用户名: 密码: 验证码:
喷水室内热湿交换数值模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,人们对现代生活及工作环境的要求不断提高,由此而产生的能耗也越来越大。在能源日益紧张的当今社会,提高各种设备的效率是解决能源这一难题行之有效的方法。资源紧张、温室效应以及CFCs使用的限制也使得机械压缩式和吸收式制冷的发展受到限制,因此,如何应用低能耗、无污染的制冷方式已经成为空调领域非常重要的发展方向。喷水室这种利用水与空气直接接触来达到调节空气温度、湿度的方式,引起了人们广泛的关注,同时,喷水室更具有处理风量大这一优点。所以在目前的形势下喷水室还有着许多新的应用。
     虽然国内许多学者对喷水室进行了大量的研究,但是目前还有很多问题没有解决。同时,对喷水室内热湿交换过程的研究也局限于应用实验方法来进行。本文在其他学者研究的基础上,主要利用数值模拟的方法分析各个因素对喷水室内热湿交换过程的影响,同时,应用部分实验对数值模拟结果给予验证;最后,由这些分析结果提出了几点关于喷水室结构尺寸的意见。
     通过数值模拟及试验分析,本论文得到的主要结论有:
     (1)利用数值模拟的方法验证了:对于相同结构尺寸的喷水室,提高断面空气流速,可以增强喷水室的热湿交换,从而提高喷水室的效率;
     (2)增加空气和水滴的初始温差,有利于喷水室内的热湿交换;
     (3)在喷水压力较低的情况下,对喷有利于喷水室内水与空气的热湿交换;而喷水压力较高的情况下,逆喷有利于喷水室内的热湿交换。对于不同结构尺寸的喷水室,这个喷水压力的界限也不同;
     (4)对于采用多排喷嘴喷水的喷水室,排间距对热湿交换也有较大的影响。当空气流速与喷水压力较大时,适当地加大排间距,有利于喷水室内的热湿交换过程;
     本课题的研究,为喷水室的研究提供了一个更简介方便的研究方法-利用FLUENT模拟的方法,同时,对喷水室的结构进行了优化,希望这种空气调节设备能有更好的实用性和经济性。
With the development of society, the request of modern living and working environment for people is increasing, therefore, the resulting energy consumption is also growing. There is a growing tension today, it is a efficient way to improve the efficiency of a variety of devices to solve this problem of energy. Energy crisis, the greenhouse effect, as well as restrictions on the use of CFCs also makes the development of mechanical compression and absorption refrigeration restrict. Therefore, how to use low energy consumption and pollution-free air conditioning cooling method has become a very important development direction.
     Spray room, that use of water and air in direct contact to achieve the regulation of air temperature, humidity, the way has aroused widespread concern, meanwhile, the spray room is advantage of dealing with large amount of wind. Therefore, there are many new applications in spray room in the present situation. Many domestic scholars carried out a lot of research for spray room, but many problems are not resolved.
     Meanwhile, it is carried out that use limited test methods’application with the studies of spray indoor heat and moisture exchange process.
     In this paper, based on the research of other scholars, it analyzed the indoor heat and moisture exchange process with the method of numerical simulation, at the same time, it was validation for the application part of the test for numerical simulation results; Finally, the structure of the spray room was optimized as the these analyzes results.
     Main contents of this article:
     (1) For the same structure and size of the spray room, if the air flow section is improved, it can increase the heat and moisture exchange and improve the efficiency of the spray room;
     (2) It is conducive to spray the indoor heat and moisture transfer, if the initial temperature of air and water droplets is increased;
     (3) In the case of low water pressure, water spray on the interior is conducive to spray the indoor heat and moisture transfer of water and air; in the case of high water pressure, water spraying against the spray room is conducive to heat and moisture exchange. For the different dimensions of spray room, the water pressure limits are different;
     (4) For multi-row spray nozzle of the spray room, row spacing have great impact on heat and moisture transfer. When the air flow and water pressure is high, it is benefit to spray the indoor heat and moisture exchange process due to increased row spacing;
     The study of this topic provide a more convenient research methods - using FLUENT simulation method, meanwhile, the structure of the spray room has been optimized and hoped that the air-conditioning equipment can have a better practicality and economy.
引文
[1]赵荣义,范存养,薛殿华等.空气调节(第三版)[M].北京:中国建筑工业出版社, 1999.
    [2]郁履方,戴元熙.纺织厂空气调节(第二版)[M].北京:中国纺织出版社, 1997.
    [3]汪善国.纺织厂空气调节[M].北京:纺织厂工业出版社, 1987.
    [4]王秦川.喷水室热工计算的计算机辅助设计[D],西安;西北纺织工学院2000.
    [5] H Lefebvre.Gas Turbine Combustion.McGRAW-HILL BOOK COMPANY,1983.
    [6]殷平.喷水室热工计算的一种方法.制冷学报,1987.
    [7]张寅平,朱颖心,江亿.水—空气处理系统全热交换模型和性能分析[J].清华大学学报(自然科学版).1999.
    [8]黄翔等.流体动力式空调喷水室的实验研究[J],暖通空调,2000.
    [9]颜苏芊.喷水室净化处理空调新风中有害气体的理论与实验研究.[D],西安工程科技学院,2003.
    [10]黄翔,张伟峰,郑文亨等.利用喷水室对空调新风中有机物和无机物去除的实验研究[J].洁净与空调技术, 2004.
    [11]李刚,黄翔,颜苏芊.喷水室热、质传递的理论分析.纺织高校基础科学学报[J],第15卷第4期,2002.
    [12]魏学孟,张维功,焦磊.喷水室热工计算的研究.哈尔冰建筑大学学报[J],第29卷第2期,1996.
    [13]林建忠等,超常流多相流体动力学[M].科学出版社,2008.
    [14]刘应中,缪国平.高等流体力学[M].上海交通大学出版社,2000.
    [15]王福军.CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [16] J.K.Dukowicz.A paricle-fluid numerical model for liquid sprays. J.Comput.Phys.1980.35,229-253.
    [17] C.T.Crowe,Review-numerical models for dilute gas-particle flows.ASME J.Fluids Engng,1982,104,297~303.
    [18] A.D.Gosman,E.Ioannides.Aspects of computer simulation of liquid fueled combustor.AIAA,1981,Paper 81-0323.
    [19] S.L.Soo.Fluid Dynamics of Multiphase Systems.Blaisdell,Waltham,1967.
    [20] J.-S.Shuen,A.S.P.Solomon,Q.-F.Zhang,G.M.Faeth.A theoretical and experimental study of turbulent particle-laden jets.NASA CR,1983,168-293.
    [21]潘大绅,娄开立.新型纺织空调和除尘[M].北京:中国纺织出版社, 1994.
    [22]天津纺织工学院.空调喷水室热湿交换规律实验研究报告[R].天津:天津纺织工学院,1995.
    [23]杨强生,浦保荣编著.高等传热学(第二版)[M].上海:上海交通大学出版社, 2001.
    [24]柴续斌.蒸发冷却技术理论及技术研究[D].西安:西安建筑科技大学, 2005.
    [25]曾祥东.能源于设备节能技术问答[M].北京:机械工业出版社, 2009.
    [26]李静海,欧阳洁等.颗粒流体复杂系统的多尺度模拟[M].科学出版社.2005.
    [27]黄翔等.近年来空调喷水室喷嘴的理论与实验研究[J].建筑热能通风空调.2001.
    [28]张继扶,李新禹,赵汉权.空调喷水室热湿交换效率的研究[J].中国纺织大学学报, 1992.
    [29]尹建国,李新禹,沈校和.高速喷水室在纺织空调中的应用[J].天津大学学报, 2001, (3):51-52.
    [30]黄翔等.空调喷水室喷嘴的理论与实验研究[J].制冷与空调,1995.
    [31]马飞,张文明.水射流扩孔喷嘴内部流场的数值模拟[J].北京科技大学学报,2006.
    [32]沈忠厚.水射流理论与技术[J].东营:石油大学出版社,1998.
    [33]何枫,谢峻石,杨京龙.喷嘴内部流道型线对射流流场的影响[J].应用力学学报,2001.
    [34] Vingert L. Coaxial Injector Spray Characterization for the Ariane 5 Vulcain Engine[C]. Proceedings of ILASS-Europe 6th Annual Conference. France,1990.
    [35]黄翔,朱昆莉,周阳等.今年来空调喷水室喷嘴的理论与实验研究[J].建筑热能通风空调,2001.
    [36]黄翔,武俊梅.流体动力式喷水室的实验研究[J].暖通空调,2000.
    [37] A T Sakman,M A Jog,S M Jeng,et al.Parametric Study of Simplex Fuel Nozzle Internal Flow and Performance.AIAA Journal,2000.
    [38]许为全.热质交换过程与设备[M].北京:清华大学出版社,1999.
    [39]姜培正,谢蔚明等.喷嘴雾化粒径的实验研究[J].西安交通大学学报,2000.
    [40]张寅平,朱颖心,江亿等.水—空气处理系统全热交换模型和性能分析.清华大学学报(自然科学报),1999.
    [41]张志涌.精通MATLAB(5.3版)[M].北京:北京航空航天大学出版社,2000.
    [42]殷平.机器露点的试验研究(二)——喷水室机器露点研究[J].通风除尘,1997.
    [43]李惠风,黄辉等.垂直上喷式新型喷水室的试验研究[J].暖通空调,1993.
    [44]胡春波,陈步学,蔡体敏.靶式喷嘴雾化特性实验研究[J],暖通空调1998.
    [45]张蒙正,傅永贵,张泽平等.两股互击式喷嘴雾化研究及应用推进技术[J].制冷与空调1999.
    [46] R P Fraser,N Dombrowski,J H Routley.The Production of Uniform Liquid Sheets from Spinning Cups;The Filming of Liquids by spinning Cups;The Atomization of a Liquid Sheet by an Impinging Air Stream.Chem.Eng.Sci.,1963.
    [47]曹建民,马志义.喷雾中液滴破裂机理的研究.车用发动机,1997.
    [48]张先棹,尹丹模,白皓.液体燃料的雾化[J].冶金能源,1998.
    [49]宣永梅.直接蒸发冷却与喷水室的对比分析[J].纺织空调除尘,1999.
    [50] W.K.Brown.Humidification by Evaporative for Control Simplicity and Energy Savings.ASHRAE Trans.1990.
    [51]秦慧敏.静止型全热交换器的热湿交换特性及其热回收效益[J].制冷学报,1990.
    [52] N.J.Stoitchkov and G.I.Dimitrov,Effectiveness of crossflow plate heat exchanger for indiect evaporative cooling.Int.J.Refrig,1998.
    [53]鱼剑琳.管式间接蒸发冷却器性能研究(D).西安:西安交通大学,1997.
    [54]周孝清,陈沛霖.间接蒸发冷却器的设计计算方法[J].暖通空调,2000.
    [55]黄翔.纺织厂气流纺车间间接蒸发冷却空调系统[J].制冷与空调,1997.
    [56] Rize.Studies on Liquid Sheet Disintegration in Air-blast.Ph.D.Thesis,Granfield Institute of Technology,1977.
    [57]刘海峰,刘辉,龚欣等.大喷嘴间距对置撞击流径向速度分布[J].华东理工大学学报,2000.
    [58] S M Jeng,M A Jog,M A Benjamin.Computational and Expermental Study of Liquid Sheet Emanating from Simplex Fuel Nozzle.AIAA Journal,1998.
    [59]杨政渝.Introduction to Air-Washer System.台湾亚翔工程股份有限公司.
    [60]陆耀庆.实用供热空调设计手册[M].北京:中国建筑工业出版社,1993.
    [61] Frank P I,David P D.Fundamentals of Heat and Mass Transfer(4th Edition).New York:John Wiley&Sons,Inc,1996.
    [62]王启杰.对流传热传质分析[M].西安:西安交通大学出版社.
    [63]倪波,郁履方.对影响喷水室热湿交换诸因素的实验研究[J].中国纺织大学学报,1992.
    [64]李莎,马立山.高速空调喷水室中冷却减湿过程的工程实验研究[J].天津工业大学学报,2005.
    [65]王新泉,王晓璐,田传胜.有限空间空气与水热湿交换过程的数学模型[J].郑州纺织工学院学报,第12卷第3期,2001.
    [66]黄翔,颜苏芊.流体动力式空调喷水室的理论与热工性能实验研究[J].制冷学报,2002.
    [67]王磊,郁履方.法国Carrier喷水室冷却去湿过程热工性能的研究和分析[J].中国纺织大学学报,第19卷第2期,1993.
    [68]王丽慧.撞针型高压小孔径离心式喷嘴加湿性能理论与实验的研究:[D],上海:华东大学,2004.
    [69]刘刚.喷水初温与水气比的关系及热湿交换理论的研究[J].中国纺织大学学报,第22卷第5期,1996.
    [70]殷清海,黄翔,颜苏芊.流体动力式喷水室的应用[J].陕西纺织,2002.
    [71]康永.纺织厂空调喷水室中国传热传质理论计算[J].第九届普渡国际压缩机工程会议论文.
    [72]黄翔,卢迅,许世刚.撞击流技术与流体动力式喷水室的研究进展[J].西安工程科技学院学报,第16卷第3期,2002.
    [73]天津纺织工学院.空调喷水室热湿交换规律实验研究报告[R].天津:天津纺织工学院,1995.
    [74]李莎,高志远.一种小型新风机的实验研究[J].西部制冷空调与暖通,2005.
    [75] Tamer A,伍沅译.撞击流反应器—原理和应用[M].北京:化学工业出版社,1996.
    [76]张小宁,徐更光.撞击流粉碎法制备超细二氧化钛粉的研究[J].化工进展,1999.
    [77] G.K.Batchelor.Transport properties of two-phase materials with random structure,A.Rev.Fluid Mech.,1974,6
    [78] J.L.Lumley.Two-phase and non-Newtonian flows.In Turbulence(Edited by P.Bradshaw 289,Springer,Berlin
    [79] J.O.Hinze.Turbulent fluid and particle interaction.In Progress in Heat and Mass Transfer,Vol.6,433.Pergamon Press,New York(1972)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700