用户名: 密码: 验证码:
~(137)Csγ射线CT技术测量Rushton气液搅拌釜气含率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对Rushton气液搅拌釜内气液两相流气含率大小及分布测量的研究,目前已经有很多研究报道。Rushton气液搅拌釜在各个工业领域都有广泛应用,气含率大小及分布是决定搅拌釜内三传一反的基本特性。对气含率大小及分布的测量方法从侵入式探头测量法,如电导探头,超声探头法等,到非侵入式,非接触测量,如CT成像测量,激光多普勒测量、差压波动测量方法等。其中射线CT技术以其非侵入,穿透力强,快速测量,适用于各种钢制高压高温容器测量,成像分辨率高,精确度高的特点备受青睐。本文主要针对~137Csγ射线CT测量技术在Rushton搅拌釜内的应用。
     1.对比了各种测量气液搅拌釜内气含率大小及分布的方法,在探头式点测量与非侵入式CT测量及LDA,差压波动测量方法,其中~137Csγ射线CT测量技术以其非侵入,非接触,穿透力强,适用于高温高压钢制容器的不透明流体测量,并且快速成像,分辨率高。
     2.对~137Csγ射线CT的基本线路进行详细介绍,针对Rushton气液搅拌釜,设计了γ射线CT的扫描方式,相对平行束和固定探测器单源扫描,选用单源多探测器的扇形扫描;设计了γ射线CT测量线路中γ射线源的选择,分别从能量、半衰期、放射性活度,放射效率的角度,选择能量662keV,半衰期为31年,放射性活度100mCi,放射效率85.6%的~137Cs用于γ射线CT。
     3.探测器的选择,闪烁晶体探测器具有高探测效率,快响应时间特点适合γ射线CT;对单源多探测器的γ射线CT,为实现七个探测器的均一化实验,首先采用实验微调阈值法调制七个探测器的γ光谱曲线尽量重合,当光子能量阈值为500keV时,七个探测器的均一化效果较好,同时建立七个探测器对γ光子的均一化响应函数模型,用实验数据验证该模型可行。
     4.分析Rushton气液搅拌釜内气穴结构的形成与搅拌桨叶轮数目,尺寸,叶轮转速,通气量等因素的关系,利用气穴结构在叶轮转动和通气量影响下,形成贴附漩转气穴VC, 3’-3’小气穴S33,3’-3’大气穴L33,不规则气穴RC,根据不同气穴的出现,通过气穴结构的数学模型计算搅拌釜内不同气穴结构时气含率的大小及分布。利用~137Csγ射线CT对搅拌釜内相同气穴结构条件下的气含率大小及分布成断面成像,对气含率大小及无因次半径做曲线,与气穴结构计算气含率大小及分布结果对比,得出射线CT的扫描结果与气穴结构计算结果基本相符。
On the measurement of gas holdup distribution in two-phase flow liquid of Rushton gas-liquid stirring tank, there are already many research reports. Rushton gas-liquid stirring tank are widely used in various industries, the gas-holdup distribution determine the heating transmission, mass trassmission, energy transsmission and chemical reacting. All the measurements on gas-holdup distribution include are the invasive probe measurements, such as electrical conductivity probe, ultrasonic probe method, now the non-invasive, non-contact measurement, such as CT imaging measurement, Laser Doppler Anemometer measurement and Differential pressure measurement method. Gamma-ray Computer Tomography has non-invasive, penetrating power, fast measyrement, and suitable for measuring all kinds of steel vessel with high pressure and temperature, and also has high resolution and accuracy. Originally we used ~137Cs gamma-ray CT to measure in the gas-liquid Rushton Stirring Tank.
     1. Detailed descriptthe basic circuit of ~137Cs gamma-ray CT for application in gas-liquid stirring tank, design gamma-ray CT scanning method, select the single-source and muti-use detection fan-shaped scanning device, design the gamma ray in the selection, finally ~137Cs energy 662keV, half-life 31 years, radioactivity 100mCi, radiation sffciency of 85.6% for gamma CT.
     2. The other is the detector, respectively, choose the high detection efficiency, fast response time of NaI scintillator detector for it. To achieve the synchronization of seven detectors, using experimental to fine-tuning threshold of the seven detectors, when the photon energy threshold of 500keV, the synchronization is well, then establish the response function model of homogenization, compare with the experimental data that prove that tne model is feasible.
     3. Consider the gas cavity structure in Rushton Stirring Tank is fluenced by paddle wheel number, impeller size and speed, gas velocity and so on, include vortex cavities VC, small 3’-3’cavities S33, large 3’-3’cavities L33, ragged cavities RC. Depending the appearance of cavition, take the mathematical model of cavities structure, then calculate the gas-holdup distribution of different cavitations.
     4. Use ~137Cs gamma-ray CT to measure the gas-holdup distribution under the same conditions with gas cavities structures. In concluding, compared the curve of gas-holdup and non-dimensional radius, the results of the gamma ray CT scan and gas cavities structure calculation are basiclly conformed.
引文
[1] Williams R A, Beck M S. Process tomography, principles, techniques and applications [M]. Great Britain, Butterworth-Heinemann Ltd, Linacre House, Jordan Hill, Oxford, 1995, ISBN 07506 07440.
    [2]高正明,王英琛,施力田,等.应用电导探针法测定气泡参数[J].化学反应工程与工艺, 1992, 8(1): 105-110.
    [3]吕术森.应用电导探针测定鼓泡塔内气泡参数[J].化学反应工程与工艺, 2003, 19(4): 344-350.
    [4] Miyauchi T, Shyu CN. Fluid Flow in Bubble Columns[J]. Jap Chem Eng, 1970, 34: 958-96.
    [5]李建辉,王亦飞,曾清华,等.桨态鼓泡床新型锐孔分布器气含率分布[J].化学反应工程与工艺, 2008, 24(2): 108-114.
    [6]林松,李良超,王嘉骏,等.鼓泡塔中气泡尺寸分布和局部气含率研究[J].化学工程,2008,36(2): 21-24.
    [7]王丽军,张煜,李希.湍动桨态床流体力学研究(1):气含率及其分布规律[J].化工学报, 2008, 59(12): 2996-3001.
    [8]罗枚,伍倩,王铁峰,等.电导探针法测量高固含体系循环液速和气含率[J].过程工程学报, 2008, 8(5): 833-838.
    [9]刘明言,杨扬,薛娟萍.气液固三相流化床反应器测试技术[J].过程工程学报, 2005, 5(2): 217-222.
    [10]杨胜,罗毓珊,陈听宽,等.垂直上升管中采用光纤探针测量截面含气率的实验研究[J].动力工程, 2006, 26(6): 875-878.
    [11]俞强,孙建中,唐福瑞.光纤法检测三相相含率[J].化工学报,1991,(4): 515-517.
    [12]唐人虎,陈听宽,罗毓珊,等.高温高压下用光纤探针测量截面含气率的实验研究[J].化工学报, 2001, 52(6): 560-563.
    [13] Bankoff S G. Trans. ASME Journal of Heart Transfer, 1960, 82: 265-272.
    [14] Murzyn F, Mouaze D, et al. Optical fibre probe measurements of bubbly flow in hydraulic jumps[J]. International Journal of Multiphase Flow, 2005, 31(1): 141-154.
    [15] Macci A, et al. Use of Ultrasound for Phase Holdup Measurements in Multiphase System [J]. Can J Chem Eng, 2001, 79(4): 570-583.
    [16] Liu Z L, Vatanakul M, Jia L F, et al. Hydrodynamics and Mass Transfer in Gas?Liquid?Solid Circulating Fluidized Beds[J]. Chem Eng Technol, 2003, 26(12): 1247?1253.
    [17]陆唯一,张琦,阙沛文.石油管道检测中超声探头的选择及声场分析[J].传感器与微系统, 2007, 26(8): 20-25.
    [18] Kucukali S, Chanson H. Turbulence measurements in the bubbly flow region of hydraulic jumps[J]. Exp Therm Fluid Sci, 2008, 33(1): 41-53.
    [19]许松林,刘富善,许宏庆,等.应用热膜风速仪检测塔板上气液两相流的局部气含率[J].化工学报, 1995, 46(5): 621-624.
    [20] Farrar B, Samways A L, Ali J, et al. A computer based hotfilm technique for two-phase flowmeasurements [J]. Meas Sci Tech, 1995, 6: 1528-1537.
    [21] Utiger M, Dtuber F, Duquenne A M, et al. Local measurements for the study of external loop airlift hydrodynamics [J]. Can J Chem Eng, 1999, 77: 375-382.
    [22] Hogsett S, Ishii M. Local two-phase flow measurements using sensors techniques [J]. Nuclear Eng. Des, 1997, 175: 15-24.
    [23] Delhaye J M. ASME Symp on Two-phase Flow Instrumentation[J], Chicago: The Science Press Inc, 1969: 58-75.
    [24]陈文义,姜楠,王振东.基于小波分析的气液两相流中气含率的测量[J].计量学报, 2008, 29(1): 51-53.
    [25] Greaves M, Kobbacy K A H. Chem Eng Res & Des, 1984, 62: 3.
    [26]张志斌,戴干策,陈敏恒.光电毛细管探头法的改进及搅拌槽内的气含率分布[J].化学反应工程与工艺, 1988, 4(3): 102-107.
    [27]邵嘉庆,徐苓安.电阻层析成像系统的研究[J] .自动化与仪表, 1999, 14(12): 1-4.
    [28]马艺馨,徐苓安等.电阻断层成像技术的研究[J].仪器仪表学报, 2001, 22(2): 195-199.
    [29]董峰,乔旭彤,姜之旭,等.应用电阻层系成像技术测量垂直管道气/液两相流分相含率[J].天津大学学报, 2004, 34(6): 510-514.
    [30]刘铁军,王保良,黄志尧,等.两相流电阻断层成像测量电路与图像重建[J].化工学报, 2007, 58(4): 863-868.
    [31]韩玉环.采用电阻层析成像技术测量三相外环流反应器中相含率的实验研究[J].过程工程学报, 2009, 9(3): 431-436.
    [32]王兴,颜华.电容层析成像技术及发展现状[J].沈阳工业大学学报, 2001, 23(6): 497-500
    [33]黄志尧,王保良,李海青.用于两相流流型显示和空隙率测量的电容层析成像技术[J].化工学报,2001, 52(1): 1035-1037.
    [34]王雷,冀海峰,黄志尧,等.基于ECT传感器和模式识别的气液两相流空隙率测量新方法研究[J].仪器仪表学报, 2005, 26(6): 557-561.
    [35]王微微,王保良,黄志尧,等.利用电容层析成像技术快速测量油气两相流空隙率的研究[J].高校化学工程学报, 2006, 20(4): 515-519.
    [36] Kumar S B. Computed Tomographic Measurements of Void Fraction and Modeling of the Flow in Bubble Columns [D]. Washington University in St. Louis, USA, 1994: 136-138.
    [37] Thatte A R, et al. Local gas holdup measurement in sparged and aerated tanks by gamma-ray attenuation technique[J]. Ind & Eng Chem Res, 2004, 43(17): 5389-5399.
    [38] Hampel U, et al. Application of high-resolution gamma ray tomography to the measurement of gas hold-up distributions in a stirred chemical reactor [J]. Flow Measurement and Instrumentation, 2007, 18(5-6): 184-190.
    [39]刘跃进,韩路长. Cs-137γ射线CT测量标准Rushton搅拌釜气含率分布及数字图像重建[J].高校化工学报, 2006, 28(4): 648-649.
    [40]刘会娥,魏飞,金涌.气固循环流态化研究中常用的测试技术.化学反应工程与工艺[J]. 2010, 17(2):166-174.
    [41] Zuber N, Findlay J A. Average volumetic concentration in two-phase flow systems[J]. HeatTrabsfer, 1965, 87: 453-468.
    [42] Kulkarni A, Joshi J, Kumar V, et al. Application of multiresolution analysis for simultaneous measurement of gas and liquid velocity and frationl gas hold-up in bubble column using LDA[J]. Chem Eng Sci, 2001, 56: 5037-5048.
    [43] Kulkarni A, Joshi J, Kumar V, et al. Simultaneous measurement of hold-up profiles and interfacial area using LDA in bubble columns:predictions by multiresolution analysis and comparison with experiments [J]. Chem Eng Sci, 2001, 56: 6437-6445.
    [44]王国峰,杨茹,刘辉,等.一种利用压强脉动信号测取鼓泡床中气含率的新方法[J].过程工程学报, 2006,6(5): 708-712.
    [45]毛德明,冯连芳,王凯.搅拌釜中泵送能力系数的研究[J].合成橡胶工业, 1997, 20(3): 146-149.
    [46]毛德明,冯连芳,许国军,等.用LDA研究搅拌釜内的流场[J].高校化学工程学报, 1996, 10(3): 258-263.
    [47]申国强,林宗虎.应用动态法进行气液两相流的双参数测量[J].计量学报, 1993, 14(2): 140-145.
    [48]劳力云.基于动态差压信号分析的两相流参数辨识方法研究[博士论文].浙江大学, 1998: 124-126
    [49]王芳,梁国伟,谢代梁.基于环形管差压波动信号测量气液两相流气相含率的研究[J] .传感技术学报, 2007, 20 (3) : 628-631.
    [50]张宏建,岳伟挺,马龙博,等.文丘里管中气液两相流差压波动信号与空隙率关系[J].化工学报, 2005,56(11): 2102-2107.
    [51]周云龙,尚秋华,范振儒,洪文鹏.气液两相流容积含气率的图像检测方法[J].热能动力工程, 2008, 23(5): 507-511.
    [52]施丽莲,周泽魁,任沙浦.垂直管道中气液亮相里参数的图像检测方法[J].流体机械, 2004, 32(9): 4-9.
    [53] Swift, et al. Flight test results for the NICMOS Cryocooler. Presented at the CEC/ICMC, Montreal, Canada, July 1999: 12-16.
    [54] Fincke J R, et al. The application of reconstructive tomography to the measurement of density distribution in two-phase flow[J]. In Proc Int Instru Symp Seattle, 1980, 26: 235-243.
    [55] Hau F L, Banerjee S. Measurement of mass flux in twophase flow using combinations of pitot tubes and gamma densitometers[J]. AIChE J, 1981, 27(2): 177-184.
    [56] Ogawa K, Takagi Y, et al. An attenuation correction method of single photon emission computed tomography using gamma ray transmission CT[J]. Kaku Igaku, 1985, 22(4): 47-90.
    [57] Kumar S B, Moslemian D, et al. Gas-holdup measurements in bubble columns using computed tomography[J]. AIChE J, 1997, 43(6): 1414-1425.
    [58] Kumar S B, Dudukovic M P, et al. Computer assisted gamma and X-ray tomography: App- lications to multiphase flow systems[J]. Non-Invasive Monitoring of Multiphase Flows. Amsterdam, Elsevier Science B V, 1997: 47-103.
    [59] Veera U P, Joshi J B. Measurement of Gas Hold-Up Profiles by Gamma Ray Tomography:Effectof Sparger Design and Height of Dispersion in Bubble Columns[J]. Chemical Engineering Research and Design, 1999,77(4): 303-317.
    [60] Khopkar A R, Rammohan A R, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations[J]. Chemical Engineering Science, 2005, 60(8-9): 2215-2229.
    [61] Schubert M, Hessel G, et al. Liquid flow texture analysis in trickle bed reactors using high-resolution gamma ray tomography[J]. Chemical Engineering Journal, 2008, 140(1-3): 332-340
    [62] Patel A K, Thorat B N. Gamma ray tomography--An experimental analysis of fractional gas hold-up in bubble columns[J]. Chemical Engineering Journal, 2008, 137(2): 376-385.
    [63]靳海波.γ射线透射技术测量气液鼓泡塔内气含率的轴向分布[J].化工学报, 2004, 55(9): 1523-1527.
    [64] Kumar S B, Moslemian D, et al. A gamma-ray tomographic scanner for imaging voidage distribution in two-phase flow systems[J]. Flow Measurement and Instrumentation, 1995, 6(1): 61-73.
    [65] Veera U P. Gamma ray tomography design for the measurement of hold-up profiles in two-phase bubble columns [J]. Chemical Engineering Journal, 2001, 81(1-3): 251-260.
    [66]王群书,康克军. ST401闪烁探测器γ能量响应的实验研究[J].原子能科学技术, 2008, 42(9): 856-860.
    [67]王化祥,戴鹏,郝魁红.基于Geant4的多相流CT系统优化设计[J].天津大学学报, 2008, 41(11): 1293-1298.
    [68]郝魁红.基于低能射线多相管流检测技术研究[博士学位论文].天津,天津大学, 2004: 1-140.
    [69]姬长国.基于Co-60放射源的锥束CT成像系统的研究[J].仪器仪表学报, 2008, 29(9): 1799-1803
    [70]陈坚祯,郭兰英,凌球,等. NaI(Tl)γ谱的计算机稳峰技术[J].原子能科学技术, 2005, 39(3): 266-269.
    [71]任晓蓉. NaI(TI)闪烁探测器测量γ射线的性能分析[J].传感器世界, 2004, 1: 21-26.
    [72]方晓明,李欣年.碘化钠探测器和高纯锗探测器γ能谱仪性能比较[J].上海大学学报(自然科学版), 2004, 10(4): 389-393.
    [73]汪婧,陈伯显,庄人遴.无机闪烁探测器综述[J].核电子学与探测技术, 2006, 26(6): 1039-1045.
    [74]格伦F.诺尔.辐射探测与测量[M].北京,原子能出版社,1988: 167-169.
    [75]李瑞龙,张永春,等.无机闪烁晶体碘化钠NaI(Tl)的现状与发展趋势[J].新材料产业,2007(9): 1-4.
    [76]武兴建,吴金宏.光电倍增管原理、特性与应用[J].国外电子元器件, 2001 (8):13-14.
    [77] Basarragscha B, et al. Neutron Capture Gamma-ray Spectroscopy and Related Topic[J], Inst des Sci Nucl, 1981,4: 505.
    [78]张引娣,梅立泉. NaI(Tl)探测器对伽玛射线响应函数的数值计算[J].西安工程学院学报,1998, 20(4):66-69.
    [79] Arvind D S, Manpreet S, Bhajan S, Sandhu B S. Response function of NaI(Tl) detectors and multiple backscattering of gamma rays in aluminium[J]. Applied Radiation and Isotopes, 2008, 66(10):1467-1473.
    [80] Nienow A W, Warmoeskerken M M C G, Smith J M, et al. On the flooding/loading transition and the complete dispersal condition in aerated vessels agitated by a Rushton turbine[J]. Proceedings of the European Conference on Mixing, Wurzburg, 1985: 15
    [81] Alessandro Paglianti, SandroPintus, MassimilianoGiona.Time-series analysis approach for the identification of flooding/loading transition in gas liquid stirred tank reactors, Chem Eng Sci, 2000, (55):5793-5802.
    [82] Jade A M, Jayaraman V K, Zulkarni B D, et al. A Nnovel local singularity distribution based method for flow regime identifcation: Gas-iquid stirred vessel with Rushton turbin. Chem Eng Sci, 2006(61): 688-697.
    [83] Wang Weijing, Mao Zaisha, Yang Chao.Experimental and numerical investigation on gas holdupand flooding in an aerated stirred tank with rushton impeller. Ind.Eng.Chem.Res. 2006 (45):1141-1151
    [84] Bombac A, Zun I, Filipic, B. Gas filled cavity structures and local void fraction distribution in aerated stirred vessel[J]. AIChE J, 1997, 43(11): 2921-2931.
    [85] ZHANG Shu-xu , ZHOU Ling-hong, CHEN Guang-jie, et al. Four-Dimensional Computerized Tomography (4D-CT) Reconstruction Based on the Similarity Measure of Spatial Adjacent Images[J]. Chin J of Bio Eng, 2008, 17(3):106-113.
    [86]张顺利,张定华,赵歆波,等.基于最小区域的快速CT图像重建[J].计算机辅助设计与图形学学报, 2009, 21(2): 160-164.
    [87] Bombac A, Zun I. Detection of Loading-Flooding Transition in an Aerated Stirred Vesse1[J]. Proc. Kuhljeui dneui, (in Slovene), Portoroi, Slovene SOC. of Mechanics, 1992: 123
    [88] Ismail A F, Nagase Y, Imon J. Power Characteristics and Cavity Formation in Aerated Agitations[J]. AIChE J, 1984, 30 (3): 487.
    [89] Zun I, FilipiE B, Perpar M, BombaE A. Phase Discrimination in Void Fraction Measurements Via Genetic Algorithms[J]. Rev. Sci. Instrum., 1995, 66(10): 5055 .
    [90] De More L S, Pafford W F, Tatterson G B. Cavity Sound Resonance and Mass Transfer in Aerated Agitated Tanks[J]. AIChEJ, 1988, 34: 1922.
    [91] Fort I V. Flow and Turbulence in Vessel with Axial Impeller in Mixing Theory and Practice[J]. Uhl and J. B. Gray, Ed, Academic Press, New York, 1986: 18-24
    [92] Bombac A, Zun I. Gas-filled cavity structures and local void fraction distribution in vessel with dual-impellers[J]. Chemical Engineering Science, 2000(55): 2995-3001.
    [93] Smith J M, Warmoeskerken M M C G, Zeef E. Flpw Conditions in Vessel Dispersing Gases in Liquid with Multiple Impellers[J]. Biotechnology Processes, Ho C S and Oldshue J Y, eds, AIChE, 1987: 107.
    [94] Nienow A W. Gas Dispersion Performance in Fermentor Operation[J]. Chem Eng Prog, 1990: 61-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700