用户名: 密码: 验证码:
清污混注水淹层动静态测井评价及剩余油预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油田水驱开发过程中,准确估算剩余油饱和度及其分布规律,对于进一步提高二次采油开发效果、有针对性地实施三次采油具有十分重要的意义。因此,本文针对动、静态测井评价及剩余油综合预测方法展开研究,为清污混注水淹层剩余油精确定位工作提供了一些新的研究思路。本次研究中进行的主要工作及取得的认识如下。
     (1)首先,在两种假设条件下对不同注入水条件下混合地层水矿化度变化规律进行研究。进而,利用岩电实验对水淹开发过程中饱和度评价模型中的参数加以确定。结合尕斯NI-N2’油藏水淹层岩心实验资料来看,水驱开发对储层m值影响不大。但注水开发各个阶段中饱和度指数n呈现阶段性变化,随着注入水矿化度的不同,n的变化特征也不尽相同。最终,综合模拟研究结论和岩心实验资料建立出混合地层水动态分析模型,该模型可对注入水与原始地层水之间的离子交换现象做出更为细致的考虑,从而为后续油水饱和度的精细计算打下基础。
     (2)在利用大量裸眼井测井资料进行水淹层剩余油饱和度的程序化计算时,为解决混合地层水电阻率不易确定和无法有效考虑饱和度计算模型中的参数随地层含水饱和度的增加而发生的变化这两项难题,进行了以下研究。首先对研究区块水淹特征进行分析,进而建立了研究区块孔隙度、渗透率、原始含油饱和度、原始地层水矿化度、混合地层水电阻率等相应模型,最后基于水驱油藏混合地层水矿化度的变化特征,利用变参数阿尔奇公式构建了含水饱和度与注入水矿化度关系矩阵。在注入水矿化度资料不全的情况下,可利用原始含油饱和度确定出注入水矿化度。最终,针对解释层中的每个采样点确定出混合地层水矿化度和流体饱和度。该方法可回避传统方法的缺陷,植入解释程序后批量应用效果良好,给水淹层定量评价开辟了新的思路,并可移植到过套管剩余油饱和度测井评价中去。
     (3)利用PNN测井资料进行剩余油评价时,为了获得在平面上、垂向上、时间推移上具有针对性的解释参数,首先选择出未经开采及注入水未波及的相对封闭层段作为标准层。进而把经过必要改进的自适应遗传算法编入解释程序,并设定好各未知参数的进化范围。单井解释时,利用改进的算法对单井标准层样本点进行处理,实现测井资料二次校正并最终确定出针对单井、针对油组的饱和度模型参数。应用效果表明该方法更贴近测量环境的非均质性,有效弥补了井间、层间差异所带来的解释误差,因而解释结果与实际生产动态更加相符。
     (4)清污水交替注入型水淹层混合地层水矿化度变化较大。在进行脉冲中子类过套管剩余油饱和度测井解释时,地层水矿化度的多变性将导致地层水宏观俘获截面这一重要参数不易确定。对研究区块水淹层混合地层水的水型和矿化度进行了分析,分析结果表明不同小层间混合地层水矿化度变化较大,因而逐层计算混合地层水宏观俘获截面十分必要。以脉冲中子-中子测井评价为例,首先构建原始含油饱和度解释模型,进而对地层流体宏观俘获截面进行信息提取,最后提出了利用动静态测井资料确定混合地层水宏观俘获截面的方法。植入解释程序后,该方法还可对同一解释层内水淹程度不一致的地方分别计算出混合地层水宏观俘获截面。由于计算过程中较好地考虑了层间差异性,因而计算结果准确性更高。
     (5)论文中分析了单因素评价剩余油饱和度的几项缺陷,并提出了基于多因素水淹指数的剩余油综合预测方法。在计算多因素水淹指数的过程中,有必要将各水淹强度评价指标反映水淹程度的能力纳入考虑范围之内。因此,在分析研究区块多种动、静态资料的基础上,建立了一种基于椭圆基函数(Ellipse Basis Function)的模糊神经网络水淹指数预测系统。该预测系统可根据学习样本自行创建或删减模糊规则,并考虑输入变量的动态权值。测井资料信息量庞大,因此这种具有自学习机制的预测系统更有利于有效信息的提取和利用,特别对于复杂储层而言,减轻了预测过程中对先验信息的依赖程度,因而效率和精度更高。
During the exploitation process of an oil field, it is of great importance to make an accurate estimate of the saturation and distribution of remaining oil, so as to further enhance the secondary, or even the third oil recovery. Therefor, dynamic and static logging evaluation methods and remaining oil prediction methods were discussed in this dissertation, which provides some new research ideas for accurate positioning of remaining oil in water flooded interval injected by fresh water and sewage.The major research and results of the dissertation are as follows.
     (1) First of all, under two conditions assumed, the change law of the mixed formation water salinity was researched under the conditions of variable injection water salinity. Moreover, the parameters in the saturation assessment model during waterflooding were confirmed based on rock electricity mechanism experiments data. Integrating the core experiment data on the water-flooding layer in Gasikule oil field N1-N21reservior, the water-flooding development has no great influence on porosity index m. However, the saturation index n in the various stages of water-flooding development shows stage-based changes, with the change of injected water salinity, the change characteristics of n are all different. Finally, a mixed formation water dynamic analysis model was hereby established integrating the simulative researches and experimental data, such model could carry out more careful considerations on the ion exchange phenomenon between injected water and original formation water, so as to set up foundations for the elaborative calculation of remaining oil and water saturation.
     (2) When a programmable calculation was made on the remaining oil saturation in the water-flooded layer by a large amount of open-hole log information, in order to resolve such two difficulties as uncertainty of the mixed formation water resistivity and incapably-effective consideration of parameter changes in saturation calculation models with the increase of formation water saturation, the following research was done in this dissertation.First of all, the flooding characteristics of the study area was analyzed, and then relative models were established, including porosity,permeability,original oil saturation, original salinity of formation water, mixed formation water resistivity and so on, so as to establish a rational matrix between water saturation and injected water salinity by the Ariche formula of variable element based on the change characteristics of the mixed formation water salinity in the water-drive reservoir. Under the conditions of no complete injected water salinity data, the injected water salinity was confirmed by the original oil saturation so as to finally determine the mixed formation water salinity and fluid saturation at each sampling point of the interpretative layer. This method can evade the defects of traditional methods and batches of applications can have favorable effects after insertion of the interpretative procedures, which open up new thoughts for the quantitative evaluation on the water-flooded layer. This method can also be applied to the through casing saturation logging evaluation.
     (3) The distribution of remaining oil and the changes of reservoir properties can be dynamically reflected by PNN logging. However, the accuracy is affected by many factors.In different regions,and even in different wells in the same area,the parameters of models are not identical. In time dimension, in order to obtain more accurate parameters in horizontal and vertical directions, a method has been discussed in this dissertation. Firstly, the relatively sealed layers which are not affected by exploitation and waterflood development were selected as marker bed. The vertical distance between marker bed and major reservoirs should be within a certain range. Then necessarily improved adaptive genetic algorithm with evolution range had been properly compiled into the interpretation program, so that the second correction of log data could be considered and the most suitable parameters could be determined for each well.The practical application shows that this method accurately reflects the heterogeneity of the measured environments. The interpretation process effectively compensates for the errors caused by difference between wells and layers,and the evaluation results are more consistent with the practical production performance.
     (4) The salinity of mixed water in water flooded zones injected by fresh water and sewage is variable. Therefore, as an important parameter in remaining oil saturation calculation model in cased hole, the macroscopic capture cross section of mixed formation water is difficult to determine. The distribution regulation of salinity and solutes of mixed formation water in the water flooded layer in study area shows that it is very necessary to calculate the macroscopic capture cross section of mixed formation water layer by layer.Pulsed neutron-neutron well logging evaluation in water-flooded zone was taken as an example in this dissertation. First of all, original oil saturation model was established. And then the macroscopic capture cross section of formation fluid was obtained. Finally, macroscopic capture cross section of mixed formation water was calculated by static and dynamic logging information. In view of the water flooding degree of some sampling points is inhomogeneous in the same layer, the method can also calculate the corresponding macroscopic capture cross section of mixed formation water.The practical application shows that this method accurately reflects the variability of the salinity of formation water. The calculation accuracy has been improved because the difference between layers has been taken into consideration.This method also provides a new idea for the quantitative assessment of water flooded zones injected by fresh water and sewage by using some comprehensive methods which take dynamic and static logging data into consideration.
     (5) Several defects of the calculation of remaining oil saturation based on single factor were pointed out and remaining oil prediction method based on multi-factor were discussed in this dissertation. It is very necessary to consider the weight of each flooding strength indicator in calculation of multifactorial flooding index. Therefore, a fuzzy neural network prediction system of multifactorial flooding index based on ellipse basis function was established on the basis of the analysis of a variety of static and dynamic data of Gasikule oil field N1-N21reservior. This prediction system can create or delete fuzzy rules by analyzing samples and take the dynamic weight values of the input variables into consideration. The information contained in the log data is enormous. By using this prediction system with self-learning mechanism, the extraction and utilization of information is more effective. Practical application shows that the accuracy of identification is high. Especially for complex reservoirs, the application of this Fuzzy Neural Networks on reservoir characteristic parameters prediction improves the precision of prediction results and reduces the dependency on prior informations.
引文
[1]赵文杰.水淹层岩石电阻率特性的实验研究[J].油气采收率技术,1995,2(4):32-39.
    [2]孙德明,姜文达.储层条件下水淹油层测井响应机理实验研究[C].水驱油田开发测井,96国际学术讨论会论文集,北京:石油工业出版社,1996.
    [3]赵文杰,李厚裕.饱和度历史、围压和润湿性对饱和度指数的影响[C].水驱油田开发测井,96国际学术讨论会论文集,北京:石油工业出版社,1996.
    [4]周渤然,田中元.注水过程中岩石物理性质的实验研究[C].水驱油田开发测井,96国际学术讨论会论文集,北京:石油工业出版社,1996.
    [5]李厚裕,申辉林.特高舍水期水淹层剩余油饱和度评价方法[C].水驱油田开发测井,96国际学术讨论会论文集,北京:石油工业出版社,1996.
    [6]范宜仁,邓少贵,刘兵开.淡水驱替过程中的岩石电阻率实验研究[J].测井技术,1998,22(3):152-155.
    [7]田中元,穆龙新,孙德明等.砂砾岩水淹层测井特点及机理研究[J].石油学报,2001,23(6):50-55.
    [8]孙德明.含水饱和度指数的理论实验,石油学报[J].1994,15(4):66-67.
    [9]H.C.沃尔瑟.导自测井曲线的饱和度——测井参数的实验测量[J].《石油测井译文集》(三),1974,1.
    [10]田中元.砂砾岩水淹层水淹机理及解释方法.中国石油勘探开发研究院硕士论文,2000.
    [11]Dou L R, Xiao K Y, Cheng D S, Shi B Q, Li Z. Petroleum geology of the melut basin and the great palogue field Sudan. Marine and Petroleum Geology,2007,24:129-144.
    [12]Bagiro V, Lerche I. Potential oil field discoveries for Azerbaijan. Marine and Petroleum Geology,1998,15(1):11~19.
    [13]水驱前后油层岩石物性参数变化研究.大庆石油管理局勘探开发研究院,1994.
    [14]Surdam R C, Crossley L J, Hagen E S. Organic-inorganic interaction and sandstone diagenesis. AAPG Bulletin 1989,73:1~23.
    [15]La Torraca G A, Dunn K J, Bergman D J. Magnetic susceptibility contrast effects on NMR T2 logging. SPWLA 36th Annual Logging Symposium,Paris,1995,June 26~29.
    [16]田中元,闫伟林等.淡水泥浆侵入条件下储层电阻率变化研究[J].测井技术,2002,27(2):113-117.
    [17]雍世和,张超谟.测井数据处理与综合解释[M].北京:中国石油大学出版社,2007:354-382.
    [18]陈彬,巢思友,刘志远,王向公.东濮凹陷低渗砂岩油藏水淹层测井解释方法[J].石油天然气学报,2008(02):91-94.
    [19]侯连华,王京红,刘泽容等.水淹层测井评价方法[J].石油学报,1999,20(3):50-58.
    [20]胡杰.高含水期开发测井储层评价[J].测井技术,1994,8(2):125-132.
    [21]王乃举等.油田开发测井技术及应用[M].北京:石油工业出版社,1995,9:103-105.
    [22]高印军,李才雄,王大兴,等.水淹层测井解释技术研究与应用[J].石油勘探与开发,2001,28(5):42-45.
    [23]宋子齐等.利用常规测井方法识别划分水淹层[J].西安石油学院学报(自然科学版), 2003,18(6):50-54.
    [24]Hedges P L. Infill well water-cut estimates based on open hole log data in a mineralogically complex reservoir:kuparuk river field Alaska. SPE 35684.
    [25]Aitken J. Reservoir and production fundament[M]. France:Impact Graphic,1980:5-14.
    [26]谭廷栋.中国水驱油田测井新进展.测井技术,1997,21(4):235-24.
    [27]赵培华,宋社民,曹嘉猷.利用生产测井资料确定水驱油藏产层剩余油饱和度及其分布[M].北京:石油工业出版社,1996:127-137.
    [28]曾文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991.
    [29]王庚阳,刘明新,宋振宇等.利用常规测井确定油田开发期储层剩余油分布[J].石油学报,1992,13(4):60-66.
    [30]王庚阳,钟祖兰.利用测井资料确定储层油水相渗透率方法[J].石油学报,1991,12(4):75-80.
    [31]Quintero L F. Estimation of residual gas saturation from neutron-density log data.47th Annu Cim Petrol Soc Tech Mtg Proc V 2,1996.
    [32]姜恩承,曾花秀等.求解剩余油饱和度的测井方法和解释技术.北京:石油工业出版社,中国水驱油田开发测井96国际学术讨论文集,1996,74-83.
    [33]孙德明,褚人杰.利用自然电位测井资料求水淹层地层水电阻率.测井技术,1992,16(2) :93-95.
    [34]刘瑞林,马在田.神经网络在油气评价和预测方面的研究现状.地球物理学进展,1995,10(2):75-84.
    [35]韩志明,王宪成,李胜军.高含水期水淹层解释方法研究.测井技术,2000,24(5):333-336.
    [36]Rogers S T et al. Determination of lithology from well logs using a neural network. AAPG, 1992,76(5):75-84.
    [37]Baldwin J L et al. Application of neural network to problem of mineral identification from well logs. The Log Analyst.1990.
    [38]刘瑞林.利用神经网络学习识别物探化探数据.地质与勘探,1992,28(2):177-179.
    [39]Baldwin J L et al. Computer emulation of human mental proceses, application of neural networks simulator to problem in well logs interpretion. SPE 19619,1989.
    [40]Wiener J M. Wiener J M et al. Predicating carbonate permeabilities from wireline using logs a back-propagation neural networks in 61st SPG Meeting Expanded Abstracts.1991.
    [41]梅红,张厚福等.神经网络技术在测井相分析及水淹层判别中的应用[J].石油大学学报(自然科学版),1997,21(3):24-30.
    [42]Liu R L, et al. Lithofacies sequence recognition from well logs using time-delay neural networks.33rd SPWLA,1992.
    [43]阎伟林、吕晓光等.岩石物理相研究和神经网络技术在高含水期测井解释中的应用.北京:石油工业出版社,中国水驱油田开发测井96国际学术讨论文集,1996,99-102.
    [44]焦翠华,徐朝晖.基于流动单元指数的渗透率预测方法[J].测井技术,2006,30(4):317-319.
    [45]Canas J A, Malik E A. Characterization of flow units in sandstone reservoirs:la cira field, Colombia, South America[A]. Proceedings of the Permian Basin Oil&Gas RecoveryConference 1994[C]. SPE,Richardson,TX,USA.1994:883~892.
    [46]Davies D K, Vessell R K. Flow unit characterization of a shallow shelf carbonate reser-voinnorth robertson unit, West Texas[A]. Proceeding-SPE Symposium on Improved Oil Recovery[C]. V2,SPE,Richardson. TX. USA.1996:295~304.
    [47]Davies D K, Vessell R K. Bernal G M C. Flow unit modeling in complex reservoirs [A].1996 AAPG Annual Convention[C]. V5,San Diego,CA,USA,May 1996:336~338.
    [48]Hamlin H S,Shirley P D,Robert J S, et al. Depositional controls on reservoir properties in a braid-delta sandstone, tirrawarra oil filed. South Australia. AAPG Bulletin,1996,80(2):139-156.
    [49]魏斌等.应用储层流动单元研究高含水油田剩余油分布.地学前缘,2000,7(3):403-408.
    [50]林承焰.剩余油的形成与分布[M].东营:石油大学出版社,2000:1-5.
    [51]俞启泰.俞启泰油田开发论文集[M].北京:石油工业出版社,1999,12,772-776.
    [52]俞启泰.关于剩余油研究的探讨[J].石油勘探与开发,1997,24(2):46-50.
    [53]赵培华.中国油田开发水淹层测井技术[C]//陆大卫, 王春利编.剩余油饱和度测井评价新技术.北京:石油工业出版社,2003:1-5.
    [54]谭廷栋.世界测井技术发展方向.国外油气勘探[J].1996,8(4):164-166.
    [55]刘胜建.过套管电阻率测井在垦东六断块油藏动态监测中的应用[J].测井技术,2003,27(2):162-165.
    [56]高杰,冯启宁,孙友国.电极型复电阻率测井方法及其应用[J].石油学报,2003,24(4):62-64.
    [57]鲁国甫,杨永利,冯毅.应用核磁共振成像技术研究特高含水期剩余油分布[J].江汉石油学院学报,2001,23(增刊):98-99.
    [58]赵培华,谭廷栋,宋社民.利用生产测井资料确定水驱油藏产层剩余油饱和度方法[J].石油学报,1997,18(2):54-60.
    [59]谭廷栋.测井面临的难题及解决途径.测井技术[J].1996,20(6):391-396.
    [60]郭振彬,王秉刚.雁翎油田油藏剩余油分布测井评价探讨[J].测井技术,1994,18(3),219-226.
    [61]Nick P. Valenti.R. M. Valenti and L. F. Koederitz. A Unified Theory on Residual Oil Saturation and Irreducible Water Saturation[J]. SPE,77545,2002.
    [62]孙建孟.油田开发测井[M].东营:中国石油大学出版社,2004:136-173.
    [63]霍树义.放射性测井技术在油田开发中的应用[J].油气采收率技术,1999,2(3):48-58.
    [64]孙金浩.俄罗斯过套管电阻率测井技术适用性研究[J].国外测井技术,2009,169:34-38.
    [65]聂锐利,谢进庄,李洪娟,等.过套管电阻率技术在大庆油田剩余油饱和度评价中的应用[J].大庆石油学院学报,2004,28(5):16-19.
    [66]Hamada G M, King F U, Hegazy A A, et al. Hydrocarbon potential monitoring in gas sandstone reservoirs using TDT and CHFR techniques [C]//SPE/EUROPEC/EAGE Conference and Exhibition. London:Society of Petroleum Engineers,2007:105003-MS.
    [67]Backe K R, Lile O B, Lyomov S K. Characterizing curing cement slurries by electrical conductivity [J]. SPE Drilling & Completion,2001,16(4):207-207.
    [68]Tchambaz M, Belhadj B. Reservoir monitoring with the CHFRPLUS in water injection oilfields,Libya examples [C]//SPE/SPE Annual Technical Conference and Exhibition. Colorado:Society of Petroleum Engineers,2003:84598~MS.
    [69]Herold B H, Benimeli D, Levesque C, et al. Combinable through-tubing cased hole formation resistivity tool [C]//SPE/SPE Annual Technical Conference and Exhibition. Texas:Society of Petroleum Engineers,2004:90018-MS.
    [70]王汝信.新一代过套管井地层电阻率测井技术及应用[J].吐哈油气,2004,9(1):66-70.
    [71]徐春华,候加根,赵喜元等.过套管电阻率测井在克拉玛依低渗储层的应用[J].西南石油大学学报:自然科学版,2008,30(4):55-59.
    [72]郭海敏.生产测井导论[M].北京:石油工业出版社,2010,478-499.
    [73]宋长伟,李刚,郭志强.用硼中子寿命测井确定低渗透砂岩储层剩余油饱和度[J].测井技术,1999,23(3):176-179.
    [74]谭圣君,陈营.硼中子寿命测井确定剩余油分布[J].油气地质与采收率,2001,8(2):76-78.
    [75]葛玲,曹宝良,韩秀芹.硼中子寿命测井在大庆萨南油田的应用效果评价[C]//陆大卫,王春利编.剩余油饱和度测井评价新技术.北京:石油工业出版社,2003:76-83.
    [76]赵英,王进宝,白永彤,等.注硼中子寿命测井技术在砂岩油田开发中的应用[J].测井技术,2001,25(6):432-436.
    [77]黄志洁,李疾翎,马焕英,等.PNN测井解释方法改进及应用[J].中国海上油气,2009,21(2):95-98.
    [78]王群,庞彦明,郭洪岩等.矿场地球物理测井[M].北京:石油工业出版社,2002:162-173.
    [79]申辉林,方鹏.水驱油地层电阻率变化规律数值模拟及拐点影响因素分析[J].中国石油大学学报(自然科学版),2011,35(3):58-62.
    [80]郭海敏.生产测井导论[M].北京:石油工业出版社,2010,518-521.
    [81]罗娜.阿尔奇公式数值分析及其意义[J].石油学报,2007,28(1):111-114.
    [82]孙德明,褚人杰.含水饱和度指数n的理论及实验[J].石油学报,1994,15(4):66-72.
    [83]Archie G E. The electrical resistivity log as an aid in determining some reservoir characteristics [J]. Trans AIME,1942,146:54~62.
    [84]Amaefule J O, Altunbuy M. Enhanced reservoir description:using core and log data to identify hydraulic(flow)units and predict permeability in uncored intervals/well [A]. SPE 26436.1993.
    [88]陈元千,李璗.现代油藏工程[M].北京:石油工业出版社,2004:55-62.
    [89]闫伟林,李郑辰,殷树军,等.确定油水同层原始含油饱和度的新方法[J].测井技术,2009,33(5):440-443.
    [90]Pope G A,Huh C. Residual oil saturation from polymer floods:laboratory measurements and theoretical interpretation [R]. SPE 113417,2008.
    [91]Valenti N P,Valenti R M,Koederitz L F. A unified theory on residual oil saturation and irreducible water saturation [R]. SPE 77545,2002.
    [92]张超谟,张占松,郭海敏,等.水驱油电阻率与含水饱和度关系的理论推导和数值模拟研究[J].中国科学D辑:地球科学,2008,38(增刊Ⅱ):151-156.
    [93]韩清忠,杜淑艳.高含水期储层产水率的评价方法[J].石油大学学报:自然科学版,1996,20(6):9-12.
    [94]杨春梅,李洪奇,陆大卫,等.不同驱替方式下岩石电阻率与饱和度的关系[J].吉林大学学报:地球科学版,2005,35(5):667-671.
    [95]张占松,张超谟.水淹层地层水电阻率的二步确定方法[J].测井技术,2011,35(4):340-343.
    [96]高兴军,宋新民,褚人杰等.动静结合方法计算储层水淹后地层混合液电阻率技术及其在剩余油饱和度解释中的应用一以吉林扶余油田泉四段油层为例[J].地学前缘(中国地质大学(北京);北京大学),2008,15(1):160-168.
    [97]俞军,史耨,王伟男.高含水期地层水电阻率求取方法[J].北京大学学报:自然科学版,2005,41(4):536-541.
    [98]Duane Hanselman, Bruce Littlefield. Mastering MATLAB 7[M]. Pearson/Prentice Hall,2005.
    [99]侯连华.自然电位基线偏移影响因素的实验研究[J].石油大学学报(自然科学版),2001,25(1):93-95.
    [100]黄隆基.核测井原理[M].东营:中国石油大学出版社,2000:125-162.
    [101]楚泽涵,高杰,黄隆基,等.地球物理测井方法与原理(下)[M].北京:石油工业出版社,2008:159-201.
    [102]安小平,李相方,郭海敏,等.RMT测井解释方法及软件开发研究[J].石油学报,2005,26(3):82-85.
    [103]Morris C,Aswad T. Reservoir monitoring with pulsed neutron capture logs[R]. SPE 94199,2005.
    [104]吴世旗,钟兴水,李少泉.套管井储层剩余油饱和度测井评价技术[M].北京:石油工业出版社,1999,1-9,34-86.
    [105]卢玉晓,谭茂金,庞栋锴,等.基于PNN测井技术的复杂储层流体识别与饱和度计算[J].石油物探,2011,50(3):310-314.
    [106]肖培琛,李耀文,万舒.放射性测井基础与中子寿命测井[M].北京:石油工业出版社,2007,73-115.
    [107]Wichmann P A. Notes on the accuracy of the neutron lifetime measurement [J]. The Log Analyst,1973,XIV(3):11-18.
    [108]Arthur H Y, Eric C H. The influence of instrument design on neutron life time measurements [J]. SPE Journal,1975,15(2):161-168.
    [109]Zhang F,Xu J P,Hu L M,et al. Monte Carlo simulation result for the pulsed neutron-ne-utron logging method[J]. Chinese Journal of Geophysics,2007,50(6):1924-1930.
    [110]Zhang F,Wang X G. Numerical simulation for influence factor of pulsed neutron-neutro-n logging[J]. Journal of China University of Petroleum(Edition of Natural Science),2009, 33(6):46-51.
    [111]Hewett T A, Behrens R.A.Conditional simulation of reservoir heterogeneity with fractal. SPE 18326,1988.
    [112]Hardy H.H.The fractal character of photos of slabbed cores.Mathematical Geology.24 (1),1992:73-97.
    [113]Ren F Y, Zhao X Q, Jiang F,et al.On fractal properties of reflection sequences from a well log and seismic trace [J] Journalof Fudan University,1997,36(6):691-698.
    [114]李云省,肖先赐.声波测井信号的分形特征研究[J].信号处理,2002,18(2):186-188.
    [115]文环明,肖慈珣,李瑞等.测井曲线的多重分形分析方法研究[J].测井技术,2004,28(5):381-385.
    [116]李春峰.分形分析在测井数据应用中的几个问题[J].测井技术,2005,29(1):15-20.
    [117]孙霞,吴自勤,黄均.分形原理及其应用[M].北京:中国科学技术大学出版社,2003:53-88.
    [118]Kenneth Falconer.Fractal geometry-mathematical foundations and applications(second edi-tion)[M]. New York:Willey Publishing,Inc,2003:277~297.
    [119]余英林,谢胜利,蔡汉添.信号处理新方法导论[M].北京:清华大学出版社,2004,183-190.
    [120]Sun X, Chen H,Wu Z, et al. Multifractal analysis of hang seng index in hong kong stock market [J]. Physical A:Statistical Mechanics and Its Applications,2001,291(1-4):553-562.
    [121]陈钢花,董维武.遗传神经网络在煤质测井评价中的应用[J].测井技术,2011,35(2):171-175.
    [122]Mogbolu P O, AKINOL O.Application of genetic algorithm in deconvolution of logs [C]//SPE 150743, Nigeria Annual International Conference and Exhibition,30 July-3 August 2011, Abuja, Nigeria.
    [123]谭锋奇,李洪奇,孟照旭.数据挖掘方法在石油勘探开发中的应用研究[J].石油地球物理勘探,2010,45(1):85-91.
    [124]Vasconcelos J A, RAMREZ J A, TAKAHASHI R H C, SAIDANHA R R. Improvements in genetic algorithms [J]. IEEE Transactions on Magnetics,2001,37(5):3414~3417.
    [125]Kuo T, HWANG S Y. A genetic algorithm with disruptive selection [J].IEEE Trans, on Systems, Man, and Cybernetics—art B:Cybernetics,1996,26(2):299~307.
    [126]于志刚,宋申民,段广仁.遗传算法的机理与收敛性研究[J].控制与决策,2005,2(9):971-980.
    [127]Rudolph G. Convergence analysis of canonical genetic algorithms [J].IEEE Trans on Neural Networks,1994,5(1):96~101.
    [128]Srinvivas M, PATNIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(4):656~667.
    [129]陈玉敏,龚健雅.基于模糊数学的多因素道路网权值确定算法[J].武汉大学学报(信息科学版),2007,32(10):928-931.
    [130]蒋官澄,吴雄军,王晓军,等.确定储层损害预测评价指标权值的层次分析法[J].石油学报,2011,32(6):1037-1041.
    [131]Takagi T, Sugeno M. Fuzzy Identification of systems and its applications to modeling and control [J].IEEE Trans. Syst, Man, Cybern,1985,15:116~132.
    [132]Wu S Q, Meng J E. Dynamic fuzzy neural net works-a novel approach to function approximation [J]. IEEE Transactions On Fuzzy Systems, Man and Cybernetics,2000,30 (2): 354~358.
    [133]王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术文献出版社,1998.10-29.
    [134]Jang J-S R, Sun C T. Functional equivalence between radial basis function networks and fuzzy inference systems [J]. IEEE Trans. Neural Network,1993,4:156~158.
    [135]Lin Y H, Cunningham G A. A new approach to fuzzy-neural system modeling. IEEE Trans [J]. Fuzzy Systems,1995,3:190~197.
    [136]Lee S, Kil R M. A gaussian potential function network with hierarchically self-organiaing learning [J]. Neural Networks,1991,4:207~224.
    [137]Lee C C. Fuzzy logic in control systemsrfuzzy logic controller part Ⅰ,Ⅱ.IEEE Trans.Syst,Man and Cybern,1990,20:404~436.
    [138]Chen S, Cowan C F N, Grant P M. orthogonal least sruares learning algorithm for radial basis function network [J]. IEEE Trans. Neural Networks 1991,2:302~309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700