997, 40(8):1817-1823.
    [142] Francisco E L , Christos H, Yannis D. Slip-Flow Heat Transfer in Circular Tubes[J]. International Journal of Heat and Mass Transfer, 2000, 43 (15):2669-2680.
    [143] Beskok A. Validation of a New Velocity-Slip Model for Separated Gas Micro Flows[J]. Numerical Heat Transfer, 2001, Part B, 40(6): 451-471.
    [144]尤学一,郑湘君,李丹.微尺度流道内液体摩擦系数的理论计算[J].中国机械工程, 2005,16(14):1278-1281.
    [145]李志信,杜东兴,过增元.微细光滑管内的气体流动阻力特性[J].中国科学E(辑), 2000,30(2):173-178.
    [146] Sparrow E M , Lin S H. Laminar Heat Transfer in Tubes under Slip-Flow Condition[J]. ASME J. Heat Transfer, 1962,84(4): 363-369.
    [147]安刚,李俊明,王补宣.恒壁温边界条件下不可压缩气流在微通道内的二维层流换热[J].中国科学(E辑),2001,31(2):117-122.
    [148] Choi C W, Ju Y.Observation of flame dynamics in meso-scale channel [C].Proceedings of the Third Joint Meeting of the U. S. Sections of The Combustion Institute, Chicago, USA, 2003.
    [149]伍亨,钟北京等.空间反应和入口速度对甲烷催化反应的影响[J].清华大学学报(自然科学版), 2005, 45(5):670-672,676.
    [150] Song X, Williams W R, Schmidt L D. Bifurcation behavior in homogeneous-heterogeneouscombustion Part II:Computations for stagnation-point flow[J].Combustion and Flame, 1991, 84(3-4):292-311.
    [151] Dupont V, Zhang S H, Bentley R, et al. Experimental and modelling studies of the catalytic combustion of methane[J].Fuel, 2002, 81(6):799-810.
    [152]钟北京,洪泽恺.甲烷微尺度催化燃烧的数值模拟[J].工程热物理学报, 2003.1:173-176
    [153] Dupont V, Zhang S H, Williams A.Experiments and simulations of methane oxidation on a platinum surface[J]. Chemical Engineering Science, 2001, 56(8):2659-2670.
    [154] D.H. Lee, S. Kwon. Scale effects on combustion phenomena in a microcombustor[J]. Microscale Thermophysical Engineering, 2003, 7:235-251.
    [155] Marinov,Westbrook, Pitz.Detailed and Global chemical kinetics Model for Hydrogen[C]. 8th Int’l Symp on Transport Properties, San Francisco, 1995.
    [156] Schefer. Catalyzed combustion of h2/air mixtures in a flat plate boundary layer:ⅡNumerical model[J]. Combustion and Flame, 1982,45: 171-190.
    [157]蒋利桥,赵黛青,汪小憨.微尺度甲烷扩散火焰及其熄灭特性[J].燃烧科学与技术,2007.2:183-186.
    [158] Hachert CL,Ellzey JL, Ezekoye OA. Effects of thermal boundary conditions on flame shape and quenching in ducts[J]. Combustion and Flame, 1998, 112: 73-84.
    [159] Spadaccini CM, Mehra A, Leej, et al. High power density silicon combustion systems for micro gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125 :709-719.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700