用户名: 密码: 验证码:
加氢反应器内气液两相流体的分布与混合装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油的加氢技术是指石油馏分在氢气存在下的催化加工过程,是石油产品精制、改质和重油加工的重要手段。近年来,随着世界范围内对轻质、洁净燃油的需求越来越高,以及原油品质的逐年下降,加氢技术在炼化领域的地位也变得越来越重要。自加氢技术问世以来,对加氢催化剂的研究获得了突破性的进展,其催化活性获得了极大的提高,但加氢反应器及其内构件的发展却相对滞后,正严重制约着加氢技术的进一步发展。本文对气液两相流体在固定床加氢反应器内构件(气液分布器和冷氢箱)中的分散与混合行为进行了理论和实验研究,并力图开发出具有优异性能的新型内构件。
     为克服传统抽吸型气液分布器抗塔板倾斜性能不强和液体分布不均匀的缺陷,本文提出了气液分流式的液体抽吸理论,并开发了一种具有抗塔板倾斜性能的新型气液分布器。通过冷模实验研究了气液流量变化对气液分流式分布器的液体破碎性能、液体分布均匀性及阻力损失的影响,并在直径1m的加氢反应器上研究了由气液分流式分布器组成的气液分配盘的液体分布均匀性。结果表明,存在一个液体破碎雾化的临界气体流量,而且只有气体流量超过该临界值时,气液分流式分布器才能实现对液体的均匀分布,说明临界气体流量同时也是液体分布均匀与否的分界点。而当通过气液分配盘的气量超过总体临界气体流量时,其液体分布相对不均匀度可降至5%以内,实现了对液体的较为均匀的分布。另外,基于实验数据,还得到了气液分流式分布器的阻力损失与气液两相Reynolds数间的关系式。此外,本文还通过实验研究了几何结构对气液分流式分布器的液体破碎分散性能、抗塔板倾斜性能及阻力损失等流体力学性能的影响。结果表明,采用两个进气孔,且进气孔与进液孔中心间距设置为55mm时,气液分流式分布器的综合性能最优。
     为克服传统旋流式冷氢箱由于气液分层流动而导致的气液接触面积小和湍动程度低的缺陷,以进一步提高冷氢箱的气液和液-液混合性能,本文开发了一种具有多重旋流结构的超重力旋流式冷氢箱,并引入Froude数的概念与机械能衡算相结合,建立了描述液体利用惯性力克服重力以实现沿水平轴向作超重力旋流运动的数学模型。通过冷模实验和计算流体力学(CFD)模拟对超重力旋流式冷氢箱的气液混合性能和流体流动情况进行了研究。模拟和实验结果都表明,液体在超重力旋流式冷氢箱内实现了沿水平轴向和重力方向的多重旋流运动,极大的提高了气液间的接触面积和相互作用。将CFD模拟结果与Higbie的溶质渗透理论相结合,研究了气液流量变化对传质系数的影响,结果表明,传质系数会随着气体流量的增加而显著提高,与氧吸收实验得到的结论相吻合,说明气液两相流体在超重力旋流式冷氢箱内实现了良好的接触,液体可以充分利用气体的推动作用提高自身的湍动程度,从而有效提高了气液混合效果。此外,本文采用α-萘酚与对氨基苯磺酸重氮盐之间的串联竞争反应为测试体系,研究了操作条件对超重力旋流式冷氢箱微观混合过程的影响,并以离集指数表征微观混合性能。结果表明,离集指数随气体流量的增加而显著减小,随液体流量的增加而增大。在实验基础上,采用团聚模型获得了离集指数与微观混合时间的关系,并计算出超重力旋流式冷氢箱的微观混合时间为40~100ms,远小于自身的平均停留时间,说明液体在流出超重力旋流式冷氢箱之前已经实现了组分和温度在分子尺度上的均一性。
     为了更直观的研究超重力旋流式冷氢箱的混合换热能力,本文还对箱体内的气液相间和液-液相内的传热过程进行了CFD模拟。结果表明,气液换热速率会随着气体流量的增加而显著升高,与气液传质部分的模拟和实验研究结果相符。液-液混合换热过程的模拟结果表明,最大温差高达60K的三股液体,在箱体内经过旋流混合后,在出口处的最大温差下降了近97%,而温度分布的不均匀度仅为0.7K,液体在出口处获得了近乎均一的温度分布,表明超重力旋流式冷氢箱具有优异的液-液混合换热性能。
Catalytic hydroprocessing is a mature technology practiced in the petroleum refining industry for upgrading a variety of hydrocarbon streams ranging from straight-run naphtha to vacuum residua or even heavy crude oils. Nowadays, the hydroprocessing technology is of vital importance to the refining industry, as a result of the growing market of high value petroleum products and decreasing availability of light oils. Since the introduction of hydroprocessing technology, catalyst suppliers have made significant advances in improving the relative activities of hydroprocessing catalysts. However, the design of hydroprocessing reactors has not advanced at the same pace as the development of hydroprocessing catalysts, and the existing reactors are not capable of utilizing the benefits of the high activity catalysts. To develop novel types of internals with excellent performance, mixing and dispersion of gas and liquid for internals (gas-liquid distributor and quench box) of the fixed bed hydroprocessing reactor was investigated in this paper.
     To overcome shortages of the traditional gas-liquid distributor, a novel gas-liquid separated flow distributor was designed in this paper, which was supposed to show low sensitivity to the tray levelness and distribute liquid uniformly. The relationship between the breakup of liquid and the liquid distribution uniformity, and effects of operating conditions on the pressure drop of the novel distributor were studied through cold model experiments. Furthermore, the liquid distribution uniformity of a distribution tray, which was composed of37gas-liquid separated flow distributors, was investigated. Results show that, there exists a critical gas volume flow rate for the atomization of liquid. Liquid can be distributed uniformly only when the gas volume flow rate is higher than the critical value. The relative liquid distribution nonuniformity of the distribution tray is lower than5%when the gas volume flow rate is higher than the overall critical value, which reveals the uniform distribution of liquid. Besides, a brief correlation between the pressure drop of the novel distributor and Reynolds number of two phases was proposed. After that, experiments were conducted to investigate effects of geometry structures on the hydraulic performance of the gas-liquid separated flow distributor, such as sensitivity to the tray levelness, liquid breakup performance and pressure drop. Results show that, the optimal comprehensive performance of the gas-liquid separated flow distributor can be obtained, when two gas-inlet holes are drilled as well as the center distance between gas-inlet and liquid-inlet is spaced at approximately55millimeters.
     To enhance the gas-liquid and liquid-liquid mixing efficiency of the quench box, a novel structure based on supergravitational swirling flow was proposed, which owns multiple swirling flow structures. To reach supergravitational swirling flow, the Froude number of liquid in the horizontal swirling tube should be greater than unity. Through computational fluid dynamics (CFD) simulation and using a high-speed camera, the supergravitational swirling flow was visualized. Based on the Higbie's penetration theory, CFD simulation was conducted to estimate the gas-liquid mass-transfer coefficient, and was compared with the oxygen absorption experiment. It shows the gas flow rate plays a key role in the gas-liquid mixing performance in the quench box. Experiments were also carried out to investigate effects of operating conditions on the pressure drop of the two-phase flow in quench box, and a correlation was proposed accordingly. Furthermore, to study effects of operating conditions on the micromixing process, cold model experiments were carried out based on the competitive and consecutive reaction between1-naphthol and diazotized sulphanilic acid, and the segregation index was used to characterize the micromixing performance. Results show that, the segregation index decreases sharply with the increase of the gas flow rate, while increases with increasing liquid flow rate. This indicates that intimate contact between gas and liquid can be realized in the novel designed quench box, while the turbulence intensity and micromixing efficiency of the liquid can be notablely improved by taking full advantage of the gas phase's driving effect. The relationship between segregation index and micromixing time was obtained according to the incorporation model. Under the operating conditions of this work, the micromixing time was calculated to be40~100ms, which is far less than the average residence time and is of the same order of magnitude as the mechanically stirred tank. Hence, it illustrates that the composition and temperature of liquid should be perfectly homogenized at outlet of the supergravitational swirling-type quench box, and the novel quench box owns excellent liquid-liquid mixing performance.
     In addition, to investigate mixing and heat transfer capability of the supergravitational swirling-type quench box, gas-liquid and liquid-liquid heat transfer processes at industrial conditions were investigated through CFD simulation. Results show that, gas-liquid heat exchange rate will be increased significantly with the increase of gas flow rate, which shows the same tendency as the conclusions regarding studies of the gas-liquid mass transfer. Meanwhile, the simulation results of liquid-liquid heat transfer process show that, the maximum temperature difference of liquid at outlet of the supergravitational swirling-type quench box is lower than2K and is reduced by97%compared with that of the inlet.
引文
[1]Alvarez A, Ancheyta J, Munoz J A D. Comparison of quench systems in commercial fixed-bed hydroprocessing reactors. Energy & Fuels,2007,21(2):1133-1144.
    [2]丛义春,高金森,徐春明.国内外加氢技术的最新进展.当代石油石化,2004,11(12):29-32.
    [3]李立权.加氢技术的最新进展及分类探讨.石油与天然气化工,2002,31(3):116-120.
    [4]Ancheyta J, Speight J G. Hydroprocessing of heavy oils and residua. CRC Press,2007.
    [5]方向晨.加氢精制.北京:中国石化出版社,2006.
    [6]宋华,郭云涛,李锋,等.加氢精制催化剂载体的研究进展.石油化工,2010,39(8):941-948.
    [7]郑宇印,刘百军.加氢精制催化剂研究新进展.工业催化,2003,11(7):1-6.
    [8]方向晨.加氢裂化.北京:中国石化出版社,2008.
    [9]Robinson P, Dolbear G. Hydrotreating and hydrocracking:fundamentals. Practical Advances in Petroleum Processing. New York:Springer,2006.
    [10]Kundu A, Nigam K, Duquenne A, et al. Recent developments on hydroprocessing reactors. Reviews In Chemical Engineering,2011,19(6):531-605.
    [11]Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: Areview. Catalysis Today,2009,143(1-2):94-107.
    [12]Babich I, Moulijn J. Science and technology of novel processes for deep desulfurization of oil refinery streams:a review. Fuel,2003,82(6):607-631.
    [13]Patel R H, Bingham E, Christensen P, et al. Hydroprocessing reactor and process design to optimize catalyst performance. First Indian Refining Roundtable, New Delhi, India, 1998,
    [14]Ancheyta J, Betancourt G, Marroquin G, et al. Hydroprocessing of Maya heavy crude oil in two reaction stages. Applied Catalysis A:General,2002,233(1-2):159-170.
    [15]Ancheyta J, Rana M S, Furimsky E. Hydroprocessing of heavy petroleum feeds:Tutorial. Catalysis Today,2005,109(1-4):3-15.
    [16]Furimsky E. Selection of catalysts and reactors for hydroprocessing. Applied Catalysis A: General,1998,171(2):177-206.
    [17]Rana M S, Samano V, Ancheyta J, et al. A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel,2007,86(9):1216-1231.
    [18]Gray M R. Upgrading petroleum residues and heavy oils. CRC Press,1994.
    [19]Bej S K. Performance evaluation of hydroprocessing catalysts:a review of experimental techniques. Energy & Fuels,2002,16(3):774-784.
    [20]Leyva C, Rana M S, Trejo F, et al. On the use of acid-base-supported catalysts for hydroprocessing of heavy petroleum. Industrial & Engineering Chemistry Research, 2007,46(23):7448-7466.
    [21]郭淑芝,王甫村,朱金玲,等.国外馏分油加氢裂化工艺和催化剂的最新进展.炼油与化工,2008,18(4):7-10.
    [22]曹湘洪.我国蜡油及渣油深加工应大力发展加氢型装置.石油炼制与化工,2004,35(6):1-12.
    [23]聂红,胡志海,石亚华,等.RIPP加氢裂化技术新进展.石油炼制与化工,2006, 37(6):9-13.
    [24]Bingham F, Nelson D. Advanced reactor internals for hydroprocessing units. Practical Advances in Petroleum Processing. New York:Springer,2006.
    [25]陈晓玲,李多民,段滋华.加氢反应器的发展现状.化工装备技术,2009,30(1):28-31.
    [26]张德义.加快我国加氢工艺和技术的发展.炼油设计,2002,32(3):1-6.
    [27]董方亮,李凤桐.加氢反应器工艺结构.一重技术,1 996,(2):60-61.
    [28]张树广,穆海涛.加氢裂化装置反应器内构件的改造.石油炼制与化工,2000,31(11):51-54.
    [29]蔡连波,林付德.新型加氢反应器内构件的研究.炼油技术与工程,2003,33(10):29-33.
    [30]Kunesh J G, Lahm L, Yanagi T. Commercial scale experiments that provide insight on packed tower distributors. Industrial & Engineering Chemistry Research,1987,26(9): 1845-1850.
    [31]李立权,陈崇刚.大型加氢反应器内构件的研究及工业应用.炼油技术与工程,2013,42(10):27-32.
    [32]陈富荣,孙津生,高虹.填料塔内气液分布器气体均布性能的CFD模拟.化工进展,2005,(z1):12-14.
    [33]赵汝文.填料塔气液分布器优化设计规律.化学工程,2006,34(7):75-78.
    [34]周海鹰.大型填料塔气液分布器的流体力学性能研究[D].天津大学,2003.
    [35]Maiti R N, Nigam K D P. Gas-liquid distributors for trickle-bed reactors:A review. Industrial & Engineering Chemistry Research,2007,46(19):6164-6182.
    [36]蔡连波,王冕,盛维武,等.溢流碎流型气液分配器的开发研究.炼油技术与工程,2009,(12):23-27.
    [37]王兴敏.固定床加氢反应器内构件的开发与应用.炼油设计,2001,31(8):24-27.
    [38]Alvarez A, Ancheyta J. Effect of liquid quenching on hydroprocessing of heavy crude oils in a fixed-bed reactor system. Industrial & Engineering Chemistry Research,2008, 48(3):1228-1236.
    [39]Alvarez A, Ancheyta J, Munoz J A D. Modeling, simulation and analysis of heavy oil hydroprocessing in fixed-bed reactors employing liquid quench streams. Applied Catalysis A:General,2009,361(1):1-12.
    [40]李保锋,蔡连波,盛维武,等.加氢反应器气液混合分配系统浅析.炼油技术与工程,2009,39(7):36-39.
    [41]赵志海,杨克勇,师峰,等.新型急冷混合器的开发与工业应用.石油炼制与化工,2006,37(10):60-63.
    [42]蔡连波,盛维武,李保锋.加氢反应器内构件急冷箱的试验研究.炼油与化工,2008,(4):27-30.
    [43]Yan T. Dynamics of a trickle-bed hydrocracker with a quenching system. The Canadian Journal of Chemical Engineering,1980,58(2):259-266.
    [44]Sapre A, Anderson D, Krambeck F. Heater probe technique to measure flow maldistribution in large scale trickle bed reactors. Chemical Engineering Science,1990, 45(8):2263-2268.
    [45]Perry D, Nutter D E, Hale A. Liquid distribution for optimum packing performance. Chemical Engineering Progress,1990,86(1):30-35.
    [46]Jiang Y, Khadilkar M, Al-Dahhan M, et al. Two-phase flow distribution in 2D trickle-bed reactors. Chemical Engineering Science,1999,54(13):2409-2419.
    [47]Marcandelli C, Lamine A, Bernard J, et al. Liquid distribution in trickle-bed reactor. Oil & Gas Science and Technology,2000,55(4):407-415.
    [48]Tsochatzidis N, Karabelas A, Giakoumakis D, et al. An investigation of liquid maldistribution in trickle beds. Chemical Engineering Science,2002,57(17):3543-3555.
    [49]Boyer C, Fanget B. Measurement of liquid flow distribution in trickle bed reactor of large diameter with a new gamma-ray tomographic system. Chemical Engineering Science,2002,57(7):1079-1089.
    [50]Atta A, Roy S, Nigam K D. Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chemical Engineering Science,2007,62(24): 7033-7044.
    [51]Gunjal P R, Ranade V V, Chaudhari R V. Liquid distribution and RTD in trickle bed reactors:experiments and CFD simulations. The Canadian Journal of Chemical Engineering,2003,81(3-4):821-830.
    [52]Song M, Yin F, Nandakumar K, et al. A three-dimensional model for simulating the maldistribution of liquid flow in random packed beds. The Canadian Journal of Chemical Engineering,1998,76(2):161-166.
    [53]Harter I, Boyer C, Raynal L, et al. Flow distribution studies applied to deep hydro-desulfurization. Industrial & Engineering Chemistry Research,2001,40(23): 5262-5267.
    [54]Maiti R, Nigam K. Gas-liquid distributors for trickle-bed reactors:A review. Industrial & Engineering Chemistry Research,2007,46(19):6164-6182.
    [55]玄昌海,韩建发,蔺有雄.裂解汽油加氢装置脱重塔内件工艺计算.石油化工设计,2009,(2):9-12.
    [56]倪艳光,刘玉.基于Fluent的加氢反应器分配器流场数值模拟研究.中国高新技术企业,2011,(24):25-26.
    [57]Bonilla J. Don't neglect liquid distributors. Chemical Engineering Progress,1993,89(3): 47-61.
    [58]Bunting R L, Goodspeed R F, Grott J R, et al. Hydroprocessing reactor mixer/distributor. US:5837208,1998.
    [59]Smith R. Vertical reactor for two-phase vapor-liquid rkaction charge. US:3824081,1974.
    [60]Aly F A, Graven R G, Lewis D W. Distribution system for downflow reactors. US: 4836989,1989.
    [61]Campagnolo J F, Chou T S, Heaney W F, et al. Inlet distributor for fixed bed catalytic reactor. US:4788040,1988.
    [62]Dankworth D C, Koros R M, Wong Y W, et al. Mixed phase fixed bed reactor distributor. US:5403561,1995.
    [63]Muldowney G P, Weiss R A, Wolfenbarger J A. Two-phase distributor system for downflow reactors. US:5484578,1996.
    [64]夏博康.加氢反应器内构件的发展.石油化工设备技术,1995,16(1):13-19.
    [65]Ballard J H. Vapor-liquid distribution method and apparatus for the conversion of hydrocarbons. US:3218249,1965.
    [66]Christolini B A, Shih C C J. Vapor-liquid distribution method and apparatus. US: 5158714,1992.
    [67]Jacobs G E, Milliken A S, Stupin S W. Methods and apparatus for mixing fluids. US: 7044159,2006.
    [68]Muller M. Two-phase distribution apparatus and process. US:6769672,2004.
    [69]Wang S B, Zhang Z Z, Wu D F, et al. Cold model study and commercial test on novel vapor-liquid distributor of hydroprocessing reactor. China Petroleum Processing and Petrochemical Technology,2007, (2):49-54.
    [70]蔡连波.BL型气液分配器的试验研究.石油化工设备,2009,38(2):1-3.
    [71]Gamborg M M, Jensen B N. Two-phase downflow liquid distribution device. US: 5942162,1999.
    [72]Du W, Liu W, Xu J, et al. A novel modification of vapour-lift liquid distributor. The Canadian Journal of Chemical Engineering,2014,92(1):109-115.
    [73]Jacobs G, Milliken A. Evaluating liquid distributors in hydroprocessing reactors. Hydrocarbon Processing,2000,79(11):76-84.
    [74]褚家瑞,戴渝城,马小珍.联合油公司气液相分配器的试验研究.化工炼油机械,1982,(3):1-11.
    [75]褚家瑞,金中林.加氢反应器分配器的实验研究.化学工程,1990,18(5):8-14.
    [76]王兆旺,刘淑英,林付德.泡帽式气液分配器的试验研究.石油化工设备技术,1991,(5):12-16.
    [77]Bazer-Bachi F, Haroun Y, Augier F, et al. Experimental evaluation of distributor technologies for trickle-bed reactors. Industrial & Engineering Chemistry Research, 2013,52(32):11189-11197.
    [78]Lopes R J, Quinta-Ferreira R M. CFD modelling of multiphase flow distribution in trickle beds. Chemical Engineering Journal,2009,147(2):342-355.
    [79]Lopes R J G, Quinta-Ferreira R M. Evaluation of multiphase CFD models in gas-liquid packed-bed reactors for water pollution abatement. Chemical Engineering Science,2010, 65(1):291-297.
    [80]Bazmi M, Hashemabadi S, Bayat M. CFD simulation and experimental study of liquid flow mal-distribution through the randomly trickle bed reactors. International Communications In Heat And Mass Transfer,2012,
    [81]Li G, Yang X, Dai G. CFD simulation of effects of the configuration of gas distributors on gas-liquid flow and mixing in a bubble column. Chemical Engineering Science,2009, 64(24):5104-5116.
    [82]Troshko A A, Zdravistch F. CFD modeling of slurry bubble column reactors for Fisher-Tropsch synthesis. Chemical Engineering Science,2009,64(5):892-903.
    [83]Laborde-Boutet C, Larachi F, Dromard N, et al. CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach. Chemical Engineering Science, 2009,64(21):4399-4413.
    [84]Khopkar A R, Tanguy P A. CFD simulation of gas-liquid flows in stirred vessel equipped with dual rushton turbines:influence of parallel, merging and diverging flow configurations. Chemical Engineering Science,2008,63(14):3810-3820.
    [85]Zhang Q, Yong Y, Mao Z S, et al. Experimental determination and numerical simulation of mixing time in a gas-liquid stirred tank. Chemical Engineering Science,2009,64(12): 2926-2933.
    [86]Ranganathan P, Sivaraman S. Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics. Chemical Engineering Science,2011,66(14):3108-3124.
    [87]Van Baten J, Krishna R. Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Journal,2000,77(3):143-151.
    [88]Raynal L, Harter I. Studies of gas-liquid flow through reactors internals using VOF simulations. Chemical Engineering Science,2001,56(21):6385-6391.
    [89]Alvarez A, Ancheyta J. Simulation and analysis of different quenching alternatives for an industrial vacuum gasoil hydrotreater. Chemical Engineering Science,2008,63(3): 662-673.
    [90]曾祥根,张占柱,王少兵,等.加氢反应器分配器的数值模拟.计算机与应用化学,2005,22(2):148-152.
    [91]程锦承,程振民,方向晨,等.文丘里气液分布管的实验研究与数值模拟.华东理工大学学报:自然科学版,2007,33(4):456-459.
    [92]Dufresne P. Hydroprocessing catalysts regeneration and recycling. Applied Catalysis A: General,2007,322:67-75.
    [93]Weissman J G, Lu S, McElrath B M, et al. Deactivation of hydrotreating catalysts. Studies In Surface Science And Catalysis,1992,73:377-384.
    [94]Yan T. Dynamics of a trickle-bed hydrocracker with a quenching system. The Canadian Journal of Chemical Engineering,1980,58(2):259-266.
    [95]Ancheyta J, Betancourt G, Centeno G, et al. Catalyst deactivation during hydroprocessing of Maya heavy crude oil.1. Evaluation at constant operating conditions. Energy & Fuels, 2002,16(6):1438-1443.
    [96]Tamm P W, Harnsberger H F, Bridge A G. Effects of feed metals on catalyst aging in hydroprocessing residuum. Industrial & Engineering Chemistry Process Design and Development,1981,20(2):262-273.
    [97]Alvarez A, Ancheyta J, Centeno G, et al. A modeling study of the effect of reactor configuration on the cycle length of heavy oil fixed-bed hydroprocessing. Fuel,2011, 90(12):3551-3560.
    [98]Chen J, Mulgundmath V, Wang N. Accounting for vapor-liquid equilibrium in the modeling and simulation of a commercial hydrotreating reactor. Industrial & Engineering Chemistry Research,2010,50(3):1571-1579.
    [99]Al-Adwani H A, Lababidi H, Alatiqi I M, et al. Optimization study of residuum hydrotreating processes. The Canadian Journal of Chemical Engineering,2005,83(2): 281-290.
    [100]Alvarez A, Ramirez S, Ancheyta J, et al. Key role of reactor internals in hydroprocessing of oil fractions. Energy & Fuels.2007,21(3):1731-1740.
    [101]Mhaskar R. Shah Y, Paraskos J. Optimum quench location for a hydrodesulfurization reactor with time varying catalyst activity.2. Cases of multiple gas quenches and a liquid quench. Industrial & Engineering Chemistry Process Design and Development, 1978,17(1):27-33.
    [102]Shah Y, Mhaskar R. Paraskos J. Optimum quench location for a hydrodesulfurization reactor with time varying catalyst activity. Industrial & Engineering Chemistry Process Design and Development.1976.15(3):400-406.
    [103]Peyrot C F. Mixing device for vertical flow fluid-solid contacting. US:4669890,1987.
    [104]Ballard J H. Apparatus for mixing fluids in concurrent downflow relationship. US: 3502445.1970.
    [105]Boyd S L. Muldowney G P. Interbed gas-liquid mixing system for cocurrent downflow reactors. US:6180068,2001.
    [106]Muldowney G P, Chuba M R. Multiphase mixing device with improved quench injection for inducing rotational flow. US:7074372,2006.
    [107]Grott J R, Bunting R L, Hoehn R K, et al. Hydroprocessing reactor mixer/distributor. US:5837208,1998.
    [108]Stangeland B E, Parimi K, Cash D R. Distributor assembly for multi-bed down-flow catalytic reactors. US:5690896,1997.
    [109]Pedersen M J, Sampath V R, Litchfield J F. Method and apparatus for mixing and distributing fluids in a reactor. US:5462719,1995.
    [110]Den Hartog A P, Van Vliet W. Multi-bed downflow reactor. US:5635145,1997.
    [111]McDougald N K, Boyd S L, Muldowney G P. Multiphase mixing device with baffles. US:7045103,2006.
    [112]Ahmed H, Mohammed H, Yusoff M. An overview on heat transfer augmentation using vortex generators and nanofluids:Approaches and applications. Renewable and Sustainable Energy Reviews,2012,16(8):5951-5993.
    [113]Reay D. Heat transfer enhancement-a review of techniques and their possible impact on energy efficiency in the UK. Heat Recovery Systems and CHP,1991,11(1):1-40.
    [114]Bedingfield C H, Drew T B. Analogy between heat transfer and mass transfer. Industrial & engineering chemistry,1950,42(6):1164-1173.
    [115]Bejan A. Convection heat transfer. John Wiley & Sons,2013.
    [116]Chilton T H, Colburn A P. Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction. Industrial & engineering chemistry,1934,26(11): 1183-1187.
    [117]Churchill S W. Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes. Industrial & Engineering Chemistry Fundamentals,1977,16(1):109-116.
    [118]Han S, Goldstein R. The heat/mass transfer analogy for a simulated turbine endwall. International Journal of Heat And Mass Transfer,2008,51(11):3227-3244.
    [119]Karas M, Zajac D, Ulbrich R. Heat and flow characteristics of two phase gas-liquid mixture flow over tube bundle using electrochemical and DPIV methods. Procedia Engineering,2012,42:816-823.
    [120]Verma A K. Heat-and mass-transfer analogy in a bubble column. Industrial & Engineering Chemistry Research,2002,41(4):882-884.
    [121]Al Taweel A, Yan J, Azizi F, et al. Using in-line static mixers to intensify gas-liquid mass transfer processes. Chemical Engineering Science,2005,60(22):6378-6390.
    [122]Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes:an overview. Biotechnology Advances,2009,27(2):153.
    [123]Han L, Al-Dahhan M H. Gas-liquid mass transfer in a high pressure bubble column reactor with different sparger designs. Chemical Engineering Science,2007,62(1): 131-139.
    [124]Kilonzo P M, Margaritis A, Bergougnou M, et al. Effects of geometrical design on hydrodynamic and mass transfer characteristics of a rectangular-column airlift bioreactor. Biochemical Engineering Journal,2007,34(3):279-288.
    [125]Lu X, Ding J, Wang Y, et al. Comparison of the hydrodynamics and mass transfer characteristics of a modified square airlift reactor with common airlift reactors. Chemical Engineering Science,2000,55(12):2257-2263.
    [126]Meeuwse M, Hamming E, van der Schaaf J, et al. Effect of rotor-stator distance and rotor radius on the rate of gas-liquid mass transfer in a rotor-stator spinning disc reactor. Chemical Engineering and Processing:Process Intensification,2011,50(10): 1095-1107.
    [127]Sainz Herran N, Casas Lopez J, Sanchez Perez J. Gas-liquid Mass Transfer in Sonicated Bubble Columns. Effect of Reactor Diameter and Liquid Height. Industrial & Engineering Chemistry Research,2012,51(6):2769-2774.
    [128]Sardeing R, Aubin J, Poux M, et al. Gas-liquid mass transfer:Influence of sparger location. Chemical Engineering Research and Design,2004,8(9):1161-1168.
    [129]Sardeing R, Aubin J, Xuereb C. Gas-liquid mass transfer:a comparison of down-and up-pumping axial flow impellers with radial impellers. Chemical Engineering Research and Design,2004,8(12):1589-1596.
    [130]Shaikh A, Jamal A. Hydrodynamic and transport parameter sensitivity in the simulation of non-isothermal agitated gas-liquid reactors. Chemical Engineering Journal,2006, 119(1):27-36.
    [131]Van der Schaaf J, Schouten J. High-gravity and high-shear gas-liquid contactors for the chemical process industry. Current Opinion in Chemical Engineering,2011,1(1): 84-88.
    [132]马友光,白鹏,余国琮.气液传质理论研究进展.化学工程,1996,24(6):7-11.
    [133]马友光.气液相陆传质的理论研究.天津大学学报,1998,31(4):506-510.
    [134]高习群.气液界面传质机理与强化[D].天津大学,2008.
    [135]Whitman W G. The two-film theory of gas absorption. Chem. Met.& Eng.,1923,29(4): 146-148.
    [136]Hansen E, Mollerup J. Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns. Journal of Chromatography A,1998,827(2):259-267.
    [137]Atta Rashid K, Gavril D, Katsanos N A, et al. Flux of gases across the air-water interface studied by reversed-flow gas chromatography. Journal of Chromatography A, 2001,934(1):31-49.
    [138]Wang M L, Tseng Y H. Kinetic model for synthesizing 4,4'-diethanoxy biphenyl by phase transfer catalysis. Journal of Molecular Catalysis A:Chemical,2002,188(1): 51-61.
    [139]Bolhar-Nordenkampf M, Friedl A, Koss U, et al. Modelling selective H2S absorption and desorption in an aqueous MDEA-solution using a rate-based non-equilibrium approach. Chemical Engineering and Processing:Process Intensification,2004,43(6): 701-715.
    [140]Hanratty T J. Turbulent exchange of mass and momentum with a boundary. AIChE Journal,1956,2(3):359-362.
    [141]Toor H. Marchello J. Film-penetration model for mass and heat transfer. AIChE Journal. 1958,4(1):97-101.
    [142]Wang J, Langemann H. Unsteady two-film model for mass transfer. Chemical Engineering & Technology,1994,17(4):280-284.
    [143]Wang J, Langemann H. Unsteady two-film model for mass transfer accompanied by chemical reaction. Chemical Engineering Science,1994.49(20):3457-3463.
    [144]Nedeltchev S, Jordan U, Schumpe A. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Transactions of the Institution of Chemical Engineers,1935,31(2):365-388.
    [145]Jeong J, No H. Mass transfer coefficient model for the analysis of volatile species transport between two phases. International Communications In Heat And Mass Transfer,1997,24(7):907-918.
    [146]Mandal B, Guha M, Biswas A, et al. Removal of carbon dioxide by absorption in mixed amines:modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. ⅠChemical Engineering Science,2001,56(21):6217-6224.
    [147]Garcia-Ochoa F, Gomez E. Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chemical Engineering Science,2004, 59(12):2489-2501.
    [148]Mandal B, Bandyopadhyay S. Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-l-propanol and diethanolamine. Chemical Engineering Science,2005,60(22):6438-6451.
    [149]Danckwerts P. Significance of liquid-film coefficients in gas absorption. Industrial & engineering chemistry,1951,43(6):1460-1467.
    [150]Ruckenstein E. A note concerning turbulent exchange of heat or mass with a boundary. Chemical Engineering Science,1958,7(4):265-268.
    [151]Ruckenstein E. Some remarks on renewal models. Chemical Engineering Science,1963, 18(4):233-241.
    [152]Nijsing R. Predictions on momentum, heat and mass transfer in turbulent channel flow with the aid of a boundary layer growth-breakdown model. Warme-und Stoffubertragung,1969,2(2):65-86.
    [153]Koppel L, Patel R, Holmes J. Statistical models for surface renewal in heat and mass transfer:Part . Dependence of average transport coefficients on age distribution. AIChE Journal,1966,12(5):941-946.
    [154]Fortescue G, Pearson J. On gas absorption into a turbulent liquid. Chemical Engineering Science,1967,22(9):1163-1176.
    [155]Banerjee S, Scott D, Rhodes E. Mass transfer to falling wavy liquid films in turbulent flow. Industrial & Engineering Chemistry Fundamentals,1968,7(1):22-27.
    [156]Lamont J C, Scott D. An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal,1970,16(4):513-519.
    [157]Deacon E. Gas transfer to and across an air-water interface. Tellus,1977,29(4): 363-374.
    [158]Lee Y H, Luk S. Characterization of concentration boundary layer in oxygen absorption. Industrial & Engineering Chemistry Fundamentals,1982,21(4):428-434.
    [159]Luk S, Lee Y. Mass transfer in eddies close to air-water interface. AIChE Journal,1986, 32(9):1546-1554.
    [160]Levich. V. G, Physicochemical Hydrodynamics. Prentice Hall Englewood Cliffs,1962, 70-81.
    [161]Davies J, Driscoll J. Eddies in Free Surfaces, Simulated by Pulses of Water. Industrial & Engineering Chemistry Fundamentals,1974,13(2):105-109.
    [162]King C. Turbulent Liquid Phase Mass Transfer at Free Gas-Liquid Interface. Industrial & Engineering Chemistry Fundamentals,1966,5(1):1-8.
    [163]蒋勇,闵健,高正明,等.搅拌槽内桨型对微观混合的影响.北京化工大学学报,2004,31(5):10-13.
    [164]Danckwerts P. Continuous flow systems:distribution of residence times. Chemical Engineering Science,1953,2(1):1-13.
    [165]Danckwerts P. The effect of incomplete mixing on homogeneous reactions. Chemical Engineering Science,1958,8(1):93-102.
    [166]Bourne J R, Toor H. Simple criteria for mixing effects in complex reactions. AIChE Journal,1977,23(4):602-604.
    [167]Bourne J R, Rys P, Suter K. Mixing effects in the bromination of resorcin. Chemical Engineering Science,1977,32(7):711-716.
    [168]Bourne J R, Kozicki F, Rys P. Mixing and fast chemical reaction-Ⅰ:Test reactions to determine segregation. Chemical Engineering Science,1981,36(10):1643-1648.
    [169]Belevi H, Bourne J R, Rys P. Mixing and fast chemical reaction-Ⅱ:Diffusion-reaction model for the CSTR. Chemical Engineering Science,1981,36(10):1649-1654.
    [170]Angst W, Bourne J R, Sharma R. Mixing and fast chemical reaction-Ⅳ:The dimensions of the reaction zone. Chemical Engineering Science,1982,37(4):585-590.
    [171]Bourne J R. The characterization of micromixing using fast multiple reactions. Chemical Engineering Communications,1982,16(1-6):79-90.
    [172]Baldyga J, Bourne J R. Mixing and fast chemical reaction-Ⅷ:Initial deformation of material elements in isotropic, homogeneous turbulence. Chemical Engineering Science, 1984,39(2):329-334.
    [173]Bourne J R, Hilber C, Tovstiga G. Kinetics of the azo coupling reactions between 1-naphthol and diazotised sulphanilic acid. Chemical Engineering Communications, 1985,37(1-6):293-314.
    [174]Thoma S, Ranade V, Bourne J R. Interaction between micro- and macro-mixing during reactions in agitated tanks. The Canadian Journal of Chemical Engineering,1991,69(5): 1135-1141.
    [175]Baldyga J, Pohorecki R. Turbulent micromixing in chemical reactors-a review. The Chemical Engineering Journal and the Biochemical Engineering Journal,1995,58(2): 183-195.
    [176]Mahajan A J, Kirwan D J. Micromixing effects in a two-impinging-jets precipitator. AIChE Journal,1996,42(7):1801-1814.
    [177]刘海峰,王辅臣.撞击流反应器内微观混合过程的研究.华东理工大学学报:自然科学版,1999,25(3):228-232.
    [178]Nolan G J, Amis E S. The rates of the alkaline hydrolyses of ethyl a-haloacetates in pure and mixed solvents. The Journal of Physical Chemistry,1961,65(9):1556-1560.
    [179]Villermaux, J, Falk. L, Fournier, M C, et al. Use of parallel competing reactions to characterize micromixing efficiency. AIChE Symposium Series,1992,286(88):6-10.
    [180]Fournier M C, Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency-experimental approach. Chemical Engineering Science.1996.51(22):5053-5064.
    [181]Fournier M C. Falk L, Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency-Determination of micromixing time by a simple mixing model. Chemical Engineering Science,1996.51(23):5187-5192.
    [182]Guichardon P, Falk L, Villermaux J. Extension of a chemical method for the study of micromixing process in viscous media. Chemical Engineering Science,1997,52(24): 4649-4658.
    [183]Liu C, Lee D. Micromixing effects in a couette flow reactor. Chemical Engineering Science,1999,54(13-14):2883-2888.
    [184]Guichardon P, Falk L, Villermaux J. Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part Ⅱ:kinetic study. Chemical Engineering Science, 2000,55(19):4245-4253.
    [185]Monnier H, Wilhelm A, Delmas H. Effects of ultrasound on micromixing in flow cell. Chemical Engineering Science,2000,55(19):4009-4020.
    [186]Fang J, Lee D. Micromixing efficiency in static mixer. Chemical Engineering Science, 2001,56(12):3797-3802.
    [187]Yang H J, Chu G W, Zhang J W, et al. Micromixing efficiency in a rotating packed bed: experiments and simulation. Industrial & Engineering Chemistry Research,2005, 44(20):7730-7737.
    [188]Chen Y, Tai C, Chang M, et al. Characteristics of micromixing in a rotating packed bed. Journal-Chinese Institute of Chemical Engineers,2006,37(1):63.
    [189]Chu G W, Song Y H, Yang H J, et al. Micromixing efficiency of a novel rotor-stator reactor. Chemical Engineering Journal,2007,128(2-3):191-196.
    [190]Yang K, Chu G W, Shao L, et al. Micromixing efficiency of rotating packed bed with premixed liquid distributor. Chemical Engineering Journal,2009,153(1):222-226.
    [191]Kolbl A, Kraut M. On the use of the Iodide Iodate Reaction Method for assessing mixing times in continuous flow mixers. AIChE Journal,2011,57(4):835-840.
    [192]张和平,刘洁.化学反应器中微观混合模型研究进展.云南化工,2004,31(3):31-35.
    [193]Curl R L. Dispersed phase mixing:Ⅰ. Theory and effects in simple reactors. AIChE Journal,1963,9(2):175-181.
    [194]Spielman L A, Levenspiel O. A Monte-Carlo treatment for reacting and coalescing dispersed phase systems. Chemical Engineering Science,1965,20(3):247-254.
    [195]Ng D Y C, Rippin D W T. The effect of incomplete mixing on conversion in homogeneous reactions. Third Eur. Symp. Chem. Reaction Eng., Amsterdam,1964,9: 161-165.
    [196]Ritchie B, Tobgy A. A three-environment micromixing model for chemical reactors with arbitrary separate feedstreams. The Chemical Engineering Journal,1979,17(3): 173-182.
    [197]Mehta R, Tarbell J. Four environment model of mixing and chemical reaction. Part I. Model development. AIChE Journal,1983,29(2):320-329.
    [198]Villermaux J, Falk L. A generalized mixing model for initial contacting of reactive fluids. Chemical Engineering Science,1994,49(24):5127-5140.
    [199]Toor H. Mass transfer in dilute turbulent and non-turbulent systems with rapid irreversible reactions and equal diffusivities. AIChE Journal,1962,8(1):70-78.
    [200]Mao K, Toor H. A diffusion model for reactions with turbulent mixing. AIChE Journal, 1970,16(1):49-52.
    [201]Ottino J, Ranz W E, Macosko C W. A lamellar model for analysis of liquid-liquid mixing. Chemical Engineering Science,1979,34(6):877-890.
    [202]Ranz W E. Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows. AIChE Journal,1979,25(1):41-47.
    [203]Angst W, Bourne J R, Sharma R. Mixing and fast chemical reaction-Ⅳ:The dimensions of the reaction zone. Chemical Engineering Science,1982,37(4):585-590.
    [204]Baldyga J, Bourne J R. Simplification of micromixing calculations-Ⅱ:New applications. The Chemical Engineering Journal,1989,42(2):93-101.
    [205]Baldyga J, Bourne J R. Simplification of micromixing calculations-I:Derivation and application of new model. The Chemical Engineering Journal,1989,42(2):83-92.
    [206]陈建峰,陈彬.搅拌反应釜中微观混和问题的研究-I:频闪高速显微摄影法研究微观混和过.化学反应工程与工艺,1990,6(1):1-6.
    [207]李希,陈甘棠.微观混合与快速反应过程的模型及模拟-I:片状结构模型及其简化.计算机与应用化学,1994,11(3):174-178.
    [208]Kundu A, Nigam K, Verma R. Catalyst wetting characteristics in trickle-bed reactors. AIChE Journal,2003,49(9):2253-2263.
    [209]Maiti R, Sen P, Nigam K. Trickle-bed reactors:Liquid distribution and flow texture. Reviews In Chemical Engineering,2004,20(1-2):57-110.
    [210]Lee B D, McQuay M Q, Bonin M P. Laser-based techniques for particle-size measurement:a review of sizing methods and their industrial applications. Progress In Energy And Combustion Science,1996,22(3):267-306.
    [211]刘雨佳.激光粒度测量仪的应用及展望,航空精密制造技术,2009,45(5):43-45.
    [212]梁国标,李新衡,王燕民.激光粒度测量的应用与前景.材料导报,2006,20(4):90-93.
    [213]陈秀法,冯秀丽.激光粒度分析与传统粒度分析方法相关对比.青岛海洋大学学报:自然科学版,2002,32(4):608-614.
    [214]贺存君,王振新,杨东彪,等.激光粒度仪在铁矿石目级粒度检测中的应用.现代矿业,2009,(3):107-108.
    [215]Storti F, Balsamo F. Impact of ephemeral cataclastic fabrics on laser diffraction particle size distribution analysis in loose carbonate fault breccia. Journal of Structural Geology, 2010,32(4):507-522.
    [216]Li H Y, Seville P C. Novel pMDI formulations for pulmonary delivery of proteins. International Journal of Pharmaceutics,2010,385(1):73-78.
    [217]Antonyuk S, Khanal M, Tomas J, et al. Impact breakage of spherical granules: experimental study and DEM simulation. Chemical Engineering and Processing: Process Intensification,2006,45(10):838-856.
    [218]程清,陈伟华,姜鹏翔,等.马尔文激光粒度仪在测定铬系催化剂粒度分布中的应用.分析仪器,2006,(3):43-45.
    [219]仝长亮,高抒.江苏潮滩沉积物激光粒度仪与移液管-筛析分析结果的对比.沉积学报,2008,26(1):46-53.
    [220]高晖,郭烈锦,张西民.螺旋管内气液固三相流颗粒相分布规律.工程热物理学报,2004,25(1):69-72.
    [221]Kwak B M, Lee J E, Ahn J H, et al. Laser diffraction particle sizing by wet dispersion method for spray-dried infant formula. Journal of Food Engineering,2009,92(3): 324-330.
    [222]Al-Dughaither A S. Ibrahim A A. Al-Masry W A. Investigating droplet separation efficiency in wire-mesh mist eliminators in bubble column. Journal of Saudi Chemical Society,2010.14(4):331-339.
    [223]Zaidi S H, Altunbas A, Azzopardi B. A comparative study of phase Doppler and laser diffraction techniques to investigate drop sizes in annular two-phase flow. Chemical Engineering Journal,1998,71(2):135-143.
    [224]Sanderson R, Hewitt A, Huddleston E, et al. Relative drift potential and droplet size spectra of aerially applied Propanil formulations. Crop Protection,1997,16(8): 717-721.
    [225]杨立军,王维,胡泽保,等.两相流乳化型细水雾喷嘴雾化特性研究.北京航空航天大学学报,2002,28(4):413-416.
    [226]Sukmarg P, Krishna K, Rogers W J, et al. Non-intrusive characterization of heat transfer fluid aerosol sprays released from an orifice. Journal of Loss Prevention In The Process Industries,2002,15(1):19-27.
    [227]Simmons M J, Hanratty T J. Droplet size measurements in horizontal annular gas-liquid flow. International Journal of Multiphase Flow,2001,27(5):861-883.
    [228]Arumuganathar S, Jayasinghe S. A versatile pressure assisted jet-fabrication by coating approach for forming biocompatible constructs for tissue engineering. Materials Letters, 2008,62(17):2574-2577.
    [229]Samarasinghe S, Pastoriza-Santos I, Edirisinghe M, et al. Fabrication of nano-structured gold films by electrohydrodynamic atomisation. Applied Physics A,2008,91(1): 141-147.
    [230]孙守峰,蓝兴英,马素娟,等.催化重整固定床反应器反应条件的优化.石油学报:石油加工,2008,24(4):376-382.
    [231]王朝峰NiW04纳米粒子的合成,表征和加氢脱硫性能.石油学报(石油加工),2013,29(2):331-335.
    [232]程振民,朱开宏,袁渭康.高等反应工程教程.上海:华东理工大学出版社,2010.
    [233]林付德,蔡连波.加氢反应器内件—急冷箱的性能研究.炼油技术与工程,2004,33(8):40-43.
    [234]蔡连波.BL型急冷箱的试验研究.石油化工设备,2008,37(B08):7-10.
    [235]Le Mehaute B. Open-Channel Hydraulics. New York:Springer,1976.
    [236]Chanson H. Development of the Belanger equation and backwater equation by Jean-Baptiste Belanger (1828). Journal of Hydraulic Engineering,2009,135(3): 159-163.
    [237]Taitel Y, Dukler A. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AIChE Journal,1976,22(1):47-55.
    [238]Chen P, Goldstein R. Convective transport phenomena on the suction surface of a turbine blade including the influence of secondary flows near the endwall. Journal of turbomachinery,1992,114(4):776-787.
    [239]Viollet P, Simonin O. Modelling dispersed two-phase flows:Closure, validation and software development. Applied Mechanics Reviews,1994,47(6):80-84.
    [240]焦纬洲,刘有智,祁贵生,等.化学偶合法研究IS-RPB反应器微观混合特性.化学工程,2007,35(5):36-39.
    [241]Yang H J, Chu G W, Xiang Y, et al. Characterization of micromixing efficiency in rotating packed beds by chemical methods. Chemical Engineering Journal,2006, 121(2-3):147-152.
    [242]Yang K, Chu G, Shao L, et al. Micromixing efficiency of viscous media in micro-channel reactor. Chinese Journal of Chemical Engineering,2009,17(4):546-551.
    [243]戴干策,陈敏恒.化工流体力学.北京:化学工业出版社,2005.
    [244]Jakobsen H A, Sannaes B H, Grevskott S, et al. Modeling of vertical bubble-driven flows. Industrial & Engineering Chemistry Research,1997,36(10):4052-4074.
    [245]Jakobsen H A, Lindborg H, Dorao C A. Modeling of bubble column reactors:progress and limitations. Industrial & Engineering Chemistry Research,2005,44(14): 5107-5151.
    [246]ANSYS. FLUENT user's manual. Software release,2006.
    [247]Huang Q, Yang C, Yu G, et al. CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model. Chemical Engineering Science,2010,65(20):5527-5536.
    [248]Rahimi M, Parvareh A. Experimental and CFD investigation on mixing by a jet in a semi-industrial stirred tank. Chemical Engineering Journal,2005,115(1):85-92.
    [249]Chow W, Li J. Numerical simulations on thermal plumes with k-s types of turbulence models. Building And Environment,2007,42(8):2819-2828.
    [250]Khopkar A, Rammohan A, Ranade V, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations. Chemical Engineering Science,2005,60(8):2215-2229.
    [251]Khopkar A R, Ranade V V. CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flow regimes. AIChE Journal,2006,52(5):1654-1672.
    [252]Kawase Y, Hashiguchi N. Gas-liquid mass transfer in external-loop airlift columns with newtonian and non-newtonian fluids. The Chemical Engineering Journal and The Biochemical Engineering Journal,1996,62(1):35-42.
    [253]Tobajas M, Garcia-Calvo E, Siegel M, et al. Hydrodynamics and mass transfer prediction in a three-phase airlift reactor for marine sediment biotreatment. Chemical Engineering Science,1999,54(21):5347-5354.
    [254]Kerdouss F, Bannari A, Proulx P, et al. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Computers & Chemical Engineering,2008,32(8): 1943-1955.
    [255]Dhanasekharan K M, Sanyal J, Jain A, et al. A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics. Chemical Engineering Science,2005,60(1):213-218.
    [256]Mandhane J, Gregory G, Aziz K. A flow pattern map for gas-liquid flow in horizontal pipes. International Journal of Multiphase Flow,1974,1(4):537-553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700