用户名: 密码: 验证码:
大庆油田特低渗透裂缝性油藏渗流特征研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步搞清大庆外围特低渗透裂缝性油藏渗流特征,以头台油田,榆树林油田扶余油层为例,本文针对大庆外围低渗透油田开发中存在的注水开发产能下降快、水驱采收率低以及储量动用程度低等难题,通过对国内外有关低渗透油藏非达西渗流方面的研究成果和文献的综合分析,确定了研究思路和研究内容,并在非达西渗流理论和实验两方面开展了大量工作。
     通过粘土矿物分析、电镜扫描、铸体薄片分析、恒速压汞、核磁共振测试等方法的综合研究,认为大庆外围低渗透油田扶杨油层储集空间主要有五种孔隙类型:粒间孔、溶蚀孔、微孔隙、晶间孔和裂隙,喉道以管状和片状的细喉道为主,而且储层的主要渗流通道为孔道型,这种细微孔道不可避免地增加油水流动阻力;同时发现,这类储层的基质孔隙、喉道、裂缝及相互连通关系都不同程度地控制流体渗流特性。
     室内实验表明单相油、单相水在大庆油田低渗透扶杨油层中流动时,表现了非达西渗流特征:渗透率越低,非达西渗流特征越明显;渗透率越低,其最小启动压力梯度和拟启动压力梯度越大;单相水流动产生非达西渗流的渗透率上限约为1mD;单相油流动产生非达西渗流的渗透率上限约为5mD。
     低渗透油层中油水两相渗流时,渗流曲线的非线性特征更加显著,油水两相渗流的拟启动压力梯度不只是含水饱和度的函数,它与驱替过程相关,并且大于水单相渗流的拟启动压力梯度,也大于油单相渗流的拟启动压力梯度。特低渗透岩心低速下水驱油相对渗透率曲线的特点是束缚水饱和度高,油水共渗范围小,油相相对渗透率下降快,残余油下水相相对渗透率抬不起来,残余油饱和度高。
     深入研究了特低渗透裂缝性油藏渗流特性及开发特征。提出了有效驱动体系的概念,并结合实际油田的开发论述了探索了构建有效驱动体系的压裂投产增加可动流体饱和度、采用矩形井网扩大可流动区域、基质与裂缝较佳组合提高驱油能力等做法。
This study was performed to make clear the flow characteristics of the ultra-low permeability reservoir with fractures in the periphery of Daqing Oilfield, like the Fuyu oil layer in Toutai oilfield and Yushulin oilfield. Aiming at such problems existing in the low permeability reservoir development by water flooding at Daqing Oilfield as the fast decrease of oil production, the low recovery ratio and poor use of reserves, after comprehensive analyses of the research methods, results and literatures concerning non-Darcy flow at low-permeability reservoir home and abroad, the research ideas and contents were determined. Much efforts were put to both the theoretical and the experimental studies on the non-Darcy flow.
     Through the comprehensive studies by Clay-mineral Explanation, Scan Electron Microscopy, Cast Thin Section, Constant-rate Mercury Injection, Nuclear Magnetic Resonance and so on, it was found out that there are five primary types of reservoir spaces as intergranular pores, corrosion holes, micro-pores, intercrystal porse and the fracture at the low-permeability oil layers of Fuyang in the periphery of Daqing. The fracture takes the tubular and sheet-based thin throat as the major types, and the pores are the main flow channels of reservoirs. Inevitably, the fine pores increase the oil&water flow resistance. Also, such reservoir matrix pores, throat, fractures and their mutual links control the fluid flow characteristics at different extents.
     Laboratory Experiments proved that the flow of single-phase oil or single-phase water in the low permeability oil layers of Fuyang at Daqing oilfield shows non-Darcy characteristics; the lower the permeability, the more obvious characteristics of the non-Darcy flow, then the larger the minimum pressure gradient and the quasi-starting pressure gradient required. The limit of the permeability for the non-Darcy flow of a single water phase is 1×10-3μm2, the number for oil phase is approximately 5×10-3μm2.
     When two phases of oil & water flow in the low permeability reservoirs, the flow curve is more significant in the non-linear characteristics. Now the quasi-starting pressure gradient is not only a function of the water saturation, but also associated with the displacement process. It is greater than number of the single-phase flow of water in the state with residual oil and than the value of oil in the state of the irreducible water. The oil-water relative permeability curves of the ultra-low permeability cores at low speed are characterized by a high irreducible water saturation, a high residual oil saturation, a small range of two phase flow of oil and water, fast decline speed of the oil phase relative permeability and the low water-phase relative permeability at the state of residual oil.
     A great many researches were carried out about the flow characteristics and development features of ultra-low permeability reservoirs with fractures. A concept of the effective drive system was put forward. In combination with the actual oilfield development, several measures were explored to build the effective driving system, such as fracturing for production to increase the movable fluid saturation, using rectangular well pattern to enlarge the flow area, combining the matrix and fracture to improve the oil displacement capacity and so on.
引文
[1]谢力.国外低渗透油藏开发概述.国外石油动态, 2003, 14(148):1~19.
    [2]李道品,张连春.我国低渗透油田开发当前之新进展.低渗透油气田, 2004, 9(1):1~9.
    [3]闫庆来等.低渗透油层中单相液体渗流特征研究.西安石油学院学报, 1990, 5(6):5~15.
    [4]冯文光,葛家理.单一、双重介质中非定常非达西低速渗流问题.石油勘探与开发, 1983, 12(1):2~15.
    [5]中国石油天然气总公司开发生产局.低渗透油田开发技术.北京,石油工业出版社, 1994(4):1~10.
    [6]冯文光.非达西低速渗流的研究现状与展望.石油勘探与开发, 1986, 4(1):6~16.
    [7]黄延章等.低渗透油层渗流机理.石油工业出版社, 1998, 12(1):8~20.
    [8]李道品等.低渗透砂岩油田开发.石油工业出版社, 1997, 9(1):1~16.
    [9]夏惠芬等.低渗透油田开采工艺技术.石油工业出版社, 1996,9(1):8~20.
    [10]张盛宗等.低渗透油田注水开发后影响残余油的因素分析.石油勘探与开发, 1987, 4(4) :1~16.
    [11]方凌云等.特低渗透油田注水开发技术及应用研究. SPE 1998, 12(1):1~20.
    [12]陈立等.大庆外围低渗透与特低渗透油藏注水开发技术方法.石油勘探与开发, 1995, 22(4):4~24.
    [13]吴景春,袁满,张继成等.大庆东部低渗透油藏单相流体低速非达西渗流特征.大庆石油学院学报, 1999, 23(2):82~84.
    [14]史连杰,陈建革,苏永新等.大庆东部低渗透油藏开发过程中储层介质和流体的变化.大庆石油学院学报, 1999, 23(2):85~87.
    [15]殷代印,蒋青松,张继成等.大庆东部低渗透油藏压力传导能力分析.大庆石油学院学报, 1999, 23(2):88~90.
    [16]贾振岐,范士娟,范学军等.大庆东部高含蜡、含胶质石油在低渗透介质内的流动特征.大庆石油学院学报, 1999, 23(2):91~94.
    [17]贾振岐,王延峰,付俊林等.低渗低速下非达西渗流特征及影响因素.大庆石油学院学报, 2001, 25(3):73~76.
    [18] Larson, R. G. The Structure and Rheology of Complex Fluids, Oxford University Press, 1999. 20(3):34~46.
    [19] Pinnavaia, T. J and Beall, G. W. Polymer-Clay Nanocomposites, John Wiley & Sons, Ltd,75,22(2001).
    [20] Zhao, R. and Macosko, C. W., J. Rheol., 46, 145(2002).
    [21] Hao, T. Electrorheological Suspension, Advances in Colloid & Interface Sci, 97(2002)1-35.
    [22] H. K. Ckristenson, Preperties of Capillary Fluids at the Microscopic Level, SPE Reservoir Engineering, May,35,112(1987).
    [23] Melrose, J. C. and Brandner,C.F.:“Role of Capillary Forces in Determining Microscopic Displacement Efficiency for Oil Recovery by Waterflooding,”J.Cdn. Pet. Tech. (Oct. 1974) 13, 54-62.
    [24] Foster. W. R. A Low-tension Waterflooding Process. JPT. February 1973, 205-210.
    [25] Mohanty. K. K. Physics of Oil Extrapment in Water-wet Rock. SPERE, February 1987, 113-128.
    [26] Taber, J. J.:“Dynamic and Static Forces Required to Remove a Discontinuous Oil Phase from Porous Media Containing Both Oil and Water,”SPEJ (March 1969) 3-12.
    [27] Larson, R. G., Scriven, L. E., and Davis, H. T.:“Percolation Theory of Residual Phases in Porous Media,”Nature (Aug. 1977) 268, 409-13.
    [28] Moore, T. F. and Slobod, R. L.:“The Effect of Viscosity and Capillarity on the Displacement of Oil by Water,”Producers Monthly (Oct. 1956) 20, 20-30.
    [29] Pickell, J. J., Swanson, B. F., and Hickman, W. B.:“Applications of Air-Mercury and Oil-Air Capillary Pressure Data in the Study of Pore Structure and Fluid Distribution,”SPEJ (March 1966) 55-61; Trans., AIME, 237.
    [30] Roof, J.G.:“Snap-Off of Droplets in Water-Wet Cores,”SPEJ (March 1970) 85-90; Trans., AIME, 249.
    [31] Morrow, N. R. and Boonraum, S.:“Displacement Mechanisms in Oil Recovery Processes,”paper presented at the 1979 Third Intl. Conference on Surface and Colloid Science, Stockholm, Aug. 20-25.
    [32] Washburn, E. W.:“Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material,”Proc., Natl. Acad. Sci. (1921) 7, 115.
    [33] Bretherton, F. P.:“The Motion of Long Bubbles in Tubes,”J. Fluid Mech. (1961) 10, 166.
    [34] Ng, K., Davis, H. T., and Scriven, L. E.:“Visualization of Blob Mechanics in Flow Through Porous Media,”Chem. Eng. Sci. (1978) 33, 1009-17.
    [35] Morrow, N. R.:“Interplay of Capillary, Viscous and Buoyancy Forces in the Mobilization of Residual Oil,”paper presented at the 1978 Annual Meeting of Pet. Soc. of CIM, Calgary, June 13-16.
    [36] Larson, R. G., Scriven, L. E., and Davis, H. T.:“Percolation Theory of Two-Phase Flow in Porous Media,”Chem. Eng. Sci. (1981) 36, No.1, 57.
    [37] Larson, R. G., Davis, H. T., and Scriven, L. E.:“Displacement of Residual Nonwetting Fluid from Porous Media,”Chem. Eng. Sci. (1981) 36, No.1, 75.
    [38]何更生.油层物理.北京:石油工业出版社, 1997, 216~224.
    [39]郑祥克,陶永建,门承全等.低速非达西渗流产能方程的建立.新疆石油地质, 2003, 24(2):158~160.
    [40]古建伟,毛振强.启动压力和毛管力对低渗透油田生产参数影响.大庆石油地质与开发, 2002, 21(5):30~31.
    [41]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究.石油勘探与开发, 2002, 29(2):86~89.
    [42]黄爽英,陈祖华,刘京军等.引入启动压力梯度计算低渗透砂岩油藏注水见效时间.河南石油, 2001, 15(5):22~24.
    [43]邓英尔,刘慈群.两相流体非线性渗流模型及其应用.应用数学和力学, 2003, 24(10):1049~1055.
    [44]丁海涛,闫建文,杜政学.大庆外围低渗透油田储层伤害分析.大庆石油地质与开发, 2002, 21(1):62~64.
    [45]贺伟,冯曦,钟孚勋.低渗透储层特殊渗流机理和低渗透气井动态特征探讨.天然气工业, 2002, 22(增刊):91~94.
    [46]傅春华,葛家理.低渗透油藏的非线性渗流理论探讨.新疆石油地质, 2002, 23(4):317~320.
    [47]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法.西安石油学院学报, 1999, 14(3):9~10.
    [48]阮敏,何秋轩.低渗透非达西渗流综合判据初探.西安石油学院学报, 1999, 14(4):46~48.
    [49]宋付权,刘慈群,李凡华.低渗透介质含启动压力梯度一维瞬时压力分析.应用数学和力学, 1999, 20(1):25~32.
    [50]宋付权.变形介质低渗透油藏的产能分析.特种油气藏, 2002, 9(4):33~35.
    [51]邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用.石油学报, 2001, 22(4):72~77.
    [52]程时清. DST段塞流的非线性模型及新型典型曲线拟合法.石油勘探与开发, 1994, 21(3):65~69.
    [53]阮敏,王连刚.低渗透油田开发与压敏效应.石油学报, 2002, 23(3):73~76.
    [54]赵明跃,王海新,雷霆等.高速非达西渗流井底压力响应特征研究.油气井测试, 2001, 10(5):1~3.
    [55]刘曰武,丁振华,何凤珍.确定低渗透油藏启动压力梯度的三种方法.油气井测试, 2002, 11(4):1~4.
    [56]姚约东,葛家理.低渗透油藏不稳定渗流规律的研究.石油大学学报(自然科学版), 2003, 27(2):55~62.
    [57]姚约东,葛家理.低渗透油层非达西渗流规律的研究.新疆石油地质, 2000, 21(3):213~215.
    [58]宁正福,姚约东,葛家理.分形油藏非达西低速不稳定渗流的研究.特种油气藏, 2002, 9(2):29~31.
    [59]程时清,张盛宗,黄延章等.低速非达西渗流动边界问题的积分解.力学与实践, 2002, 24(3):15~17.
    [60]周涌沂,彭仕宓,李阳等.一种复杂介质中渗流描述的广义方法.石油学报, 2002, 23(4):65~69.
    [61]薛云,石京平,贺承祖.低速非达西流动机理分析.石油勘探与开发, 2001, 28(5):102~104.
    [62]陈立等.大庆外围低渗透与特低渗透油藏注水开发技术方法.石油勘探与开发, 1995, 22(4):97~115.
    [63]贺伟,冯曦,钟孚勋.低渗透储层特殊渗流机理和低渗透气井动态特征探讨.天然气工业, 2002, 22(增刊):91~94.
    [64]李道品.低渗透油田高效开发决策论[M].第1版.北京:石油工业出版社, 2003,24(3):83~87.
    [65]徐霜,张兴焰,闫志军,等.低渗透储层微观孔隙结构及其微观剩余油分布模式[J].西部探矿工程,2005,113(9):57~59.
    [66]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42~44.
    [67]张君龙,柳成志,赵雪梅,等.沈84_安12块微观孔隙结构特征研究[J].内蒙古石油化工,2008,5(1):130~133.
    [68]姜洪福,陈发景.松辽盆地三肇地区扶杨油层储集层孔隙结构及评价[J].现代地质,2006,20 (3):465~472.
    [69]任晓娟.低渗砂岩储层孔隙结构与流体微观渗流特征研究[D].西北大学博士学位论文2002,22(4):67~89.
    [70]俞启泰.俞启泰油田开发论文集[M].北京:石油工业出版社,1999,5(1):503~509.
    [71]扫描电镜/能谱分析在油气勘探开发中的应用[J].石油实验地质,2001,23(3):341~343.
    [72]王宝锋,赵忠扬.环境扫描电镜及其在石油技术中的应用[J].油田化学,1999,16 (3):278~281.
    [73]于丽芳,杨志军,周永章,等.扫描电镜和环境扫描电镜在地学领域的应用综述[J].中山大学研究生学刊(自然科学、医学版),2008,29(1):54~58.
    [74]蒲秀刚,黄志龙,周建生,等.孔隙结构对碎屑储集岩物性控制作用的定量描述[J].西安石油大学学报,2006,21(2):15~17.
    [75]李学万,宋柏荣,高占琴,等.扫描电镜在辽河油田变质岩储层研究中的应用[J].电子显微学报,2005,24(4):335~336.
    [76]文玲,李时平.五号桩油田沙三下湖相浊积扇砂体的扫描电镜研究[J].电子显微学报,2003,22(6):617~615.
    [77]许险峰,徐锡金,霍霞.共聚焦激光扫描显微镜技术[J].激光生物光报,2003,12(2):156~159.
    [78]谢然红,肖立志.储层流体及其在岩石孔隙中的核磁共振弛豫温度特性[J].地质学报,2007,81(2):280~284.
    [79]徐霜,张兴焰,闫志军,等.低渗透储层微观孔隙结构及其微观剩余油分布模式[J].西部探矿工程,2005,113 (9):57~58.
    [80]胡书毅,尤少燕.济阳坳陷下第三系冲积扇储层的扫描电镜研究[J].电子显微学报,2004,13 (4):43~71.
    [81]文玲.靖安油田延长组低孔低渗储层的扫描电镜研究[J].电子显微学报,2003,22 (4):352~357.
    [82]李剑齐,李维峰.靖边气田上古生界储集层孔隙结构研究[J].石油天然气学报,2005,27 (3):442~444.
    [83]林玉保,张江,王新江.喇嘛甸油田砂岩孔隙结构特征研究[J].大庆石油地质与开发,2006,25(6):39-42.
    [84]刘中云.临南油田储集层孔隙结构模型与剩余油分布研究[J].石油勘探与开发,2000,27(6):47~49.
    [85]熊良淦,王胜利,史淑芳,等.前梨园凹陷西坡深层低渗储层成岩相与孔隙演化研究[J].石油勘探与开发,2003,10(5):37~39.
    [86]曹寅,朱樱,黎琼.扫描电镜与图像分析在储层研究中的联合应用[J].石油勘探与开发,2001,23(2):221~225.
    [87]盖东玲,王胜利,秦贵丞,等.中原油田文东沙三中储层孔隙结构特征评价[J].内蒙古石油化工,2003,27(1):116~120.
    [88]阎庆来,何秋轩,低渗透储层中油水渗流规律研究低渗透油气藏勘探开发技术.石油工业出版社,1993,22(1):110~120.
    [89]冯文光、葛家理.单一介质低速非达西渗流续流和表皮效应的影响[J].大庆石油地质与开发,1998,7(2):45~50.
    [90]冯文光,葛家理.单一介质、双重介质中非达西低速渗流的压力曲线动态特征.石油勘探与开发,1986,(5):60~70.
    [91]程时清,徐论勋.低速非达西渗流试井典型曲线拟合法[J].石油勘探与开发.1996,23(4):50~53.
    [92]程时清等.低速非达西渗流试井模型的数值解及其应用[J].天然气工业,1996,16(3):27~30.
    [93]程时清等.双重介质油藏低速非达西渗流试井有效半径数学模型及典型曲线[J].天然气工业.1997,17(2):35~37.
    [94]程时清等.油水两相低速非达西渗流数值模拟[J].石油勘探与开发.1998,22(2):10~30.
    [95]邓英尔等.具有启动压力梯度的油水两相渗流理论与开发指标计算方法[J].石油勘探与开发.1998,24(2):46~66.
    [96]邓英尔等.垂直裂缝井两相非达西椭圆渗流特征线解、差分解及开发指标计算方法[J].石油勘探与开发.2000,27(1):60~63.
    [97]黄延章等.低渗透油层渗流机理研究[M].石油工业出版社,1996,22(4):30~62.
    [98]闫庆来,何秋轩,任晓娟,等.低渗透油层中单相液体渗流特征研究[J].西安石油学院学报,1990,5(6):1~6.
    [99]张玄奇.油水相对渗透率曲线的实验测定[J].石油钻采工艺,1994,16(5):87~90.
    [100]张人雄,李玉梅.砂砾岩油藏油水相对渗透率曲线异常形态成因探讨[J].石油勘探与开发. 1996,23(3):79~83.
    [101]闫存章,李阳.低渗透油田开发技术文集.石油工业出版社, 2008:127~132.
    [102]孙庆和,陈淑利,林海。大庆头台油田开发建设文集.石油工业出版社,2008:48~51.
    [103] [奥]A.E.薛定谔:《多孔介质中的渗流物理》.石油工业出版社,1982,16(3):18~45.
    [104]孙庆和.大庆头台地区下白垩统泉头组扶余油层微裂缝及可动油研究.中国地质大学,2000,6~30.
    [105]孙庆和,陈淑利,宋正江等.特低渗透裂缝性储层注水开发中后期地应力场变化及开发对策.现代地质.2008,22(4):12~30.
    [106]陈淑利,王丽莉,宋正江等.扶余特低渗透裂缝性储层限压注水控水技术研究.中国石油学会.2008,16(3):68~79.
    [107]张大为,曾昭英,刘振宇.大庆头台油田注水指示曲线的形态及分析.大庆石油学院学报,2002,22(4):19~23.
    [108]李远钦等.水平井产量分布反演.石油勘探与开发,1999, 26(3): 66~71.
    [109] Joshi, S.D.: Horizontal Well Technology, U.S.A.: Pennwell Publishing Corp.30~56, 1991
    [110]范子菲.裂缝性气藏水平井稳态解公式研究.石油勘探与开发,1997, 24(5): 67~71.
    [111]刘想平.气藏水平井稳态产能计算新模型天然气工业,1998, I 8(1): 37~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700