用户名: 密码: 验证码:
总压畸变对跨声速风扇流场结构影响的全流道数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回顾燃气涡轮发动机问世以来近60年的发展历史,在二十世纪六十年代中期主要重视的是发动机性能的好坏,追求高的性能指标,而对进气畸变的影响未引起足够的重视。这种情况在早期的亚音速、小机动飞行条件下是可以的。但随着飞机飞行速度、高度的不断提高,机动性的不断增加,以及导弹武器的使用,畸变的影响越来越突出,实践中暴露出来的问题也越来越严重。进入21世纪,飞机发动机向着非常规机动性和超音速机动性的方向发展。叶轮机械无一例外必须在非均匀进口条件下工作。这就使得压气机的效率和压比比均匀进气条件有所降低,更重要的是进口气流的不均匀会加剧内部流场的非定常现象,从而使压气机气动稳定性下降,使之提前失速。因此,深入的研究进口气流参数的非均匀性和内部流场的非定常性对进一步提高叶轮机械的性能有着非常重要的意义。
     本文以某型跨音风扇作为研究对象,首先对原型风扇设计工况数值模拟结果与实验结果进行了对比与分析。在本文计算条件下,三维非定常数值模拟得到的风扇效率曲线在趋势上与实验曲线匹配的较好。数值模拟结果在最高效率点附近与实验值最接近。计算工况越接近喘振点,数值模拟的误差越大。湍流模型的误差和较大的数值粘性是造成偏差的主要原因。对数值模拟与实验结果的进一步验证表明,本文使用的数值模拟方法可以满足定性研究风扇流场的要求。
     通过研究不同畸变度和畸变角时总压畸变对风扇流场进出口参数的影响,较系统的给出了多种畸变条件下总压畸变经风扇的传递情况,并详细分析了畸变流场对风扇进出口参数的影响。分析表明:周向总压畸变使进口流场参数分布发生改变:在畸变与非畸变区的交界处有周向侧流产生,使进口的静压、气流轴向速度、气流角变得不均匀,从而改变了风扇的进口流场。总压畸变经风扇传递的同时引起总温畸变。通过对多种进口畸变条件下的风扇流场进行求解,提出刻画畸变区内转子旋转的“四阶段”模型。即动叶旋转一周主要经历进入畸变区、畸变区内运动、退出畸变区、非畸变区运动四个阶段。动叶在各阶段中受畸变流场的影响完全不同。
     畸变度和畸变角较大时,进口总压畸变对风扇流场的影响显著。本文采用更细致的网格对畸变度0.1,单畸变区90 o进口条件下的风扇流场进行了三维数值模拟。给出均匀和进口畸变条件下风扇的特性曲线。选取最高效率点作为研究对象,详细分析了进口畸变对风扇内部流场的影响。分析发现,进口总压畸变使风扇性能明显下降。畸变流场对动叶和静叶的影响沿径向存在很大差异。根部区域,动叶损失小,而静叶损失大。顶部则相反。不同周向位置畸变流场对动叶的影响不同。对于动叶,文中对不同周向位置、不同叶高处动叶内的流场进行了分析,给出相对畸变区不同周向位置处动叶内流场的变化规律。尤其对叶顶附近激波结构、强度、位置的变化进行了详细的分析。对于静叶,文中重点分析了畸变区内静叶的流场。结果表明,静叶根部存在大范围的分离,使畸变区内的静叶流道产生严重堵塞。从而影响到相邻叶栅内的流动状况,使流道内产生较强的激波。
     证实了动叶对不均匀流场的响应存在一定滞后:动叶在旋转过程中,当进口条件发生变化时,上游流体在动叶内传递需要一定时间才能影响到整个流道。最高损失点并不是在畸变区内,而是在动叶离开畸变区向远畸变区运动的过程中。相应的,转子最高效率(低损失)位置并不在远畸变区,而是位于动叶再次进入畸变区的位置。
     在原型的基础上构造了五种不同的静叶弯叶片方案对风扇流场进行求解。结果显示,静叶弯曲能有效提高抗畸变能力。在同样畸变度条件下,静叶采用弯叶片可以提高效率,可以提高风扇的流动稳定性。但是弯曲方式不同对风扇流场的改善方式也存在差异:静叶根部弯曲对动叶和静叶流场都有改善作用;两端弯曲对动叶的改善作用较大。本文将静叶弯曲对畸变流场的影响分为两个方向:一是大幅改善动叶流场,静叶栅效率却有所下降或改变不大;二是动叶效率改变不大,而对静叶流场的改善程度较大。流场的周向不均匀使畸变区静叶流道内产生严重分离。利用正弯叶栅产生的径向压力梯度,可以增加畸变区内静叶根部和中径区域的密流,从而在一定程度上抑制或减小分离的范围,能够改善畸变区内静叶以及上游动叶流场。但是静叶弯叶片的使用具有两面性。研究发现,两端大弯角的静叶能够较大程度提高动叶效率,使动叶内流动更稳定,同时能够提高静叶抗畸变能力,但是却使静叶栅效率下降;根部弯曲的静叶能够较大程度提高静叶栅效率,但是抗分离能力相对较低,同时对动叶改善相对较小。
The main attention upon turbomachinery is performance improvement in 1960s, with little attention on stability decline induced by inlet distortion. But, as the increase of airplane flying speed and height and the enhancement of maneuverability, the impact on aeroengine by inlet distortion is more and more prominent. In the 21st century, aeroengine needs more unconventionally maneuverable and more supersonic flexible so that engine operates under distorted inlet condition, which deteriorates its performance, makes stability decline, even induces stall. The requirement to further increase performance and improve reliability in modern turbomachinery has motivated designers to better understand unsteady and inlet distortion effects in aeroengine flow field. So, deeply and systematically study of inlet distortion in a transonic fan is carried out in this paper.
     3D full-annulus unsteady numerical simulation and experiment results of a transonic fan are compared and analyzed. According to the computational condition applied in this dissertation, at the max efficiency point and near chock point, the results are very closely. But at the near stall point the results don’t match very well. It is analyzed and found that turbulence model error and larger numerical viscosity are the causes for such deviation. The further verification to simulation and experiment results shows that the numerical simulation method used in this dissertation can meet the requirements of qualitative flow field study in this transonic fan.
     With simulation of different distortion intensity and angles effects on the fan performance, distortion transformation forms of different inlet boundary condtions are given systematically. And parameters of inlet and outlet are analyzed in detail. It is found that circumferential total pressure distortion can change the distribution of inlet variables. There is circumferential flow at the border of distortion. Inlet static pressure, axial velocity and velocity angle are influenced and become non-uniform. An analysis model for rotor analysis in one revolution named“four phases model”is demonstrated. The model divided one revolution into four main phases according to the characteristic of rotor at different time slices. In each phase, the effects induced by distortion flow field on rotor are different.
     The effects on the fan flow field are more serious when distortion intensity is stronger and angle is biger. With the study of distortion intensity 0.1 and distortion angle 90 o,the fan performances with uniform and distorted inlet are given. The comparision of them shows inlet total pressure distortion reduces fan performance heavely. The max efficiency operation point is choosed and analyzed in detail. It is found that the effects on rotor and stator are very different at different spans and circumferential positons. In rotor, flow field variables at different spans and circumferential positons are analyzed in detail. Variation regularity of flow parameters when rotor rotates one revolution are decribed clearly. Especially, the variation of shock intencity and position at rotor casing area is analyzed in detail. In stator, the flow field in distorted region is analyzed. Results show large scope separation exists at stator hub. The separation makes these passages choked seriously. And the flow velocity in the next passages is supersonic.
     The reponse to inlet of rotor distortion having a lag is determined. In one revolution, it will take some time for inlet boundary to affect the full passage. The max loss point is not in the distorted region, but in the phase during rotor rotating from distorted region to remote distorted region. Accordingly, the max efficiency point is in the distorted region.
     The performance of fan with distorted inlet can be affected by varying the stator bow angle. Five stator bow angles are established in this dissertation. Results show that bowed stator can improve the fan performance effectively. Bow at hub can improve rotor and stator flow field, but bow at two sides has better effects on rotor. Use of positive bowed stator can constrain separation or reduce the scope and improve the stator flow field. But it has two faces. It is found that big bow angle at two sides can improve the rotor flow field and increase the rotor efficiency. And it can constrain the separation in distorted region better and enhance the anti-distortion capability of stator. But it reduces the stator efficiency. Bow angle at hub can increase the stator efficiency effectively. But its anti-distortion capability is low. And it has few good effects on rotor. So, there is an inner complex relation among bow angle, anti-distortion capability and stator efficiency.
引文
1. 刘大响,叶培梁等编著. 航空燃气涡轮发动机稳定性设计与评定技术. 航空工业出版社. 2004:5-16
    2. 徐建中 . 叶轮机械气动热力学的回顾与展望 . 西安交通大学学报 . 1999,33(9):1-4
    3. 邹正平,徐力平. 双重时间步方法在非定常流场模拟中的应用. 航空学报. 2000,21(4):318-321
    4. 刘宝杰,邹正平等. 叶轮机计算流体力学技术现状与发展趋势. 航空学报. 2002,23(5):394-404
    5. 季路成,周盛. 转/静干扰效应纳入设计体系的途径探索. 中国工程热物理学会热机气动热力学学术会议. 北京,1998:47-54
    6. 陈矛章. 风扇/压气机技术发展和对进后工作的建议. 航空动力学报. 2002,17(1):1-15
    7. G. C. Oates 等著. 飞机推进系统技术与设计. 陈大光,张津等译. 航空工业出版社. 1992
    8. T. William. History, Philosophy, Physics, and Future Directions of Aircraft Propulsion System/Inlet Integration. ASME Paper GT2004-54210, Vienna, 2004
    9. M. Davis, A. Hale, D. Beale. An Argument for Enhancement of the Current Inlet Distortion Ground Test Practice for Aircraft Gas Turbine Engines. ASME 2000-GT-0505,2000.
    10. S. R Manwaring, S. Fleeter. Inlet Distortion Generated Periodic Aerodynamic Rotor Response. ASME 89-GT-299, 1989
    11. W. F. Kimzey. An Analysis of the Influence of Some External Disturbances on the Aerodynamic Stability of Turbine Engine Axial Flow Fans and Compressors. AEDCTR-77-80, August 1977.
    12. SAE Aerospace Information Report, AIR-1420. Inlet Total-Pressure-Distortion Considerations for Gas-Turbine Engines. Rev.A, 1999
    13. C. E. Danforth. Distortion-Induced Vibration in Fan and Compressor Blading. Journal of Aircraft Vol.12,No.4. April 1975:216-225
    14. S. R Manwaring, D. C. Rabe, C. B. Lorence and A. R. Wadia. Inlet Distortion Generated Forced Response of a Low Aspect-Ratio Transonic Fan. ASME journal of Turbomachinery, vol.119. 1997:665-676
    15. B.H. Anderson, D.J.Keller. Consideration in the Measurement of Inlet Distortion for High Cycle Fatigue in Compact Inlet Diffusers. NASA TM-2002-211476
    16. J. T. Datko Jr, J. A. O’Hara. The Aeromechanical Response of an Advanced Transonic Compressor to Inlet Distortion. ASME 87-GT-189, 1987
    17. C. Reid. The Response of Axial Flow Compressors to Intake Flow Distortion.ASME Paper No.69-GT-29,1969
    18. E. J. Graber Jr, W.M. Braithwaite. Summary of Recent Investigation of Inlet Flow Distortion Effects on Engine Stability. AIAA Paper 74-236, AIAA 12 thAerospace Sciences Meeting, January 30-February 14,1974, Washington,D.C.
    19. R. E. Peacock, J. Overli. Dynamic Flows in Compressors with Pressure Maldistributed Inlet Conditions. AGARD CP-177,1976
    20. J. Colpin, P. Kool. Experimental Study of an Axial Compressor Rotor Transfer Funcion with Non-Uniform Inlet Flow. ASME Paper No.78-GT-69, Gas Turbine Conference and Products Show, April 9-13,1978 London, England.
    21. A. M. Yocum, R. E. Henderson. The Effects of Some Design Parameters of an Isolated Rotor on Inlet Flow Distortions. Transactions of the ASME, Vol.102. January,1980:178-186
    22. T. Biesiadny, W. Braithwaite, R. Soeder and M. Abdelwahab. Summary of Investigations of Engine Response to Distorted Inlet Conditions. NASA Technical Memo No.87317. Lewis Research Center, Cleveland, OH.1986
    23. P. L. Andrew. An Experimental Investigation of Unsteady Loss Variation with Reduced Frequency in a Low Speed, Single Stage Axial Compressor. Von Karmen Institute for Fluid Dynamics, Project Report 1988-7. June,1988
    24. T. Kaya, A. Carrere, R. Barenes. Investigation of the Flow Field Through a Variable Pitch Fan Rotor with an Inlet Total Pressure Distortion. ISABE 93-7029,1993
    25. J. R. Schwartz. An Experimental and Analytical Investigation of Dynamic Flow Response of a Fan Rotor with Distorted Inlet Flow. M.S. Thesis. Virginia Polytechnic Institute & State University. Blacksburg, Virginia, 1999:49-72
    26. W. Jahnen, T. Peters, L. Fottner. Stall Inception in a 5-stage HP-Compressor with Increased Load Due to Inlet Distortion. 99-GT-440, ASME/IGTI Turbo Expo’99, Indianapolis, Indiana. 1999
    27. Feng Lin, Meilin Li, Jingyi Chen. Long-to-Short Length Scale Transition: A Stall Inception Phenomenon in An Axial Compressor with Inlet Distortion. GT2005-68656, ASME Turbo Expo 2005, Reno-Tahoe, Nevada, USA. 2005
    28. T. E. Smith. A Review of Turbomachinery Blade-Row Interaction Research. NASA-CR-182211. 1988
    29. Zdzislaw Mazur, Rafael Campos-Amezua. Numerical Simulation of Erosion in Modified Nozzles of Axial Flow Turbine. ASME paper GT2006-90027, 2006
    30. M.Leonid, G.Yuri, R.Leonid. Methods and Tools for Multidisciplinary Optimization of Axial Turbine Stages With Relatively Long Blades. ASME paper GT2004-53379, 2004
    31. S.Aamir, G.T. Mark. A Wall Function for Calculating the Skin Friction With Surface Roughness. GT2004-53908, 2004
    32. C.H.Sheng. Full Annuls Simulation of a High-Speed Centrifugal Compressor Using an Unstructured RANS Flow Solver. ASME paper GT2004-53657, 2004
    33. J.E. Anker, J.F.Mayer, Simulation of the Interaction of Labyrinth Seal LeakageFlow and Main Flow in an Axial Turbine. ASME paper GT-2002-30348, 2002
    34. R.L.Davis, J.X.Yao, J.P.Clark. Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components. ASME paper GT2002-30364, 2002
    35. A.Zachcial, D.Nurnberger. A Numerical Study on the Influence of Vane-Blade Spacing on a Compressor Stage at Sub- and Transonic Operating Conditions. ASME paper GT2003-38020, 2003
    36. C.M.Rhie. Development Application of a Multistage Navier-Stokes Solver: Part I – Multistage Modelling Using Bodyforces and Deterministic Stresses. ASME95-GT-342. Houston, 1995
    37. 孟庆国, 季路成, 周盛. 关于叶轮机多级流动模拟的模型讨论. 工程热物理学报. 1996, 17(S1): 56-59
    38. D.J.Dorney, O.P.Sharma. Evaluation of Flow Field Approximations for Transonic Compressor Stages. ASME 96-GT-371. Birmingham, 1996
    39. L. C. Ji, J. Chen, J. Z. Xu. Numerical Investigations about the Aerodynamic Performance of the Cascade in Unsteady Environment. ASME paper GT-2003-38288, 2003
    40. Ronald Mailach, Konrad Vogeler. Aerodynamic Blade Row Interactions in an Axial Compressor: Part I—Unsteady Boundary Layer Development. ASME paper GT-2003-38765, 2003
    41. Ronald Mailach, Konrad Vogeler. Aerodynamic Blade Row Interactions in an Axial Compressor: Part Ⅱ—Unsteady Profile Pressure Distribution and Blade Forces. ASME paper GT-2003-38766, 2003
    42. A. D. Henderson, G. J. Walker. Unsteady Transition Phenomena at a Compressor Blade Leading Edge. ASME paper GT2006-90641, 2006
    43. M. Stridh, L. E. Eriksson. Mdeling Unsteady Flow Effects in a 3D Transonic Compressor. ASME paper GT2005-68149, 2005
    44. Thomas Mokulys, Stephen C. Dewhurst, Reza S. Abhart. Numerical Validation of Characteristic and Linearized Unsteady Boundary Condition for Non-Integer Blade Ratios in a Non-Linear Navier Stokes Solver. ASME paper GT2005-68670, 2005
    45. H.Yang, D. Nuernberger, H. P. Kersken Towards Excellence in Turbomachinery CFD: a Hybrid Structured-Unstructured RANS Solver. ASME paper GT2005-68735, 2005
    46. R. V. Chima. A Three-Dimesional Unsteady CFD Model of Compressor Stability. ASME paper GT2006-90040, 2006
    47. S. Vilmin, E. Lorrain, Ch. Hirsch. Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method. ASME paper GT2006-90210, 2006
    48. Y. B. Suzen, P. G. Huang. Numerical Simulation of Unsteady Wake/Blade Interactions in Low Pressure Turbine Flows Using an Intermittency Transport Equation. ASME paper GT2004-53630, 2004
    49. A. Jameson. Time Dependent Calculations Using Multigrid with Applications to Unsteady Flows Past Airfoils and Wings. AIAA Paper 91-1596. Honolulu, 1991
    50. Z. J. Hu, G. Ch. Zha, J. Lepicovsky. Numerical Study of a Cascade Unsteady Separation Flow. ASME paper GT2004-53195, 2004
    51. P. L. Cinnella, E. Cappiello, Pietro De Palma. A Numerical Method for 3D Turbomachinery Aeroelasticity. ASME paper GT2004-54060, 2004
    52. T. Turunen-Saaresti, A. Reunanen, J. Larijola. The Time-Accurate Numerical Simulation of a Centrifugal Compressor. ASME paper GT-2002-30385, 2002
    53. B. Laumert, H. Martensson, T. H. Fransson. Simulation of Rotor/Stator Interaction With a 4D Finite Volume Method. ASME paper GT-2002-30601, 2002
    54. M. Aube, C. Hirsch. Numerical Investigation of a 1-1/2 Axial Turbine Stage at Quasi-Steady and Fully Unsteady Conditions. ASME Paper 2001-GT-0309. New Orleans, 2001
    55. G. A. Gerolymos, D. Vinteler, R. Haugeard and G. Tsanga. On the Computation of Unsteady Turbomachinery Flows; Part 2 – Rotor/Stator Interaction using Euler Equations. AGARD Report No. CP-571. 1996
    56. L. I. He. Method of simulating Unsteady Turbomachinery Flows with Multiple Perturbations. AIAA Journal. 1992, 30(11): 2730-2735
    57. A. B. Burgos, R. Corral. Application of Phase-Lagged Boundary Conditions to Rotor/Stator Interaction. ASME Paper 2001-GT-0586. New Orleans, 2001
    58. G. Billonnet, A. Fourmaux, C. Toussaint. Evaluation of Two Competitive Approaches for Simulating the Time-Periodic Flow in an Axial Turbine Stage. Proceedings of the 4th European Conference on Turbomachinery. Fierence, 2001
    59. M. B. Giles. Stator/Rotor Interaction in a Transonic Turbine. AIAA Journal of Propulsion and Power. 1990, 6(5): 621-627
    60. A. R. Jung, J. F. Mayer, H. Stetter. Simulation of 3-D Unsteady Stator/Rotor Interaction in Turbomachinery Stages of Arbitrary Pitch Ratio. ASME Paper 96-GT-69. Birmingham, 1996
    61. B. Laumert, H. M?rtensson, T. H. Fransson. Simulation of Rotor/Stator Interaction with a 4D Finite Volume Method. ASME Paper GT-2002-30601. Amsterdam, 2002
    62. G. Xi, L. Zhou, Ch. M. Zhang. Application of the Time-Inclined Operator on the Unsteady Numerical Simulation in Centrifugal Compressor. ISABE-2005-1224. 2005
    63. M. Montgomery, M. Tartibi. Application of Unsteady Aerodynamics And Aeroelasticity in Heavy-Duty Gas Turbines. ASME paper GT2005-68813. 2005
    64. S. Konig, A. Heidecke, B. Stoffel. Colocking Effects in a 1.5-Stage Axial Turbine: Boundary Layer Behaviour at Midspan. ASME paper GT2004-54055, 2004
    65. R. Mailach, K. Vogeler. Roter-Stator Interaction in a Four-Stage Low-Speed Axial Compressor: Part I—Unsteady Profile Pressures and the Effect ofClocking. ASME paper GT2004-53098, 2004
    66. X. Y. Deng, H. W. Zhang, J. Y. Chen. Unsteady Tip Clearance Flow in a Low-Speed Axial Compressor Rotor With Unstream and Downstream Stators. ASME paper GT2005-68571, 2005
    67. D. E. Bohn, J. Ren, Ch. Tiimmers. Unsteady 3D-Numerical Investigation of the Influence of the Blading Design on the Stator-Rotor Interaction in a 2-Stage Turbine. ASME paper GT2005-68115, 2005
    68. J. P. Clark., G. M. Stetson, S. S. Magge. The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and ? Stage Transonic Turbine and a Comparison with Experimental Results. ASME Paper 2000-GT-0446. Munich, 2000
    69. 邹正平, 徐力平. 叶轮机三维非定常流动数值模拟的研究. 航空学报. 2001, 21(1): 10-14
    70. O. Adam, O. Leonard. A Quasi-One-Dimensional Model for Axial Compressor. ISABE-2005-1011, 2005.
    71. H. Peaeson, A. McKenzie. Wakes in Axial Compressors. Journal of the Royal Aeronautical Society, Vol.63. July,1959
    72. E. M. Greitzer. Surge and Rotating Stall in Axial Flow Compressors: PartⅠ. ASME Journal of Engineering for Power, Vol.98. April,1976
    73. E. M. Greitzer,. Surge and Rotating Stall in Axial Flow Compressors: PartⅡ. ASME Journal of Engineering for Power, Vol.98. April,1976
    74. F. Roberts, G. A. Plourde, F. Smakula. Insights into Axial compressor Response to Distortion. AIAA Paper No.68-565. 1968
    75. W. M. Braithwaite, E. J. Graber Jr, C. M. Mehalic. The Effect of Inlet Temperature and Pressure Distortion on Turbojet Performance. AIAA Paper No.73-1316, AIAA/SAE 9 thPropulsion Conference. Las Vegas, Nevada. November 5-7,1973
    76. J. J. Adamczyk. Unsteady Fluid Dynamic Response of an Isolated Rotor with Distorted Inflow. AIAA Paper No.74-49
    77. R. S. Mazzawy. Multiple Segment Parallel Compressor Model fo Circumferential Flow Distortion. ASME Journal of Engineering for Power, April,1977
    78. F. O. Carta. Analysis of Unsteady Aerodynamic Effects on Axial Flow Compressor Stage with Distorted Inflow. Project Squid—Technical Rep.UARL-A-UP. 1972
    79. H. C. Melick. Analysis of Inlet Flow Distortion and Turbulence Effects on Compressor Stability. NASA CR 114577. 1973
    80. M. Lecht. Improvement of the Parallel Compressor Model by Consideration of Unsteady Blade Aerodynamics. AGARD CP-400. 1986
    81. E. M. Greitzer, C. S. Tan, D. C. Wisler and J. J. Adamczyk. Unsteady Flows in Turbomachines: Where’s the Beef? ASME Unsteady Flows in Aeropropulsion. 1994:pp.1-11
    82. R. E. Henderson, I. C. Shen. The Influence of Unsteady Rotor Response on a Distorted Flow Field. ASME Paper No.81-GT-185, International Gas Turbine Conference and Products Show. Houston, Texas. March 9-12,1981
    83. B. Delahaye, P. Sagnes. Inlet Distortion and Compressor Behavior. ICAS Paper No.84-1.9.1, 1984
    84. M. R. Sexton, W. F. O’Brien. A Model for Dynamic Loss Response in Axial-Flow Compressors. ASME Paper 81-GT-154. 1981
    85. J. Hurad. Determination Experimentale des Lois de Transfert de Perturbations a la Traversee d’un Compresseur Axial. AGARD CP-400, 68 thSpecialists Meeting. Munich, Germany. September8-9,1986
    86. M. D. Small. Frequency Domain Methods for Predicting the Transport of Non-Uniform Flow Through Turbomachinery Compressors. M.S Thesis, Virginia Polytechnic Institute and Stage University. 2001
    87. D. S. Madden, M. A. West. Effects of Inlet Distortion on the Stability of an Advanced Military Swept Fan Stage with Casing Treatment. ASME paper, GT2005-68693, 2005
    88. Y. X. Zhang, H. Zhang, H. K. Jiang, et al. Computational Study on a Single Stage Compressor/Pylon Interaction [R]. Intermediate Report of BUAA Rolls-Royce Collaborative Project. 2001
    89. 赵全春. 压气机试验用的三种压力畸变发生器及试验结果. 航空发动机. 1995. (3):28-38
    90. 陈晓. 变唇口模拟器研制技术报告. 南京航空学院. 1991,6
    91. 王勤 . 在动态畸变流场中的脉动压力统计特性初探 . 航空发动机 . 2000,(2):14-20
    92. 赵全春. 压气机“挡板”畸变试验方法. 航空发动机. 1999. (4):17-21
    93. 李传鹏, 胡俊. 旋转进气畸变对轴流压气机气动稳定性影响实验研究. 航空动力学报. 2000,8(4):433-437
    94. 刘燕, 刘伟, 刘志伟, 陈辅群. 畸变进气压气机特性与气动稳定性的改进模拟技术及其实验研究. 航空动力学报. 1995,10(1):87-89
    95. 宋文艳, 黎明, 范非达. 多扇平行压气机模型在压气机稳态畸变流场计算中的应用. 航空动力学报. 1997,12(2):155-158
    96. 吴虎, 廉小纯, 陈辅群, 崔建勇. 畸变进气下压缩系统稳定性分析的通用方法. 推进技术. 1997,18(5):62-64
    97. 董金钟, 王苗苗. 总压总温组合畸变对压气机稳定性影响的数值模拟研究. 航空动力学报. 2003,18(6):788-793
    98. 胡俊. 均匀与非均匀进气条件下多级轴流压气机性能计算-周向畸变的影响. 航空动力学报. 2000,15(3):225-228
    99. 乔渭阳, 蔡元虎. 燃气涡轮发动机压缩系统稳定性数值模拟的研究. 燃气涡轮试验与研究. 2001,14(2):19-24
    100. G. A. Fillipov, Wang Zhongqi. The Effect of Flow Twisting on theCharacteristics of Guide Rows. Teploenergetika. 1964, 5: 24~28
    101. Wang Zhongqi, Lai Shengkai, Xu Wenyuan. Aerodynamics Calculation of Turbine Stator Cascades with Curvilinear Leaned Blades and Some Experimental Results. Symposium Paper of 5-th ISABE, India, 1981
    102. Han Wanjin, Wang Zhongqi. Relationships Between Static Pressure Distribution on Walls and Secondary Flow Losses in Rectangular Turbine Stator Cascades with Leaned and Curvilinear Blade at Different Incidences. INTERFLUID 1st International Congress on Fluid Handling Systems. Germany, 1990
    103. K. Kobayashi, M. Honjo, H. Tashiro and T. Nagayama. Verification of Flow Pattern for Three-Dimensional-Designed Blades. ImechE 1991, C425/015
    104. 韩万金. 涡轮环形叶栅中的拓扑与漩涡结构. 国家自然科学基金重点项目汇报. 2001
    105. 王仲奇, 苏杰先, 钟兢军. 弯曲叶片栅内减少能量损失机理研究的新进展.工程热物理学报. 1994,15(2): 147~152
    106. A. B. Bogod, et al., Direct and Inverted Calculation of 2D Axisymmetric and 3D Flows in Axial Compressor Blade Rows. TsAGI, Russia, 1992
    107. A. Duden, I. Raab, L. Fottner. Controlling the Secondary Flow in a Turbine Cascade by 3D Airfoil Design and Endwall Controlling. ASME Paper 98-GT-72. Stockholm, 1998
    108. 蒋洪德. 美国航空发动机和计算流体力学发展情况介绍. 工程热物理能源利用学科,气动热力学发展战略研讨会专题报告汇编. 北京, 1989: 29~36
    109. F.A.E. Breugelmans, et al. Influence of Dihedral on the Secondary Flow in a Two-Dimensional Compressor Cascade. ASME Journal of Engineering for Gas Turbine and Power. 1984, 106(3): 578~584
    110. 肖柳. 系列化发展的 PW4084 型发动机. 国际航空. 1992 (6): 21~23
    111. 横跨三大洲的国际合作计划—V2500 涡扇发动机. 国外航空技术. 1986(1): 23~29
    112. H. Tubbs, A. Rea. Aerodynamic Development of the High Pressure Compressor for the IAE V2500 Aeroengine. ImechE C425/023,1991
    113. 苏杰先, 冯国泰, 闻洁, 王仲奇. 弯曲叶片在压气机中的应用. 工程热物理学报. 1990,11(4): 404~407
    114. F. W. Huber, R. J. Rowey. Application of 3-D Flow Computations to Gas Turbine Aerodynamic Design. AIAA Paper 85-1964. Snowmass, 1985
    115. K. Matsunaga, A. Tanaka, et al. Application of 3-D N-S Computation to Bowed Stacking Turbine VanE Design. AIAA Paper 90-2129. Orlando, 1990
    116. J. Vialonga, B. Petot. Assessment of a 3-D Euler Code for Subsonic Turbine Vane Flows and Study of the Non-radial Blade Stacking. ASME Paper 92-GT-63. Cologne, 1992
    117. F. A. E. Breugelmans. Influence of Incidence Angle on the secondary Flow in Compressor Cascade with Different Dihedral Distribution. ISABE Paper 85-7078. Beijing, China. 1985
    118. Shang Erbing, Wang Zhongqi, Su jiexian. The experimental Investigation on the Compressor Cascades with leaned and curved Blade. ASME Paper 93-GT-50. Cincinnati, 1993
    119. 钟兢军. 弯曲叶片控制扩压叶栅二次流动的实验研究. 哈尔滨工业大学工学博士学位论文. 1995: 1~159
    120. T. J. Bath. Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. AIAA Paper 91-0721. Reno, 1991
    121. M.G. Turner, I.K. Jennions. An Investigation of Turbulence Modeling in Transonic Fans Including a Novel Implementation of an Implicit k- εTurbulence Model. ASME 92-GT-308. Cologne, 1992
    122. O. Nozaki, K. Kikuchi, T. Nishizawa and Y. Matsuo. Unsteady Three-Dimensional Viscous Flow Computations of Multiple-Blade-Row Interactions. ISABE 99-7032. Florence, 1999
    123. 姚征, 陈康民. CFD 通用软件综述. 上海理工大学学报. 2002, 24(2): 137-144
    124. M. A. Cherrett, J. D. Bryce, R.B. Ginder. Unsteady Three-Dimensional Flow in a Single-Stage Transonic Fan: Part I – Unsteady Rotor Exit Flow Field (J). ASME Journal of Turbomachinery, 1995, 20 (3): 569-575
    125. M. Govardhan, K. Viswanath. Effect of Circumferential Inlet Flow Distortion and Swirl on the Flow Field of an Axial Flow Fan Stage (R). ASME Paper, 6-GT-263, 1996.
    126. W. T. Cousins, M. J. Georges, H.Rezaei. Inlet Distortion Testing and Analysis of a High-Bypass Ratio Turbofan Engine (R). ISABE Paper, 2003, 1110.
    127. D. J. Dorney, J. R. Schwab. Unsteady Numerical Simulation of Radial Temperature Profile Redistribution in a Single-Stage Turbine (R). ASME Paper, 95-GT-178,1995.
    128. J. D. Denton. Loss Mechanisms in Turbomachines [J]. ASME Journal of Turbomachinery. 1993, 115(4): 621-656
    129. R. Gombert, W. H¨ohn. Unsteady Aerodynamical Blade Row Interaction in a New Multistage Research Turbine - Part 1: Experimental Investigation. ASME Paper 2001-GT-0306. New Orleans, 2001
    130. K. Funazaki, N. Tetsuka, T. Tanuma. Effects of Periodic Wake Passing upon Aerodynamic Loss of a Turbine Cascade: Part I – Measurements of Wake-Affected cascade Loss by Use of a Pnuemetic Probe. ASME Paper 99-GT-93. Indianapolis, 1999
    131. H. D. Weingold, R. J. Neubert, R. F. Behlke, et al. Bowed Stator: An Example of CFD Applied to Improve Multistage Compressor Efficiency. Journal of Turbomachinery, 1997, 119:161-168
    132. 方开泰. 均匀设计. 应用数学学报. 1980. 3: 363~372
    133. 王松涛, 王仲奇, 冯国泰, 孙玺淼. 非定常条件下叶片弯曲对流场参数的影响. 航空动力学报. 2002, 17(3): 314-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700