用户名: 密码: 验证码:
脉管制冷机及氦氢混合工质制冷性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于脉管制冷机的低温端没有运动部件,具有结构简单、运行可靠、寿命长、振动小等突出优点,因此避免了由于工质相变引起活塞或排出器等运动部件受损害的可能性,是适合于进行混合工质制冷性能研究的首选低温制冷机。从工质角度出发,提高脉管制冷机效率的研究已经取得了显著进展。本文回顾了脉管制冷机发展历史和最新研究进展,开展了单级脉管制冷机的改进和试验,并从混合工质特性和回热器性能角度出发,进行采用氦氢混合工质的脉管制冷性能的研究工作。具体内容介绍如下:
     1、氦氢混合工质制冷与蓄冷填料的吸收(附)特性
     根据改进的Btayton循环,对氦氢混合工质在25~35K温度范围内的制冷性能做了理论预测分析,同时计算分析了回热器磁性蓄冷填料Er_3Ni的吸氢特性。理论分析结果表明,磁性蓄冷填料Er_3Ni在吸收氦氢混合工质中的氢组分后,其相应的比热容明显增加,有可能改善回热器的回热性能,结合氦氢混合工质在一定配比范围内较纯氦优越的制冷性能,二者的共同影响对脉管制冷机制冷性能的大幅度提高起到了积极作用。
     2、20K温区单级脉管制冷性能实验
     对原有单级脉管制冷机进行部分改进,采用双阀调节双向进气方式,进行了单级脉管制冷机时序、频率特性研究,确定了该制冷机的最佳操作参数,使得该系统的最低制冷温度降至22.4K,在80K时能提供5.65W的制冷量,为混合工质实验奠定了基础。
     3、氦氢混合工质脉管制冷性能实验
     进行了氦氢混合工质在二级脉管制冷机中的实验研究,在实验过程中观察到了氦氢混合工质在制冷过程中出现的气-液相变现象。实验结果表明,氢组分含量在7%~70%范围内的氦氢混合工质都可以不同程度地提高脉管制冷机的制冷性能。针对本文的研究重点20K温区,氦氢混合工质在上述配比范围内均获得了比纯氦高的制冷量和制冷系数COP。20K时最大制冷量和制冷系数是在氢组分含量为70%时获得的,分别比纯氦时提高了30.6%和45.8%。实验结果表明,氦氢混合工质优越的热力性能及回热器磁性材料Er_3Ni吸氢特性的共同作用,使得二级脉管制冷机的实验结果较理论计算有明显的提高。
Without moving parts at the cold head, pulse tube refrigerators have considerable advantages over other types of refrigerators in terms of reliability, lifetime, vibration, and cost. Furthermore, pulse tube refrigerators are suitable to carry out experimental study on refrigeration performance with gas mixture. Great progress has been made on improving COP of pulse tube refrigeration with gas mixture. The works done in this thesis are as follow:
    1. Firstly, the theoretical analysis on the regenerator performance and the thermodynamic performance prediction are presented in Chapter 2. During the process of experimental study, we found that magnetic material, Er3Ni, has the ability to adsorb hydrogen fraction in the mixture. The theoretical analysis on this phenomenon shows that the specific heat of this magnetic material increased very much after adsorbing hydrogen, which is the instinct mechanism to improve the performance of refrigeration.
    2. Based on the improvement of the single-stage pulse tube refrigerator, two parallel-placed needle valves with opposite flow direction referred as two-valved configuration instead of traditional single-vlaved configuration as double-inlet are introduced in experiments to eliminate the DC flow, which proves to be a successful way to improve the performance in this system. The lowest cooling temperature 22.4K and the cooling power 5.65W at 80K has been reached. This results show that the single-stage pulse tube could be fit for the experiment with mixture. And the optimized operating parameters of valve timing and frequency are established.
    3. When the refrigeration temperature reaches the liquefaction point of hydrogen, the hydrogen will be liquefied in pulse tube refrigeration system used helium and hydrogen mixture. Experiments using a number of helium and hydrogen mixtures in a G-M type two-stage pulse tube refrigerator have been carried out. The experimental results show that both COP and cooling power of helium-hydrogen mixture can be increased to some extent at hydrogen vapor-liquid transition
    
    
    
    
    temperature when the pulse tube refrigerator works with hydrogen fraction from 7% to 70%. The excess of cooling power and COP is 30.6% and 45.8% respectively at 20K when hydrogen fraction is 70%.
引文
1 Chan, C. K., Tward, E., and Burt, W. W. Overview of Cooler Technologies for Space-based Electronics and Sensors. Adv. Cry. Eng., 1990, 35: 1239.
    2 Radebaugh, R. A Review of Pulse Tube Refrigeration. Adv. Cry. Eng., 1990, 35(B): 1191.
    3 Radebaugh, R. Recent Developments in Cryocoolers. 19th. Int. Con. Refrig., 1995: 973.
    4 Radebaugh, R. Advances in Cryocoolers. Proc. of the ICEC16/ICMC, Japan, 1996: 33.
    5 Chan, C. K., Jaco, C., and Nguyen, T. Advanced Pulse Tube Head Development. Cryocoolers 9, 1997: 203.
    6 Johnson, D. L., and Ross, W. G. Jr. Electromagnetic Compatibility Characterization of a Stirling Cycle Cryocooler for Space Applications. Adv. Cry. Eng., 1991, 37: 1045.
    7 Johnson, D. L., Mon, G. R., and Ross, R. G. Jr. Spacecraft Cooler Characterization. Proc. 7th. Int. Cry. Con., Santa Fe, USA, Air Force Phillips Laboratory Report PL-CP-93-1001, 1993: 73.
    8 Johnson, D. L. et al. Cryocooler Electromagnetic Compatibility. Cryocoolere 8, Plenum Press, New York, 1995: 209.
    9 Johnson, D. L. and Ross, R. G. Jr. Cryocooler Coldfinger Heat Interceptor. Cryocoolers 8, Plenum Press, New York, 1995: 709.
    10 Ross, R. G. Jr. JPL Cryocooler Development and Test Program Overview. Cryocoolers 8, Plenum Press, New York, 1995: 173.
    11 Walker, G. Miniature Refrigerators for Cryogenics Sensors and Cold Electronics. Oxford University Press, Oxford, 1989.
    12 蔡京辉,王俊杰等.用于红外探测器件冷却的新型微型制冷机——脉管制冷研究进展.低温工程,1992,70:48.
    13 王俊杰,周远.用于红外探测器的新冷源——脉管制冷机.激光与红外,1992,22(1):60.
    14 Radebaugh, R. Pulse Tube Cryocoolers for Cooling Infrared Sensors. Infrared Technology and Applications ⅩⅩⅥ, Vol. 4130: 363.
    15 Mon, G R. Smedley, G. T. et al. Vibration Characteristics of Stifling-Cycle Cryocoolers for Space Application. Cryocoolers 8, Plenum Press, New York, 1995: 197.
    16 Ross, R. G. Jr., Johnson, D. L., Mon, G R., and Smedley, G. Cryocooler Resonance Characterization. Cryogenics, 1994, 34: 435.
    17 Ross, R. G. Jr., and Johnson, D. L. Design and Test of a Comprehensive Facility for Life Testing Space Cryocoolers. Proc. 7th. Int. Cry. Con., Santa Fe, USA, Air Force Phillips Laboratory Report PL-CP-93-1001, 1993: 748.
    18 Ray Radebaugh, Development of the Pulse Tube Refrigerator as an Efficiency and Reliable Cryocooler, Proc. Institute of Refrigeration(London) 1999-2000.
    19 Rawlins, W., Radebaugh, R., Bradley, P. E., and Timmerhaus, K. D. Energy flows in an orifice pulse tube refrigerator. Adv. Cry. Eng., Plenum Press, New York, 1994; 39: 1449-1456.
    
    
    20 罗志昌.流体网络理论.北京:机械工业出版社,1988.
    21 Kirk, A. On the Mechanical Production of Cold. Proc. Inst. Civil Eng. (London) 37, 1874: 244-315.
    22 Khler, J. W. L. and Jonkers, C. O. Fundamentals of the Gas Refrigeration Machine. Philips Tech. Rev. 1954, 16(3): 69-78.
    23 McMahon, H. O. and Gifford, W. E. A New Low-Temperature Gas Expansion Cycle-Part Ⅰ. Adv. Cry. Eng., Plenum Press, New York, 1960, 5: 354-366.
    24 Swift, G. W. Thermoacoustic Natural Gas Liquefier. Proc. of the DOE Natural Gas Con., Houston TⅩ, March 1997.
    25 Backhaus, S. and Swift, G. W. A Thermoacoustic-Stirling Heat Engine. Nature, 1999, 399: 335-338.
    26 Zhu, S., Wu, P., and Chen, Z. Double Inlet Pulse Tube Refrigerators: an Important Improvement, Cryogenics, 1990, 30: 514.
    27 Chan, C. K., Jaco, C. B., Raab, J., Tward, E., and Waterman, M. Miniature Pulse Tube Cooler. Proc. 7th. Int. Cry. Con., Air Force Report PL-CP-93-1001, 1993: 113-124.
    28 陈登科.双阀双小孔脉管制冷机.低温与超导,1996,24(1):1-4.
    29 Matsubara, Y. et al. Four-Valve Pulse Tube Refrigerator. JSJS-4, Beijing, 1993: 54.
    30 Cai, J. H., Wang, J. J., Zhu, W. X., and Zhou Y. Experimental Analysis of the Multi-Bypass Principle in Pulse Tube Refrigerators. Cryogenics, 1994, 34: 713.
    31 Ju, Y. L., Wang, C., Zhou, Y. Dynamic Experimental Investigation of a Multi-bypass Pulse Tube Refrigerator. Cryogenics, 1997, 37: 357-361.
    32 Zhu, S. W., Kakimi, Y. et al. Active-buffer Pulse Tube Refrigerator. Proc. of the ICEC16/ICMC, Japan, 1996: 291.
    33 Zhu, S. W., Kakimi, Y. et al. Investigation of Active-buffer Pulse Tube Refrigerator. Cryogenics, 1997, 37: 461-471.
    34 许名尧等.变截面脉管制冷机——一种新结构脉管制冷机.工程热物理学报,1996,17(2):153.
    35 Kuriyama, F. and Fukasaku, Y. Increase in Reservoir Pressure of Orifice Pulse Tube Refrigerators. Proc. of the ICEC16/ICMC, Japan, 1996: 279.
    36 Chen, G. B, Qiu, L. M. et al. Experimental Study on a double-orifice Two-stage Pulse Tube Refrigerator. Cryogenics, 1997, 37: 217.
    37 Yang, Luwei, Zhou, Yuan, Liang, Jingtao. DC Flow Analysis and Second Orifice Version Pulse Tube Refrigerator. Cryogenics, 1999, 39: 187-192.
    38 Gedeon, D. DC Gas Flows in Stirling and Pulse Tube Refrigerators. Cryocoolers 9, Plenum Press, NY, 1997: 385-392.
    39 Swift, G. W., Gardner, D. L., Backhaus, S. Acoustic Recovery of Lost Power in Pulse Tube Refrigerators. J. Acoust. Soc. Am., 1999, 105: 711-724.
    40 蒋彦龙.高性能G-M型单级脉管制机研究.浙江大学博士学位论文,2003.
    41 蒋彦龙,陈国邦等.20K以下温区单级脉管制冷机直流控制实验研究.低温工程,2002,130(6):11-15.
    
    
    42 de Waele, A. M., A. T. Xu, M. Y., Ju, Y. L. Nonideal-gas Effect in Regenerators. Cryogenics, 1999, 39: 847-851.
    43 Swift, G. W., Allen, M. S., and Wollan, J. J. Performance of a Tapered Pulse Tube. Cryocoolers 10, Kluwer Academic/Plenum Press, N-Y, 1999: 315-320.
    44 费祥麟.高等流体力学.西安:西安交通大学出版社,1989.
    45 Godshalk, K. M., Jin, C., Kwong, et al. Characterization of 350 Hz Thermoacoustically Driven Orifice Pulse Tube Refrigerator with Measurements of the Phase of the Mass Flow and Pressure. Adv. Cry. Eng., Plenum Press, NY, 1996, 41: 1411-1418.
    46 Zhu, S. W., Zhou, S. L., Yoshimura, N., and Matsubara, Y. Phase Shift Effect of the Long Neck Tube for the Pulse Tube Refrigerator. Cryocoolers 9, Plenum Press, NY, 1997: 269-278.
    47 Gardner, D. L., and Swift, G. W. Use of Inertance in Orifice Pulse Tube Refrigerators. Cryogenics, 1997, 37: 117-121.
    48 陈国邦.汤珂等.用于强化脉管制冷的He-H_2混合工质和Er_3NiH_x填料.科学通报,2004,49(1):50-52.
    49 赵莉,陈国邦,余建平.混合工质在脉管制冷机中的可能应用.低温工程,1996,5:15-20.
    50 Xu, M. Y., De Waele, AM, A. T. and Ju, Y. L., A Pulse Tube Refrigerator Below 2K. Cryogenics, 1999, 39: 865.
    51 Walker, G Stirling-Cycle Cooling Engine with Two-Phases, Two-Components Working Fluid. Cryogenics, 1974, 14(8): 459.
    52 Daney, D. E. Regenerator Performance with Noble Gas Mixtures. Cryogenics, 1991, 10: 854.
    53 余建平,陈国邦,甘智华.采用混合工质的回热器性能研究.低温工程,1998,6:6—11.
    54 Patwardhan, K. P., and Bapat S. L. Cyclic Simulation of Stirling Cycle Cryogenerator Using Two Component Two Phase Working Fluid Combinations. Proc. Of the ICCR '98, Hangzhou, International Academic Publishers, 1998: 397.
    55 金新,陈建清.精确的低温气体双参数物态方程.低温工程,1988(1):17.
    56 严子浚.斯特林制冷机的回热性能及其改善.低温与超导,1993(3):1.
    57 陈廷强.”3LY-0. 8/194”制冷机热力分析和试验研究.浙江大学硕士学位论文,1981,9.
    58 潘金文.斯特林制冷机热力分析与改性试验研究.浙江大学硕士学位论文,1988,5.
    59 McDonald, P. C. Self-regulating Temperature Control of a Gifford-McMahon Refrigerator for Potential Use with Neon in High-Tc Power Applications. Superconductor Science & Technology, 1998, 11: 817.
    60 Jocobsen, R. T., Penoncello, S. G., and Lemmon, E. W. Thermodynamic Properties of Cryogenic Fluids. Plenum Press, New York and London, 1997: 202.
    61 Mikulin, E. I. Tarasov, A, A. and Shrebyonock M. P. Low-temperature Expansion Pulse Tube. Adv. Cry Eng., 1984, 29: 629.
    62 井上龙夫(原作者).脉管制冷机的研究开发现状(译文).低温工程,1992,4:60.
    63 Chen, G. B., Gan, Z. H., Thummes, G. and Heiden, C. Thermodynamic Performance Prediction of Pulse Tube Refrigeration with Mixture Fluids. Cryogenics, 2000, 40: 261-267.
    
    
    64 Gan, Z. H., Chen, G. B., Thummes, G. and Heiden, C. Experimental Study on Pulse Tube Refrigeration with Helium and Nitrogen Mixtures. Cryogenics, 2000, 40: 333-339.
    65 Chen, G. B., Jiang, Y. L., Gan, Z. H. Investigation on a Near 63k Isothermal in Pulse Tube Refrigerator with He-N2 Mixture. Adv. Cry. Eng. Melville, New York, 2002, 47: 855-862.
    66 甘智华.混合工质脉管制冷特性理论和实验研究.浙江大学博士学位论文,2000,11.
    67 陈国邦,蒋彦龙,甘智华.氦氮混合工质脉管制冷中的温度平台研究.低温与特气,2001,6:6-10.
    68 甘智华,陈国邦,余建平.氢氦二元混合工质脉管制冷机实验研究.低温与超导,1999,27(2):6~10.
    69 Ravex, A., et al. Development of Low Frequency Pulse Tube Refrigerators. Adv. Cry. Eng., Plenum, New York, 1998, 43: 1935.
    70 Thummes, G., Schreiber, R., and Heiden, C. Convective Heat Losses in Pulse Tube Coolers: Effect of Pulse Tube Inclination. Cryocooler 9, Plenum Press, New York, 1997: 393.
    71 Shiraishi, M., et al. Visualization of DC Flow in a Double-inlet Pulse Tube Refrigerator with Second Orifice Valve. Cryocooler 11, 2001: 371-379.
    72 边绍雄.小型低温制冷机.北京:机械工业出版社,1982.
    73 李瑞,陈国邦.用于低温制冷机的磁性蓄冷材料.低温与超导,1992,20:10~19.
    74 陈国邦.最新低温制冷技术.北京:机械工业出版社,2003,第二版.
    75 Stuart, R. W. et al. Operation and Application of A Three-Stage Closed-Cycle Regenerative Refrigerator in 6. 5K Region. Adv. Cry. Eng., 1970, Vol. 15: 428.
    76 A. Daniels, Du, F. K. Triple Expansion Stirling Cycle Refrigerator. Adv. Cry. Eng., 1971, Vol. 16: 178~184.
    77 陈长聘.王启东.金属氢化物基础、特性与应用.全国金属材料学教学研讨会论文集,材料科学前沿研究.北京:航空工业出版社,1994:160-218.
    78 胡子龙.贮氢材料.北京:化学工业出版社,2002.
    79 T. Kuriyama et al. Proc. 6th Inte. Cry. Con. 1990, Vol. 2: 3.
    80 T. Inaguehi et al. Proc. 6th Inte. Cry. Con. 1990, Vol. 2: 25.
    81 陈国邦.陶甄土.深冷技术,No 1,1992:2.
    82 赵莉,陈国邦,郑建耀.脉管制冷机配气装置的微机实时控制系统.第七届全国低温制冷机学术交流会论文集,天津,1994:31—34.
    83 Schreiber, M. Untersuchungen zur Gravitationsinduzierten Konvektion in Pulsroehrenkuehlern. Diplomarbeit, Justus-Liebig-Universitaet Giessen(University of Giessen), Germany, 1998
    84 张祉佑、石秉三主编.低温技术原理与装置(上册).北京:机械工业出版社,1987
    85 郑德馨,袁秀玲.低温工质热物理性质表和图.北京:机械工业出版社,1982
    86 Gao, J. L. IGC-APD Advanced Two-stage Pulse Tube Cryocoolers. Adv. Cryo. Eng. 2001, 47: 683-690.
    87 阎守胜,陆果.低温物理实验的原理与方法.北京:科学出版社,1985:55.
    88 杨世铭.传热学,北京:高等学校教材,1987,第二版.
    89 Bill Ward, Greg Swift. Environment for Low-Amplitude Thermoacoustic Engine Version 4. 6 Tutorial
    
    and User's Guide. Los Alamos National Laboratory, 1998.
    90 Lewis, M. A. and Radebaugh, R. Measurement of Heat Conduction through Metal Spheres, Cryocoolersl 1: 419-425.
    91 Ju, Y. L. On the Heat Conduction Losses of Pulse Tube and Refrigerator at Temperature Range of 300-4K. Adv. Cryo. Eng., 2001, 47: 942-949.
    92 陈国邦、林理和.低温绝热与传热.浙江:浙江大学出版社,1989.
    93 R. Li, K, Kanao, N. Watanabe, etc. A Four-valve Pulse Tube Cryocooler with a Cooling Power Over 30W at 80K. Adv. Cry. Eng., 1998, 43(B): 1991.
    94 孙卫佳,孙力勇等.改进冷端换热器的大功率脉管制冷机.真空与低温,2001,7(1):27-32.
    95 蒋彦龙,陈国邦等.20K以下温区单级脉管制冷机直流控制实验研究.低温工程,2002,130(6):11-15.
    96 Giebeler F.私人通讯.
    97 蒋彦龙,陈国邦等.回热器流阻对脉管制冷机稳定性的影响.(投稿中)
    98 Gao J. L. IGC-APD Advanced Two-stage Pulse Tube Cryocoolers. Adv. Cryo. Eng. 2001, 47: 683-690
    99 Qiu L. M. and Thummues G. Valve Timing Effect on the Cooling Performance of a 4K Pulse Tube Cooler. Cryogenics. 2002, 42: 327-333.
    100 Wang C, Thummes G., Heiden C. Effects of DC Gas Flow on Performance of Two-stage 4K Pulse Tube Coolers. Cryogenics. 1998, 38: 689-695.
    101 Zhu S. W., Kakimi Y., Mastsubara Y. Watiting Time Effect of a G-M Type Orifice Pulse Tube Refrigerator. Cryogenics. 1998, 38: 619-624.
    102 曾丹芩.工程热力学.北京:人民教育出版社,1980:228.
    103 陈国邦.低温工程材料.浙江:浙江大学出版社,1998.
    104 N. Jiang, Z. H. Gan, etc. Experimental study on Two-stage Pulse Tube Refrigeration with Mixtures of Helium and Hydrogen. Cryocooler 12, 2003: 451-456.
    105 邱利民.液氦温区脉管制冷机的理论与实验研究.浙江大学博士学位论文,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700