用户名: 密码: 验证码:
电解质在电磁场作用下的流动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为经典流体力学、数值计算方法和计算机技术三者的有机结合体,计算流体力学异军突起,得到不断发展和壮大,成为科学研究和工程设计的有效手段。理论分析、实验研究和数值模拟三者相互渗透,不仅推动了流体力学理论的新发展,而且加强了流体力学的工程应用。磁流体推进系统以其独特优势成为21世纪一种颇有发展前途的船舶推进方式,对流体流动过程的计算机模拟和数值计算在理论指导实践方面意义深长,值得探索、开发和实践。
     本文从导电的液体处在电场和磁场当中受力出发,分析了电解质溶液在电磁场中的驱动能力与运动情况,阐述了电磁流动模型,设计出实验装置,获得实验数据分析,应用强大的数值分析方法将通道内的电解质溶液进行耦合场分析,得到理论、实践和模拟分析的具体结果。
     首先,分析电解质溶液在电磁场中驱动的机理,建立出理想条件下的体积力数学模型,推得电解质溶液在直流与交流电磁力驱动下的数学模型和运动方程,得到电场和磁场与运动的关系。
     其次,设计电磁驱动的WHLT-1型流动显示实验装置,设计减小观察驱动场区域的入口速度的方法及设施元件,构造流场观察布光的最佳方案与设备;设计光电检测实验装置对待测流场驱动和速度驱动时测量电解质溶液流动的速度方法,得到电解质溶液的流速与电压、电流的数据;设计应用CCD观察与拍摄流场流动图像的方法,采用图像分析与转换技术得到分析与处理流场的矢量图等数据。采用实物拍摄获得电解质溶液驱动分布图像和不同时刻的流场分布等图像内容。
     第三,应用格子Boltzmann数值方法分析推导了二维九点格子模型从微观到宏观的转变,得到演化方程,并对格子Boltzmann方法的初始条件、适用范围和边界条件设定进行了细致探讨,获得了修正添加体积力的分析方程,结合本问题的选择模型,编制了二维格子Boltzmann方法计算软件,获得了可视化计算结果演示,并验证了实验结果,为后期对比提供支持,发掘出该方法在本问题中的物理本质,增进对该方法的本质上的认识。
     第四,使用有限元法对通道内的电解质溶液进行电磁驱动分析,推得耦合的离散化分析方程,应用ANSYS分析软件建立三维数值模拟分析模型,获得电解质溶液在电场、磁场和电磁场中的运动分析结果,电磁力分析结果,耦合驱动流场速度分析结果,以及圆柱绕流分析等。
     最后,对本文的实验结论、两种数值分析方法结果进行比较分析和总结,并提出今后进一步研究的主要方向。
A new force suddenly rises, the computational fluid dynamics, as an organic union of classic fluid mechanics,numerical computation methods and computer science,develops to become the efficient means of both science research and engineering design.The interaction among theoretical analysis,experimental research and numerical simulation promotes both the theoretic renovation and engineering applications of fluid mechanics. The magnetic fluid propelling system, with its typical superiority, has become a developing boat propelling method in 21st century. It has great direction value on both computer simulation and numerical computation of flowing course of fluids. So it is worth exploring, developing and practice.
     In this article, starting from the receiving force of conducting liquid in both electric field and magnetic field, we analyzed the propelling ability and motion states of electrolyte solution in electromagnetic field, expounded the model of electromagnetism flow, designed an experiment device, and got the experiment data. We also analyzed the coupled field of electrolyte solution in passageway by numerical computation methods, and got specific results of theory, practice and simulation analysis.
     First, we analyzed the principle of the electrolyte solution propelled in electromagnetic field, and then set up a mathematic model of volume force under an ideal condition, inferred a mathematic model and move equations of the electrolyte solution propelled by both direct and alternating current, and received the relations between electric field (magnetic field) and motion.
     Second, we designed a WHLT-1 experiment device of flow display propelled by electromagnetic field, set up methods and equipment components which can diminish or eliminate the entrance speed of the observation propelling field area, structured the best plan and equipments observing light in flow field, designed an optoelectronic detecting device to measure the flow speed of electrolyte solution propelled by flow field and speed individually, got the data of flow speed, voltage and electric current of electrolyte solution, designed methods of observing by CCD and taking the pictures of flow field, obtained the vectogram data by analyzing and changing Images, got pictures of the propelling distribution and the flow field distribution of electrolyte solution at different moment.
     Third, we analyzed and induced the change of a model of two-dimensional 9 points lattice from microcosmic to macroscopic field by the lattice Boltzmann numerical method, got evolution equations, discussed the initial conditions, applicable range and boundary conditions, got equations of amending the added volume force, programmed a software for calculating by the Boltzmann method of two-dimensional lattice, obtained the demonstration of visualable result and verified it. This provided support for later contrast. We improved reorganization of this method by exploring its physics nature.
     Fourth, we analyzed the electromagnetism propelling of electrolyte solution in passageway by finite element method, inferred the discretization of the coupling for equations, set up a three-dimensional numerical simulation model by ANSYS software, got the results of motion analysis, electromagnetism force analysis, flow-field speed analysis and flow around cylinder of the electrolyte solution in electric field, magnetic field and electromagnetic field respectively.
     Final, we summarized the experiment results and contrasted the two numerical analysis methods in this article, and brought up the future study direction.
引文
[1] 谭作武,恽嘉陵.磁流体推进.北京工业大学出版社.1998
    [2] Friauf J B,Electromagnetic Ship Propulsion Journal of Amer.Soc.of Naval Engineers.139-142,1961.
    [3] Imaichi K,Superconducting Electromagnetic Propulsion for Ship,Diesel and Gas Turbine Worldwide.22-35,1991.
    [4] Richard E M,United States Activities in MHD Ship ropulsion,International Symposiumon Superconducting Magnetohydronamic Ship Propulsion,Kobe Japan. 11-15,1991.
    [5] 严陆光,王子凯,薛翠玲.磁流体船舶推进用超导磁流体系统的研制.电工电能新技术.59-64 Vol.3,1999.
    [6] Sha C W,Zhou K, Peng Y,A Superconducting Helical MHD Experimental Ship(HEMS-1),International Conference on MHD Power Generation and High Temperature Technologies,Beijing,China.709-714,1999.
    [7] 彭燕,沙次文,周适.超导螺旋通道海水推进器的性能分析及研究.电工电能新技术.52-54,Vol.3,1998.
    [8] Park J P,Morihira A,Sassa K,et.al.Elimination of non-metallic nclusions using electromagnetic force.Tetsu-to-Hagane.1994,80(5):31-36.
    [9] Taniguchi S.Brimacombe J K.Application of pinch force to the separation of inclusion particles from liquid steel.ISIJ Int.1994.34:722-731.
    [10] Tanaka Y,Sassa K,Iwai K,et.al.Separation of non-metallic inclusions from molten metal using traveling magnetic field.Tetsu-to-Hagane.1995, 81(12):12-17.
    [11] Yamao F,Salsa K.Iwai K,et.al.Separation of inclusion in liquid metal using fixed alternating magnetic field.Tetsu-to-Hagane.1997,83(1).30
    [12] Makarov S,Ludwig R.Apelian D. Electromagnetic separation techniques in metal casting Ⅱ—separation with superconduting coils.IEEE Traits onMagnetics.2001,37(2).1024-1031
    [13] Li T Xu Z M,Sun B D,et.al.Remove inclusions from aluminum melt in electromagnetic field.Acta Metall Sinica (English Letters) 2000,13(5): 1068-1074
    [14] Zhong Y B.Ren Z M.Deng K,et al.Separation of inclusions from liquid metal contained in a triangle/square pipe by travelling magnetic field.Trans Nonferrous Met Soc China.2000,10(2):240-245
    [15] Manfred Kluge.Close-coupled pumps.WORLD PUMPS.1996(1):34-40
    [16] Noriyuki Motomura.ELECTROMAGNETIC PUMP.United States Patent Number:4,776,767.Date of Patent:Oct.11,1988
    [17] Ronafldi et al.ELECTROMAGNETIf METAL MELT PUMP FOR PUMPIMG OUT AND CHARGING THE MOL'CEN FROM A FURNACE .United States patent.Patent Number:4,615,660:Oct.7,1986
    [18] Thissen et al. METHOD FOR CARRING LIQUID METAL BY TWO SERIES-CONNECTED ELECTRIC MAGNE"C PUMPS. United States Patent.PaLent Number:4, 566, 859. Date of Patent:Jan. 28, 1986
    [19] Matvecv etc.The modern concept for the development of fast reactors with sodium coolant.Teploenergetika.1994:2-10
    [20] Ma,N.Moon.T.J.Electromagnetic pump with thin metal walls.American Society of Mechanical Engineers.1992:1-4
    [21] 张扬军,唐学林等.微型泵研究进展.水泵技术.1996:6.26-29
    [22] Sachin Karol.Study of the Dynamic behaviour of mechanical rnicropurnps in a Microfluidic system.2000
    [23] 龚秋莲,周兆英等.微泵电磁致动器的研制与测试.测试技术学报.1998, 12.376-381
    [24] 陈令新,关亚风.微型流动分离分析系统的输液问题.现代科学仪器.2001 年第 4期 18-21
    [25] 王沫然,李志信.基于 MEMS 的微泵研究进展.传感器技术.2002, 21.59-61
    [26] 谢海波,傅新,杨华勇.微型无阀泵流动特征仿真与实验研究机械工程学报.2002 Vo1.38 No.7 54-57
    [27] Friauf J B, Electromagnetic Ship Propulsion Journal of Amer. Soc. Of Naval Engineers.139-142,1961
    [28] Rice W A,Propulsion System,U.S.Patent.8-22,299,1961
    [29] Phillips O M,The Prospects for Magnetohydrodynamic Ship Propulsion, Journal of ShipResearch.5(4):4351,1962
    [30] Doragh R A, Magnetohydrodynamic Ship Propulsion Using Superconducting Magnets,Proceeding of Naval Architects and Marine Engineers Transaction. 71:370386,1963
    [31] Motora S,Imaichi K,Nakato M,An Outline of the R&D Project on Superconducting MHD Ship Propulsion in Japan, International Symposium on Superconducting Magnetohydronamic Ship Propulsion. Kobe Japan. 1991
    [33] Richard E M, United States Activities in MHD Ship Propulsion, International Symposium on Superconducting Magnetohydronamic Ship Propulsion.Kobe Japan.11-15,1991
    [34] 刘儒勋,舒其望.计算流体力学的若干新方法、科学出版社.2003
    [35] Gailitis A,Lielausis 0.On a possibility to reduce the hydrodynamical resistance of a plate in an electrolyte.Appliec Magnetohydrodynamics. 1961,12:143-146
    [36] Kruger C H,Sonju 0 K.On the turbulent magnetohydrodynamic boundary layer.Proceedings of Heat Transfer and Fluid Mechanics institute.1964, 147 一 159.
    [37] Reed C B,Lykoudis P S.The effect of transverse magnetic fields on shear turbulence.J.Fluid Mech.1978,89(147)
    [38] Henoch C,Stace J.Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force.Phys.Fluids.1995,Vol.7.No.6.June
    [39] Kim,S J,Lee,Choung M.Investigation of the flow around a circular cylinder under the influence of an electromagnetic field.Exp.Fluids. 2000,28,252-260
    [40] Seong-jae Kim,Choung Mook Lee.Control of flows around a circular cylinder:suppression of oscillatory lift force.Fluid Dynamics Research.2001,29,47-63
    [41] 周本谋,范宝春,陈志华等.电磁力连续控制圆柱绕流态变化的研究.流体力学实验与测量.2004,第 18 卷,第 1 期:10-14
    [42] E.Blums,A.Cebers,M.M.Maiorov.Magnetic Fluids.Berlin,New York:de Gruyter.1997
    [43] E.P.Wohlfarth 主编,刘增民等译.铁磁材料—磁有序物质特性手册(卷 2)第一版.电子工业出版社.1993
    [44] 李德才.磁性液体理论及应用.北京:科学出版社.第一版.2003.8
    [45] 胡文瑞.宇宙磁流体力学.科学出版社.第一版,1987
    [46] Cowling T G 著,唐戈、郭均译.电磁流体力学.科学出版社.1960
    [47] 冯慈章.电磁场.人民教育出版社.1979
    [48] Grant S Philips W R 著刘岐元、汪鸣阳译.电磁学. 人民教育出版社.1982
    [49] 谭作武,恽嘉陵.磁流体推进器的数学模型.船舶.1997.37-43
    [50] 赵刚、凌金福、居滋象. 磁流体推进器通道流体动力学分析模型发展概况. 电工电能新技术.1996.3 16-20
    [51] Brechna H.Superconducting Magnet Systems.Speing-Verlag.1973
    [52] 赵凯华,陈熙谋.电磁学,第二版.北京:人民教育出版社,2000
    [53] 韩江.交流磁流体推进的基础研究.中国科学院电工研究所,硕士论文.2002
    [54] 杨祖清.流动显示技术.北京:国防工业出版社.2002
    [55] 吴颖川,乐嘉陵.彩色计算干涉技术及应用.流体力学试验与测量.Vol.16 No.1 2002
    [56] 吴颖川,王慧玲,杨辉.复杂流场的全息干涉定量分析和计算干涉技术.激波与激波管学术论文集. 189-192,2002
    [57] 罗明辉等.国外流动显示进展.力学进展.13,1983
    [58] 李秉录等.氢气泡显示技术的应用.力学与实践.4,52 1982
    [59] 陈克诚.流体力学实验技术.机械工业出版社.1983
    [60] 徐有恒,穆晟.基础流体实验.复旦大学出版社.1990
    [61] W.Merzkirch,黄素逸译.流动显示.科学出版社.1991
    [62] 李元香,康立山,陈毓屏.格子气自动机.清华大学出版社.1994
    [63] 陶文锉.计算传热学的近代进展.科学出版社. 417,2000
    [64] 郭照立,郑楚光,李青,王能超著.流体动力学的格子 Boltzmann 方法. 湖北科学技术出版社. 第一版,2002
    [65] 陶文锉.计算传热学的近代进展.北京:科学出版社,第一版,2000
    [66] Chen S, Doolen G D, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech.30,329-343,1998
    [67] J.M.Buick,C.A.Greated.Gravity in a lattice Boltzman model.Physical Review E.vol.61 No.5, 2000
    [68] 阮剑.格子 Boltzmann 方法及其对复杂流场的实现.华中理下大学硕士论文. 1999
    [69] Zou Q, Hou S, Doolen G D, Analytical solutions of the lattice Boltzmann BGK model.J.Stat.Phys.1,319-326,1995
    [70] He X, Zou Q, Luo L S, Dembo M, Analytic solutions of simple flows and non-slip boundary -condition for the lattice Boltzmann BGK model. J. Stat. Phys.87,115-123,1997
    [71] Maier R S, Bernard R S, Grunau D W, Boundary conditions for the lattice Boltzmann method Phys. Fluids.8,1788-1793,1996
    [72] P A.Skordos., Intial and boundary conditions for the lattice Boltzmann method Physical Review E,Vo1.48, No.6,pp.4823-4842,1993
    [73] M.B.Reider and J.D.Stering,Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations,Comput.Fluids .24.p459,1994
    [74] T.Inamuro.M.Yoshino and F.Ogino.A non-ship boundary condition for lattice Boltzmann simulatons.Phys.Fluids 7.p2928,1995
    [75] Courant R,Variational Methods for the Solution of Problems of Equilibrium and Vibrations,Bull.Am.Math.Soc,Vol.49,1943
    [76] Clough R W,the Finite Element Method of Structural Analysis,Proc.2nd Conf.Electronic Computation,ASCE,Pittsburgh,Pa,Sept.1960
    [77] 小飒工作室.最新经典 ANSYS 及 Workbench 教程.电子工业出版社.2004
    [78] 李开泰,黄艾香,黄庆怀.有限元方法及其应用.西安交通大学出版社.1984
    [79] S.S.劳尔.工程中的有限元法.科学出版社.1991
    [80] 曾余庚,徐国华,宋国乡.电磁场有限元法.科学出版社.1982
    [81] 阎照文等.ANSYS 工程电磁分析技术与实例详解.中国水利水电出版社.2006
    [82] 方生,张培强.旋转磁场作用下磁流变液体颗粒运动及结构演化的模拟.化学物理学报.5,562-566,2001
    [83] Yoshiro Saji,Akira Iwata,Manabu Sato,Hiroyuki Kita,Fundamental Studies of a Superconducting Electromagnetic Ship Thruster to be Driven by an Alternating Magnetic Field,Proceedings of the 1991 Cryogenic Engineering conference.Jun 11-14,1991
    [84] Frank.M.White 著.陈健宏译.流体力学.晓园出版社.世界图书出版公司.1992
    [85] 童秉纲,张炳宣,崔尔杰主编.非定常流于涡流运动.国防工业出版社.1993
    [86] 王华,曹刚.基于 ANSYS 的含液容器流固耦合模态分析.重庆科技学院学报(自然科学版).02,2006
    [87] 孙利民, 张庆华, 赵勇.卧式圆形储油罐液固耦合模态分析. 郑州大学学报(工学版). 02,2005
    [88] 李遇春,楼梦麟. 渡槽中流体非线性晃动的边界元模拟.地震工程与工程振动. 02,2000
    [89] 马治国,夏毅敏. ANSYS 软件应用介绍. 凿岩机械气动工具.02,2005
    [90] 于亚婷,杜平安,王振伟.有限元法的应用现状研究.机械设计.03,2005
    [91] 邵长金,李相方.流体分布对电阻率的影响.物探与化探.04,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700