用户名: 密码: 验证码:
含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流变是岩石材料的重要力学特征,许多岩土工程问题都与岩石的流变特性有密切关系,岩石流变现象给实际工程带来的影响已引起国内外学者的广泛关注。目前,在描述和处理岩石的时间效应及其流变属性方面取得了较大的进展,但针对含水状态下岩石流变特性的研究成果并不多见,而实际中却存在许多长期受地下水影响的岩石工程问题,因此正确了解并掌握岩石(特别是软岩)在地下水环境中的流变特性具有重要的现实意义。本文在前人研究的基础上,采用试验研究、理论分析和数值模拟相结合的研究方法,对含水泥质粉砂岩蠕变特性及其在软岩隧道稳定性分析中的应用等进行了较为系统和深入的研究。论文的主要研究内容和成果如下:
     ①从桃树垭隧道现场采集新鲜的T2b2泥质粉砂岩,进行了不同含水状态下的力学特性试验,获得了四种含水率情况下的应力—应变关系曲线。基于T2b2泥质粉砂岩单轴蠕变试验,获得了不同含水状态下五级荷载的单轴应变-时间曲线,分析得到了蠕变随不同应力水平及不同含水状态的变化规律。
     ②基于岩石非线性流变力学基本理论,在T2b2泥质粉砂岩应力—应变关系相关研究的基础上,提出了一种修正的Kelvin模型,并建立了该模型一维情况下的流变本构方程,分析表明修正Kelvin体在描述岩石流变特性时具有更好的适应性。
     ③针对T2b2泥质粉砂岩蠕变模型的辨识问题,首先提出了一种可用阶跃函数表示的开关元件,并将开关元件和牛顿体并联建立了修正牛顿体,然后将修正牛顿体、修正Kelvin体、Hoek体串联得到可描述岩石非线性蠕变特性的MBurgers模型。基于非线性最小二乘理论,结合T2b2泥质粉砂岩的单轴蠕变试验结果,对MBurgers模型参数进行了回归反演,将反演得到的参数代入模型进行计算,得到的理论曲线与试验曲线相比吻合较好,表明MBurgers模型能较好地描述T2b2泥质粉砂岩的单轴蠕变特性。
     ④针对含水率变化对泥质粉砂岩蠕变特性的影响问题,定义了岩石的含水率损伤概念,引入瞬间弹性损伤D (w)、长期蠕变损伤D′( w)两个损伤变量且推导了损伤演化公式,建立了考虑含水损伤效应的MBurgers蠕变方程,并针对含水率恒定和含水率随时间变化两种情况进行了分析与计算。
     ⑤通过对考虑含水损伤Mburgers模型进行退化假定分析,得到了几种常见的流变模型。对不考虑参数α影响退化得到的可考虑含水损伤KBurgers模型分别进行了常泊松比和常体积模量假定下的三维形式推广,并研究得到了不同建模思路下模型参数之间的换算关系。通过对常体积模量假定下模型参数随含水率变化的损伤演化规律进行了分析,获得了常体积模量假定下的瞬间弹性损伤和长期蠕变损伤演化方程。将Mohr-Coulomb元件与KBurgers模型串联,并假定粘弹和粘塑应变率分量变形协调,建立了能模拟粘弹塑性偏量特性和弹塑性体积行为的KBurgers-MC模型,新模型除具有瞬间弹性变形、衰减蠕变、等速蠕变和含水损伤的性质外,还可以描述塑性变化引起的不稳定蠕变特性。
     ⑥基于有限差分理论,推导得到了KBurgers-MC模型的有限差分格式,并结合FLAC3D软件良好的二次开发环境进行了模型的程序二次开发研究,获得了KBurgers-MC模型的计算机应用程序,并在此基础上,结合桃树垭隧道工程,对施工过程中不同含水状态下的围岩稳定性和支护结构的变形及受力性状进行了模拟分析,探讨了不同含水状态下隧道二次衬砌最佳施作时机,并进一步分析阐明了桃树垭隧道大变形灾害的发生机理。
Rheology is the most important mechanical characteristics of rock material, and many geotechnical-engineering problems closely relates to the rheological properties of rocks. As the phenomenon of rock rheology is widespread, people have begun to realize the impact of rheological behavior to the projects. Although people have made a great and important progress in describing and processing time effect and rheology of materials, however, there are still many problems need to solve. Additionally, water is a very important factor in affecting the rheological properties of tunnel surrounding rock. During the tunnel excavation, disturbance because of excavation will cause physical breakdown of original rock and increase the exposed area of rock. As a result, the seepage path of rock will increase and surrounding rock will become weaker because of the contacts with ground water. With the time increasing, the phenomenon that surrounding rock may become unstable, which may cause the occurrence of major engineering accident. Therefore, it has very important significance in practice to understand and master the rheology of rocks (especially the soft rock) in the groundwater environment.
     In view of this, researches carried out in this paper will use a combination method including testing research, theoretical analysis and numerical simulation. According to uniaxial creep tests of T2b2 siltite under different moisture conditions and the non-linear rheology theory and damage theory, the creep properties of siltite under different moisture conditions is analyzed, nonlinear creep model of siltite with considering water damage is present and also programmed in computer. Based on the theoretical study results, researches on the effectiveness of soft rock tunnel dynamic construction mechanics under different moisture conditions are carried out. The main contents and results of research in this paper are as follows:
     ①According to the mechanics and deformation tests of the T2b2 siltite in different moisture conditions, which is collected freshly from the Tao Shu Ya tunnel site, the stress-strain curves under 4 kinds of moisture conditions are obtained. Based on the creep tests of T2b2 siltite under different moisture conditions, uniaxial strain-time curves in five load levels are obtained under different moisture conditions, and the variation law of creep curves with the change of stress and moisture content is analyzed.
     ②According to the basic nonlinear rheology theory of rock and the relevant researches on stress-strain relationship of T2b2 siltite, a revised Kelvin model is put forward, and the rheological constructive equation of it is present. Through comparing the characteristics of the revised K model and common K model, it is indicated that the revised K model has many special characteristics and has a better adaptability in describing the rheological properties of rocks.
     ③In response to the problems of creep model identification of T2b2 siltite, a swath model, which can be expressed as a pulse function, is put forward firstly, and by installing the swath model with N model in parallel, a revised N model is established too. Through connecting revised N model with revised K model and H model in the form of series, an MBurgers model, which can well describe the nonlinear creep property of rock, is established. According to the nonlinear least squares theory and uniaxial creep test results of T2b2 siltite, the parameters of MBurgers model are obtained by inversion caculation. By substituting the parameters obtained on behalf of the inversion into the model and calculating the theoretical results, it is shows that theoretical curve and test curve is well anastomotic, which indicates that MBurgers model can well describe the creep of T2b2 siltite.
     ④In response to the problems of creep properties of siltite effected by the changes of moisture content, the concept water damage and two damage variable instantaneous elastic damage D (w), creep damage D′( w) are introduced. Through deriving damage evolution equation, MBurgers model with water damage effect is established, what’s more, the characteristics of it are analyzed in the case that moisture content is invariable or variable over time.
     ⑤With analyzing the degradation of MBurgers with water damage effect in different assumptions, several other rheological models are established. In case of not considering the parameterαeffect but consider the water damage effect, a new creep model KBurgers model can be established, and it can also be extended to three-dimensional format in the assumptions of invariable Poisson’ration and invariable bulk modulus. In addition, the relationships among the model parameters under different modeling ideals are studies too. Through analyzing the damage evolution of model parameters with moisture content changing under the assumption of invariable bulk modulus, the damage evolution equations of instantaneous elastic damage and creep damage are obtained. By connecting the M-C model with KBurgers model in serial and assuming the strain rate components of viscoelastic and viscoplastic are compatible, a new model KBurgers-MC model which can describe the visco-elastic-plastic characteristics of deviator and elastic-plastic characteristics of bulk is established. Furthermore, the new model not only has the characteristics of instantaneous elastic, attenuation creep, steady creep and water damage, but also has the characteristics of plastic and unstable creep.
     ⑥Based on the difference theory and good redevelopment platform of the software FLAC3D, the finite difference scheme of KBurgers-MC is present, and the computer program of it is obtained too. Combining the computer program and the actual construction process of Tao Shu Ya tunnel, deformation and stress of surrounding rock and supports are simulated by FLAC3D under different times and different moisture conditions. Finally, stability of surrounding rock under different times and different moisture conditions is judged, the best construction time for secondary lining under different moisture conditions is suggested, and the mechanism of larger deformation occurrence in Tao Shu Ya tunnel is also further expound.
引文
[1] Sun Jun, Wang Sijing. Rock mechanies and roek engineering in China:developments and current state-of-the-art[J]. Int.J.RockMeeh.Min.Sei., 2000(37):447-465
    [2]孙钧.迎接新世纪的岩石力学若干进展[A].第五届全国岩石力学与工程大会论文集[C].上海:中国科学技术出版社, 1998:1-10
    [3]孙钧.岩石力学在我国的若干进展[J].西部探矿工程,1999,11(l):l-5
    [4]秦玉春.长大深埋隧洞围岩非定常剪切蠕变模型初探[D].南京:河海大学,2007
    [5]陈宗基.根据流变学与地球动力学观点研究新奥法[J].岩石力学与工程学报, 1988, 7(2): 97-106
    [6]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1985
    [7]穆霞英.蠕变力学[M].西安:西安交通大学出版社,1990
    [8]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001
    [9] Wawerisk W R. Time-dependent rock behavior uniaxia compression. proc.14th, symp. Rockmeck, U.S.A. 1972
    [10]范庆忠.岩石蠕变及其扰动效应试验研究[D].青岛:山东科技大学,2006
    [11]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [12] Griggs,D.T. Creep of rocks[J]. Journal of Geology.1939,47:225-251
    [13] Robertson E.C. Viscoelasticity of rock, in State of Stress in the Earth’s Crust(W.R.Judd Ed.).New Ybrk: Elsevier, 1964
    [14] Lama R.D.&Vulukuri V.S. Handbook on Mechanical Properties of Rocks.Vol.Ⅲ, TRANS TECH PUBLICATIONS, 1978
    [15] Ito H, Sasajima S. Aten year creep experiment on small rock specimens[J]. Int. Rock Mech. Mine. Sci. and Geomech.Abst.r.,1987,24(2)
    [16]周维垣.高等岩石力学[M]北京:水利水电出版社,1990
    [17] R.E.Goodmna.岩石力学原理及其应用[M]北京:水利电力出版社,1990
    [18]陶振宇.岩石力学理论与实践[M].北京:水利出版社,1981
    [19]孙钧,李永盛.岩石流变力学及其工程应用[A].岩石力学新进展[C].沈阳:东北工学院出版社,1989
    [20]章根德,何鲜,朱维耀.岩石介质流变学[M].北京:科学技术出版社,1999
    [21]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报1995, 14(1): 39-47
    [22] Li Yongsheng, XiaCaichu.Time-dependent tests on intact rocks in uniaxial compression[J].Int.J.Rock Mech. Mine Sci. and Geomech. Abstr 2000,37:467-475
    [23]张向东,郑雨天,肖裕性.第三系软弱岩体蠕变理论[J].东北大学学报,1997,18(l):31-35
    [24]金丰年.岩石拉压特征的相似性[J].岩土工程学报,1998,20(3):31-33
    [25]山下秀等.岩石蠕变及疲劳破坏过程和破坏极限研究[J].辽宁工程技术大学学报,1999,18(5):452-455
    [26] Xu Ping, Yang Tingqing. A study of the creep of granite[A].In: Proc. of IMMM’95[C].Beijing: International Academic Publishers,1995(2):45-49
    [27]徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63-67
    [28]夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分折[J].岩石力学与工程学报,1996,15(4):312-322
    [29] Maranini E, Brignoli M.Creep behaviour of a weak rock: experimental characterization[J]. Int.J. Roek Mech.Mine Sci.1999,36(l):127-138
    [30]吴刚.红砂岩卸荷破坏特性的试验研究[A].岩土力学与工程.第二届全国岩土力学与工程青年工作者学术讨论会论文集.大连:大连理工大学出版社,1995:228-236
    [31] Sun Jun, HuY.Y. Time-dependent effects on the tensile strength of saturated granite at Three Gorges Project in China[J]. Int.J. Rock Mech.Mine Sci.1997,34:381-384
    [32]李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3): 299-303
    [33]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3):246-251
    [34]邓广哲,朱维中.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358-365
    [35]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报,1996,24(5):504-508
    [36]陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报,2000,6(6):491-496
    [37]陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,33(4):450-454
    [38]张晓春,杨挺青,谬协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999,29(1):97-104.
    [39] Yang Gengshe, Zhang Guangqi. .Rock mass damage and monitoring[M]. Xi’an: Shan xi science and Technology Press.1998(in Chinese)
    [40] Ge Xiurun, Ren Jianxi et al. A real-in-time CT triaxial testing study of meso-damage evolution law of coal Chinese Journal of Rock[J]. Mechanics and Engineering.1999,18(5):497-502(in Chinese)
    [41] Ge Xiurun, Ren Jianxi et al. Study on the real intime CT test of the rock meso-damage Propagation law[J]. Science in China.SeriesE.2000, 30(2):104-111(in Chinese)
    [42] Ren Jianxi, Ge Xiurun et al. Study of rock meso-damgae Propagation law in the uniaxial compression loading and its constitutive mode[J]. Chinese Journal of Rock Mechanics andEngineering 2001, 20(4):425-431(in Chinese)
    [43]任建喜.单轴压缩岩石蠕变损伤扩展细观机理CT实时试验[J].水利学报,2001(1):10-15
    [44]徐平,杨挺青.岩石流变试验与本构模型辩识[J].岩石力学与工程学报,2001(增):1739-1744
    [45]吴立新王金庄孟胜利煤岩流变模型与地表二次沉陷研究[J].地质力学学报,1997,3(3):29-35
    [46]张学忠,王龙,张代钧等.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报(自然科学版),1999,22(s):99-103
    [47]李永和,葛修润.锚喷材料经时蠕变损伤本构方程[J].岩土力学,1997,18(4):8-12
    [48] Vyalov S S.Rheological Fundamentals of Soil Mechanics.London:Elsevier Applied Science Publishingers, 1986:231-232
    [49]刘辉.软土流变模型及其工程应用[D].长沙:湖南大学,2008
    [50]金丰年,蒲奎英.关于粘弹性模型的讨论[J].岩石力学与工程学报,1995,14(4) :335-361
    [51]邓荣贵,周德培,张悼元等.一种新的岩石流变模型[J].岩石力学与工程学报2001, 20(6): 780-784
    [52]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报2002,25(7):96-98
    [53]曹树刚,边金,李鹏.岩石蠕变本构关系及改进的西原正夫模型[J].岩石力学与工程学报,2002, 21(5): 632-634
    [54]陈沅江,潘长良,曹平等.软岩流变的一种新力学模型[J].岩土力学,2003,24(2):209-214
    [55]陈沅江,潘长良,曹平等.一种软岩流变模型[J].中南工业大学学报(自然科学版), 2003, 34(l): 16-20.
    [56]王来贵,何峰,刘向峰等.岩石试件非线性蠕变模型及其稳定性分析[J].岩石力学与工程学报,2004,23(10):1640-1642
    [57]杨圣奇.岩石流变力学特性的研究及其工程应用[D].南京:河海大学,2006
    [58]陈晓斌,张家生,封志鹏.红砂岩粗粒土流变工程特性试验研究[J].岩石力学与工程学报,2007,26(3):601-607
    [59]赵延林,曹平,文有道等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008,27(3):477-486
    [60]蒋昱州,张明鸣,李良权.岩石非线性黏弹塑性蠕变模型研究及其参数识别[J].岩石力学与工程学报,2008,27(4):832-839
    [61]陈沅江,潘长良,曹平等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003,13(3):735-742
    [62]高延法.矿山岩体力学[M].徐州:中国矿业大学出版社,2000
    [63]陈沅江,潘长良,曹平等.基于内时理论的软岩流变本构模型[J].中国有色金属学报,2003, 13(3): 735-742
    [64]缪协兴,陈至达.岩石材料的一种蠕变损伤方程.固体力学学报,1995,16(4):343-346
    [65] Chna K S, Bodner S R, Fossum A F, etal. A constitutive model for inelastic flow and damage evolution in solids under tri-axial compression[J]. Mech. Of Math,1992,(14):1-14
    [66] Chna K S, Brodsky N S, Fossum A F, etal. Damage-induced nonassociated inelastic flow in rook salt[J]. Int.J.Plasticity,1994(10):623-642
    [67] Fossum A F, Brodsky N S, Chan K S, etal. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression[J].Int.J.Rock Mech. Min.Sci.&Geom.Abst.,1993,30:1341-1344
    [68] Chan K S,Munson D E,Fossum A F, etal. Inelastic flow behavior of argillaceous salt[J]. Int.J.of Damage Mechanics,1996,(5):293-314
    [69] Lux K H, Hou Z. New developments in mechanical safety analysis of repositories in rock salt[A]. Pro.Int.Conf. on Radioactive waste, Disposal, Disposal Technologies & Concepts[C]. Berlin: Springer verlag, 2000, 281-286
    [70] Aubertin M, Gill D E, Ladayi B. An internal variable model for the creep of rock salt[J]. Rock Mech. and Rock Engin., 1991, 24:81-97
    [71] Aubertin M, Sgaoula J, Gill D E, A viscoplastic-damage model for solf rocks with low porosity[A]. In: Proc. of 8th Int. Cong. On Rock Mechanics[C].1995,1:283-289
    [72] Yahya O M L, Aubertin M, Julien M R. A unified representation of Plasticity,creep and relaxation behvaiour of rock salt[J]. Int.J.Rock.Mech. Min. Sci. and Geomech. Abst.r., 2000(37): 787-800
    [73]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11): 1602-1604
    [74]缪协兴,陈至达.岩石材料的一种蠕变损伤方程.固体力学学报,1995,16(4):343-346
    [75]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学, 2006, 1(3):1-5
    [76]范华林,金丰年.岩石损伤定义中的有效模量法[J].岩石力学与工程学报,2000,19(4):432-435
    [77]陈智纯,缪协兴,茅献彪.岩石流变损伤方程与损伤参量测定[J].煤炭科学技术,1994,22(8): 34-36
    [78]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346
    [79]曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与工程学报,2001,22(6):817-821
    [80]肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩石力学与工程学报, 1999, 18(5):497-502
    [81]肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报, 2000, 33(6):94-95
    [82] Kranz R L. Crack growth and development during creep of Barre granite[J]. Int. J. Rock Mech.Min. Sci & Geomech. Abstract,1979,16(l):23-35
    [83] Kranz R L. Crack-crack and crack-Pore interactions in stressed granite[J].Int. J. Rock Mech. Min. Sci & Geomech Abstract,1979,16(1):37-47
    [84] Korenziowski. W. Rheological model of llard rock pillave[J]. Rock Mech. Rock Eng.,1991 (24):155-166
    [85]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4): 304-312
    [86]凌建明.岩体蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23(2): 141-146
    [87]杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2): 81-90
    [88]邓广哲,朱维申等.裂隙岩体卸荷过程及裂隙蠕滑机制模拟研究[R].武汉:中国科学院武汉岩土力学研究所研究报告,1996
    [89]陈有亮.岩石流变实验系统及岩石蠕变时效断裂特性的研究[D].上海:同济大学,1994,3
    [90]杨松林.不连续岩体弹粘性力学研究[博士后研究报告][R].南京:河海大学2003,6
    [91]杨松林,徐卫亚.裂隙蠕变的稳定性准则[J].岩土力学,2003,24(3):423-427
    [92]徐卫亚,杨松林.裂隙岩体松弛模量分析[J].河海大学学报(自然科学版),2003,31(3):295-298
    [93]徐卫亚,杨松林.断续结构岩体流变力学分析[A].首届全球华人岩土工程论坛论文集[C].上海, 2003:71-82
    [94] Costin. L.S. Time-dependent damage and creep of brittle rock[A]. Damage Mechanics and Continuum Modeling[C]. ASCE, New York, 1985:25-38
    [95]陈卫忠,朱维申,李术才.节理岩体断裂损伤祸合的流变模型及其应用[J].水利学报,1999(12): 33-37
    [96]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310.
    [97]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [98]刘雄.岩石流变学概论[M].北京:地质出版社,1994
    [99]黄荣樽,邓金根.流变地层的粘性系数及其影响因素[J].岩石力学与工程学报,2000.19(增): 836-839
    [100]周瑞光,成彬芳,高玉生等.断层泥蠕变特性与含水量的关系研究[J].工程地质学报, 1998,6(3): 217-222.
    [101]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报, 2002, 21(12): 1791-1796
    [102]李铀,朱维申,白世伟等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报, 2003,22(10):673-1677.
    [103]刘光廷,胡昱,陈凤歧等.软岩多轴流变特性及其对拱坝的影响[J].岩石力学与工程学报, 2004,23(8): 1237-1241.
    [104]杨彩弘,王永岩,魏佳.软岩蠕变过程中单相渗流固流耦合及数学模型.黑龙江科技学院学报, 2004,14(5):297-299
    [105]杨彩红,王永岩,李春林.含水率变化对深部工程岩体蠕变规律的影响[J].化工矿产地质, 2007, 29(1):55-60
    [106]杨彩红,王永岩,李剑光,高菲.含水率对岩石蠕变规律影响的试验研究[J].煤炭学报,2007, 32(7): 695-699
    [107]黄小兰,杨春和,刘建军等.不同含水情况下的泥岩蠕变试验及其对油田套损影响研究[J].岩石力学与工程学报,2007,增(2):3477-3482
    [108]李鹏,刘建,朱杰兵,贺怀建.软弱结构面剪切蠕变特性与含水率关系研究[J].岩土力学, 2008,29(7): 1865-1871
    [109] D.F.Malan. Time-dependent behavior of deep level tabu1ar excavations in hard rock. Rock Mechanics and Rock Engineering, 1999, 32(2):123-155
    [110] BoidyE, BouvandA, Pellet F. Back analysis of time-dependent behavior of a test gallery in elaystone. Tunneling and Underground Space Technology, 2002, 17(4):415-424.
    [111] Dragan Grgic, Francoise Homand, Dashnor Hoxha. A short-and long-term rheological model to understand the collapses of iron mines in Lorraine, France. Computers and Geotechnics, 2003, 30(7):557-570
    [112]王贵君.盐岩层中天然气存储洞室围岩长期变形特征.岩土工程学报,2003,25(4):431-435.
    [113]徐平,李云鹏,丁秀丽等.FLAC3D粘弹性模型的二次开发及其应用.长江科学院院报, 2004, 21(2): 10-13
    [114]褚卫江,徐卫亚,杨圣奇等.基于FLAC3D的岩石粘弹塑性流变模型二次开发研究.岩土力学,2006,Vol.27(11):2005-2010
    [115]徐卫亚,杨圣奇,褚卫江.岩石非线性勃弹塑性流变模型(河海模型)及其应用.岩石力学与工程学报,2006,VOI.25(3):433-447
    [116]刘建华.岩体力学行为拉格朗日分析方法研究与工程应用[D].济南:山东大学,2006,3
    [117]谢秀栋.软土地区深基坑施工变形安全性状的时间特性研究[D].上海:同济大学,2007,11
    [118]张强勇,杨文东,张建国,杨春和.变参数蠕变损伤本构模型及其工程应用[M].岩石力学与工程学报,2009,28(4):732-739
    [119]殷跃平等著.长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社,2004(4)
    [120]殷跃平,胡瑞林.三峡库区巴东组(T2b)紫红色泥岩工程地质特征研究[J].工程地质学报,2004,12(2):124-135.
    [121]余宏明,胡艳欣,张纯根.三峡库区巴东地区紫红色泥岩的崩解特性研究[J].地质科技情报, 2002, 21(4):77-80.
    [122]张加桂,曲永新.三峡库区泥灰质岩石及其残坡积土化学成分及粘土矿物的定量研究.地质评论,2005,51(2):219-224
    [123]吴益平,余宏明,胡艳新.巴东新城区紫红色泥岩工程地质性质研究[J].岩土力学, 2006,27(7):1201-1208
    [124]余宏明,胡艳欣,张纯根.三峡库区巴东地区紫红色泥岩的崩解特性研究[J].地质科技情报,2002,21(4):77-80
    [125]邢世建.材料力学实验[M].重庆:重庆大学出版社,1998
    [126]国际岩石力学学会实验室和现场试验标准化委员会.岩石力学实验建议方法(上集)[M].北京:煤炭工业出版社,1981
    [127]长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社,2004(4)
    [128]丁志坤.岩石粘弹性非定常蠕变方程的参数辨识[D].青岛:山东科技大学,2003,6
    [129]周光泉,刘效敏编著.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [130]刘雄著.流变学概论[M].北京:地质出版社,1994.
    [131]金丰年.岩石的非线性流变[M].南京:河海大学出版社,1998
    [132]金丰年.岩石的时间效应[D].上海:同济大学博士论文,1993
    [133]刘雄著.岩石流变学概论[M].北京:地质出版社,1994
    [134]王芝银,李云鹏著.岩体流变理论及其数值模拟[M].北京:科学出版社,2008
    [135]耶格JC,库克NGW..岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981:382-403
    [136]杨挺青,罗文波,徐平,等.粘弹性理论与应用[M].北京:科学出版社,2004.
    [137] Zienkiewicz O C, Cormeau I C, Cormeau I C. Visco-plasticity and creep in elastic solids-A unified numerical solution approach. International Journal for Numerical Method in Engineering, 1974, 8(4):821-845.
    [138] Gioda G. A finite element solution of non-linear creep problems in rocks. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1981,18(1):35-46
    [139] Owen D R J, Hinton E. Finite Elements in Plasticity: Theory and Practice. Swansea: Pineridge Press Limited, 1980.
    [140] Zienkiewicz O C, Owen D R J, Cormeau I C. Analysis of viscoplastic effects in pressure vessels by the finite element method. Nuclear Engineering and Design,1974,(28):278-288
    [141]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002
    [142]王来贵,赵娜,何峰,李鑫.岩石蠕变损伤模型及其稳定性分析[J].煤炭学报,2009,34(1):64-68
    [143]殷跃平等著.长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社,2004(4)
    [144]杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2004
    [145]殷跃平等著.长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社, 2004(4)
    [146]王芝银,李云鹏著.岩体流变理论及其数值模拟[M].科学出版社,2008
    [147]罗润林,阮怀宁,孙运强,朱昌星.一种非定常参数的岩石蠕变本构模型.桂林工学院学报[J]. 2007,27(2):200-203
    [148]韦立德.岩石力学损伤和流变本构模型研究[D].南京:河海大学,2003.
    [149]李青麒.软岩流变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559-564
    [150]彭苏萍,高云峰,彭晓波等.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报,2004, 26(2): 30-35
    [151]刘世君,徐卫压,邵建富.岩石粘弹性模型辨别及参数反演[J].水利学报,2002,(6):101-105
    [152]许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法[J].岩土工程学报, 2003,05, V0125(3):365-367.
    [153]赵维炳.排水固结加固高速公路深厚软基工后沉降[J].水利水运工程学报,2003,01(1): 28-33
    [154]陈炳瑞.基于模式搜索的岩石流变模型参数识别[J].岩石力学与工程学报,2005,01, V0124(2): 207-211
    [155]徐光苗.寒区岩体低温、冻融损伤力学特性及多场藕合研究[D].武汉:中国科学院武汉岩土力学研究所,2006
    [156]王永兴.水-岩相互作用机理及其对库岸边坡稳定性影响的研究[D].重庆:重庆大学,2006
    [157]王思敬,马凤山,杜永廉.水库地区的水岩作用及其地质环境影响[J].工程地质学报,1996, 4(3):1-9
    [158]龚选平.泥质粉砂岩含水率对其蠕变特性影响的研究[D].西安:西安科技大学,2006
    [159]缪协兴,陈至达.岩石材料的一种蠕变损伤方程.固体力学学报,1995,16(4):343-346
    [160]王来贵,黄润秋,王永嘉,章梦涛.岩石力学系统运动稳定性理论及其应用[M].北京:地质出版社,1998:104-109.
    [161]乔丽萍.砂岩弹塑性及蠕变特性的水物理化学作用效应试验与本构研究[D].武汉:中国科学院武汉岩土力学研究所,2008
    [162]杨彩红.水对深部工程软岩蠕变规律的影响[D].辽宁工程技术大学,2002
    [163]刘文东.坝基软弱岩体的非线性蠕变损伤本构模型及其工程应用[D].济南:山东大学,2008
    [164]朱伯芳.在混合边界条件下非均质黏弹性体应力与位移[J].力学学报,.1964,7(2):162-167.
    [165]黄小华,冯夏庭,陈炳瑞,黄书岭.蠕变试验中黏弹组合模型参数确定方法的探讨[J].岩石力学与工程学报,2007,26(6):1226-1231
    [166]黄小华,冯夏庭.常泊松比下黏弹性体的算子代换法与黏弹对应原理的关系[J].岩石力学与工程学报,2006,25(12):2509-2514
    [167]宋飞.石膏角砾岩非线性流变模型研究及有限元分析[D].西安:长安大学,2006.4
    [168]徐平,李云鹏,丁秀丽,王芝银.FLAC3D黏弹性模型的二次开发及其应用[J].长江科学院院报, 2004,21(2):10-13
    [169]袁海平,曹平,许万忠等.岩体粘弹塑性本构关系及改进Burgers蠕变模型[J].岩土工程学报, 2006,28(6):796-799.
    [170]杨文东.坝基软弱岩体的非线性蠕变损伤本构模型及其工程应用[D].济南:山东大学,2008
    [171]陈育民,徐鼎平编著.FLAC/FLAC3D基础与工程实例.北京:中国水利水电出版社,2008
    [172]褚卫江,徐卫亚,杨圣奇,周维垣.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11):2005-2010
    [173]钟祖良.Q2原状黄土本构模型及其在隧道工程中的应用研究[D].重庆:重庆大学,2008.
    [174]朱艳丽.南水北调西线工程深埋隧洞软岩变形的初步研究[D].南京:河海大学,2006
    [175]常斌.浅埋软土隧道蠕变问题的有限元分析[D].天津:天津大学,2005
    [176]中交第二公路勘察设计研究院.国家重点公路杭州至兰州线巫(山)奉(节)段桃树垭隧道施工图设计文件[C].武汉:中交第二公路勘察设计研究院,2006
    [177]重庆大学桃树垭隧道监测组.桃树垭隧道右线YK38+398至YK38+460出口段异常报告[R].重庆:重庆大学,2006
    [178]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002
    [179] Brown E T.Strength of models of rock with intermittent joints[J].J.Soil Mech.Foundn Div, 1970,96(6):1935-1949
    [180] Hoek E,Brown E T.Underground excavations in rock[M].London:Institution of Mining and Metallurgy,1980
    [181]王文星.岩体力学[M].长沙:中南大学出版社,2004.
    [182] Hoek E,Brown E T.The Hoek-Brown Failure criterion-a 1988 update[J].International Journal of Rock Mechanics and Mining Science&Geomechanics Abstracts,1990,27(3):138
    [183] Brown E T.Strength of models of rock with intermittent joints[J].J.Soil Mech.Foundn Div, 1970,96(6):1935-1949
    [184]黄高峰.Hoek-Brown准则在岩土工程中的应用研究.[D].陕西:西北农林科技大学,2008.
    [185]张伯平,党进谦.土力学与地基基础[M].西安:西安地图出版社,2001
    [186] Hoek E,Brown E T.Practical estimates of rock mass strength[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1186
    [187] Hoek E, Carranza–Torres C,Corkum B.Hoek–Brown failure criterion-2002 edition[J]. In:Proceedings of the NARMS-TAC conference,Toronto,2002,(1):267-273
    [188] Brown E T.Strength of models of rock with intermittent joints[J].J.Soil Mech.Foundn Div, 1970, 96(6):1935-1949
    [189]重庆交通科研设计院.公路隧道设计规范(JTG D70-2004)[S].北京:人民交通出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700