用户名: 密码: 验证码:
有序介孔碳改性及M@Pt核壳结构催化剂的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以可溶性酚醛树脂为碳源、F127为模板剂,通过溶剂诱导自组装法制备的有序介孔碳亲水性较差,化学还原法负载Pt催化剂的性能比硬模板法制备的有序介孔碳负载Pt催化剂的性能差。为此,本文尝试对有序介孔碳表面进行改性。为了进一步降低Pt的负载使用量,提高其使用效率,本文还制备了核壳结构M@Pt(M=Co, Ni)催化剂,以提高Pt的催化活性。
     对有序介孔碳表面修饰的常用方法是在其表面引入合适的官能团。本文利用苯胺单体在有序介孔碳上原位聚合得到有序介孔碳-聚苯胺复合材料,并于300℃~900℃下进行煅烧。研究结果表明,聚合后的高温煅烧对介孔碳有序结构几乎没有影响,且能在碳表面留下亲水性能较好的的亚胺基团。以其为载体,微波法负载Pt催化剂后电化学活性面积可达59.4m2g-1,比纯有序介孔碳负载Pt催化剂(2.4m2g-1)的活性高。显示了亚胺基团表面修饰能有效的提高有序介孔碳负载Pt催化剂的性能。
     本文还尝试在制备有序介孔碳的过程中采用乙酸钴作为辅助催化剂。实验结果表明,适量钴盐的加入对介孔碳的有序结构几乎没有影响,且由于所加入Co元素在高温下的还原,使Pt的负载有了较好的活性点,更利于Pt的还原沉积,从而可使Pt催化剂的电化学活性面积达到128.7m2g-1。表明了在合成介孔碳的过程中添加适量的钴盐也能够有效改善碳负载Pt催化剂的性能。
     为进一步降低Pt的负载使用量,改善其催化性能,本文还从Pt催化剂结构出发,利用二次微波法和置换法分别制得Co@Pt/XC-72和Ni@Pt/XC-72核壳结构催化剂。形成核壳结构能提高Pt的利用率和比表面积。循环伏安测试表明,Co@Pt/XC-72和Ni@Pt/XC-72催化剂的电化学活性面积分别为84.3m2g-1和100.1m2g-1,均高于纯Pt催化剂。
     综上所述,对有序介孔碳表面进行官能团改性或者在合成过程中添加适量的金属盐均能有效的提高碳负载Pt催化剂的性能,与形成M@Pt核壳结构催化剂以降低Pt的负载使用量相比,均能达到提高Pt催化剂使用效率的目的,在质子交换膜燃料电池催化剂方面有广阔的应用前景。
Ordered mesoporous carbon has been synthesized from a solvent inducement self-assembly with resol as carbon precursor, F127 as the structure directing agent in this paper. It has been proved that the obtained carbon was hydrophobic, it represents worse performance than hard-templet carbon when supported Pt catalyst with chemical reduction method. So it is necessary to modify the surface of ordered mesoporous carbon in order to improve its wettability. In order to reduce the quantity and improve the use ratio of Pt, M@Pt(M=Co, Ni) core-shell structure catalyst was prepared in this paper.
     Introducing the functional group to the surface of ordered mesoporous carbon is a frequently-used method. Nitrogen-doped ordered mesoporous carbon was synthesized by carbonizing at 300℃~900℃, containing polymerized aniline onto ordered mesoporous carbon. The research revealed that the nitrogen-doped carbon, which was carbonized at high temperature, not only had ordered mesoporous structure, but also reserved many hydrophilic imine groups. It represented better electric-catalysis performance than pure carbon when loaded Pt particles with a microwave synthesis process. Its active surface area is 59.4m2g-1, which was higher than pure carbon loaded Pt catalyst(2.4m2g-1). It indicated that imine group modified ordered mesoporous carbon could improve the performance of Pt.
     We synthesized the ordered mesoporous carbon with addition of cobaltous acetate as assisted catalyst. We find that the addition of appropriate cobaltous doesn’t destroy the ordered mesoporous structure of carbon. The metallic Co, which was come from carbonization, could form many active points on the surface of ordered mesoporous carbon. It is benefit for the loading of Pt. The CV tests indicated that the highest active surface area of modified carbon supported Pt catalyst reached to 128.7m2g-1. It indicated that during the preparation process, the addition of appropriate cobalt salt in ordered mesoporous carbon could also improve the performance of Pt.
     In order to reduce the quantity and improve the use ratio of Pt, the paper also put attention on the Pt catalyst self, we synthesized Co@Pt/XC-72 and Ni@Pt/XC-72 nanoparticles with a confirmed core-shell structure, based on a two steps glycol microwave reduction method and a galvanic replacement method, respectively. The core-shell structure catalyst could augment the active surface area and the utilization rate of Pt. The CV tests indicated that the active surface area of Co@Pt/XC-72 and Ni@Pt/XC-72 catalysts are 84.3m2g-1 and 100.1m2g-1, respectively, which are higher than pure Pt catalyst.
     To sum up, all the above three methods can improve the activity of catalyst effectively. They have a good prospect of application in proton exchange membrane fuel cell catalysts aspect.
引文
[1]雷永泉,万群,石永康.新能源材料[M].天津:天津大学出版社,2000. 1~6.
    [2]石井弘毅.图说燃料电池原理与应用[M].北京:科学出版社,2003. 1~25.
    [3]王林山,李瑛.燃料电池[M].北京:冶金工业出版社,2005. 138~161.
    [4]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京:化学工业出版社,2000. 25~47.
    [5]毛宗强等.燃料电池[M].北京:化学工业出版社,2005. 33~138.
    [6] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B, 1999, 103(37):7743~7746.
    [7] Ryoo R, Joo S H, Jun S, et al. Ordered mesoporous carbon molecular sieves by templated synthesis: the structural varieties[J]. Stud. Surf. Sci. Catal., 2001, 135:150~157.
    [8] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J. Am. Chem. Soc., 2000, 122(43):10712~10713.
    [9] Kruk M, Jaroniec M, Kim T W, et al. Synthesis and characterization of hexagonally ordered carbon nanopipes[J]. Chem. Mater., 2003, 15(14):2815~2823.
    [10] Joo S H, Choi S J, Oh H, et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412(6843):169~173.
    [11] Lee J S, Joo S H, Ryoo R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters[J]. J. Am. Chem. Soc., 2002, 124(7):1156~1157.
    [12] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angew. Chem. Int. Ed., 2004, 43(43):5785~5789.
    [13] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite[J]. Chem. Commun., 2005(16):2125~2127.
    [14] Zhang F Q, Meng Y, Gu D, et al. A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure[J]. J. Am. Chem. Soc., 2005, 127(39):13508~13509.
    [15] Meng Y, Gu D, Zhang F Q, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angew. Chem. Int. Ed., 2005, 44(43):7053~7059.
    [16] Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin andcarbon structures from organic-organic self-assembly[J]. Chem. Mater., 2006, 18(18):4447~4464.
    [17]孟建波,桑革,罗学建. PEMFC电催化剂研究进展[J].材料导报,2006,20:289~292.
    [18] Liu S H, Yu W Y, Chen C H, et al. Fabrication and Characterization of Well-Dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell[J]. Chem. Mater., 2008, 20(4):1622~1628.
    [19] González M J, Hable C T, Wrighton M S. Electrocatalytic Oxidation of Small Carbohydrate Fuels at Pt-Sn Modified Electrodes[J]. J.Phys.Chem.B, 1998, 102(49):9881~9890.
    [20] Grgur B N, Markovic N M, Ross P N. Electrooxidation of H2, CO, and H2/CO mixtures on a well-characterized Pt70Mo30 bulk alloy electrode[J]. J.Phys.Chem B, 1998, 102(14):2494~2501.
    [21] Wei Z D, Yin F, Li L L, et al. Study of Pt/C and Pt-Fe/C catalysts for oxygen reduction in the light of quantum chemistry[J]. Journal of Electroanalytical Chemistry, 2003, 541:185~191.
    [22] Xiong L, Kannan A M, Manthiram A. Pt-M(M=Fe, Co, Ni and Cu)electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells[J]. Electrochemistry Communications, 2002, 4:898~903.
    [23] Ley K L, Liu R, Pu C, et al. Smotkin.Methanol oxidation on single-phase Pt-Ru-Os ternary alloys[J]. Electrochem.Soc, 1997, 144(5):1543~1548.
    [24] Aramata A, Masuda M. Platinum Alloy Electrodes Bonded to Solid Polymer Electrolyte for Enhancement of Methanol Electro-oxidation and Its Reaction Mechanism[J]. J.Electrochem.Soc, 1991, 138(7):1949~1957.
    [25] Zhang X, Zhang F, Guan R.F, et al. Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation[J]. Materials Research Bulletin, 2007, 42(2):327~333.
    [26] Bauer A, Gyenge E L, Oloman C W. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt[J]. Journal of Power Sources, 2007, 167(2):281~287.
    [27] Bogdan G, Rameshkrishnan V, et al. Structural and electrochemical characterization of binary, ternary and quaternary platinum alloy catalysts for methanol electro-oxidation[J]. Phys Chem B, 1998, 102(49):9997~10003.
    [28] Aric A S, Poltarzewski Z, Kim H, et al. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells[J]. Journal of Power Sources, 1995, 55:159~166.
    [29] Sivakumar P, Tricoli V. Novel Pt-Ru nanoparticles formed by vapour deposition as efficientelectrocatalyst for methanol oxidation, Part II[J]. Electrochimica Acta, 2006, 51(7):1235~1243.
    [30] Choi WC, Kim J D, Woo S I. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry[J]. Catalysis Today, 2002, 74(3~4):235~240.
    [31] Sun Y X, Yin G P, Chu D W. High-throughput screening of PtRuSnW quaternary electrocatalysts for methanol oxidation[J]. Chinese Journal of Power Sources, 2006, 30(187):274~277.
    [32] Zhao D, Huo Q, Feng J, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J.Am.Chem.Soc., 1998, 120(24):6024~6037.
    [33] Georgakilas V, Kordatos K, Prato M, et al. Organic functionalization of carbon nanotubes[J]. J. Am. Chem. Soc., 2002, 124(5):760~761.
    [34]陈卫祥,赵杰,Lee J Y,等. XC-72碳和碳纳米管负载PtRu快速微波合成[J].化学学报,2004,62(17):1590~1594.
    [35] Wang X Q, Liu R, Waje M M, et al. Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst[J]. Chem. Mater., 2007, 19(10):2395~ 2397.
    [36] Zhou J H, He J P, Ji Y J, et al. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation[J], Electrochim. Acta, 2007, 52(14):4691~4695.
    [37] Wu G, Li D, Dai C S, et al. Well-Dispersed High-Loading Pt Nanoparticles Supported by Shell-Core Nanostructured Carbon for Methanol Electrooxidation[J]. Langmuir, 2008, 24(7):3566~3575.
    [38] Wang Y G, Li H Q, Xia Y Y. Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance[J]. Adv. Mater., 2006, 18:2619~2623.
    [39] Choi B, Yoon H, Sung Y E, et al. Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation[J]. Carbon, 2007, 45:2496~2501.
    [40]韩小斐,陈卫祥,赵杰,等.微波合成PtRu/CNTs催化剂及其电催化性能[J].浙江大学学报(工学版),2005,39(12):1871~1874.
    [41] Pozio A, Francesco D M, Cemmi A, et al. Comparison of high surface Pt/C catalysts by cyclic voltammetry[J]. Journal of Power Sources, 2002, 105:13~19.
    [42] Yang R Z, Qiu X P, Zhang H R, et al. Monodispersed hard carbon spherules as a catalyst support for the electrooxidation of methanol[J]. Carbon, 2005, 43:11~16.
    [43]张钦仓,宋怀河,陈晓红,等.聚苯胺/活性碳复合材料的制备及电化学性质[J].电源技术,2008,32(2):109~112.
    [44] Lahaye J, Nanse G, Bagreev A, et al. Porous structure and surface chemistry of nitrogen containing carbons from polymers[J]. Carbon, 1999, 37:585~590.
    [45] Wang Z B, Yin G P, Zhang J, et al. Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell[J]. Electrochimica Acta, 2006, 51:5691~5697.
    [46] Gojkovic′S L, Vidakovic′T R, Durovic′D R. Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst[J]. Electrochimica Acta, 2003, 48:3607~3614.
    [47]邓梅根,杨邦朝,胡永达,等.基于碳纳米管?聚苯胺纳米复合物的超级电容器研究[J].化学学报,2005,63(12):1127~1130.
    [48] Yao J Y, Li L X, Song H H, et al. Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites[J]. Carbon, 2008, in press.
    [49]赵桂网,有序介孔碳改性及其负载Pt催化剂的性能研究,[硕士学位论文],南京:南京航空航天大学,2008.
    [50] Liu R L, Shi Y F, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas[J]. J. Am. Chem. Soc., 2006, 128(35):11652~11662.
    [51] Li H Q, Liu R L, Xia Y Y, et al. Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly[J]. Carbon, 2007, 45:2628~2635.
    [52] Qian X F, WanY, Zhao D Y, et al. Synthesis of ordered mesoporous crystalline carbon-anatase composites with high titania contents[J]. Journal of Colloid and Interface Science, 2008, in press.
    [53] Hwang B J, Chen C H, Liu D G, et al. An Investigation of Structure-Catalytic Activity Relationship for Pt-Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction[J]. J. Phys. Chem. C, 2007, 111(42):15267~15276.
    [54] Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science, 1998, 279:548~552.
    [55] Lu P, Teranishi T, Toshima N, et al. Polymer-protected Ni/Pd bimetallic nano-clusters: preparation, characterization and catalysis for hydrogenation of nitrobenzene[J]. J. Phys. Chem. B, 1999, 103:9673~9682.
    [56] Chen Y M, Yang F, Chen S L, et al. Ni@Pt Core-Shell Nanoparticles: Synthesis, Structural and Electrochemical Properties[J]. J. Phys. Chem. C, 2008, 112(5):1645~1649.
    [57] Guo S J, Fang Y X, Dong S J, et al. High-Efficiency and Low-Cost Hybrid Nanomaterial asEnhancing Electrocatalyst: Spongelike Au/Pt Core/Shell Nanomaterial with Hollow Cavity[J]. J. Phys. Chem. C, 2007, 111(45):17104~17109.
    [58]李大双,Nicore-Ptshell纳米粒子的制备及其电催化氧还原性能研究,[硕士学位论文],太原,太原理工大学,2008.
    [59] Chen D, Li J, Shi C, et al. Properties of Core-Shell Ni-Au Nanoparticles Synthesized through a Redox-Transmetalation Method in Reverse Microemulsion[J]. Chem. Mater., 2007, 19(14):3399~3405.
    [60] Bao F, Li J F, Ren B, et al. Synthesis and Characterization of Au@Co and Au@Ni Core-Shell Nanoparticles and Their Applications in Surface-Enhanced Raman Spectroscopy[J]. J. Phys. Chem. C, 2008,112:345~350.
    [61] Stamenkovic V R, Fowler B, Mun B S, et al. Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J]. Science, 2007, 315:493~497.
    [62]彭程,程璇,张颖,等.碳载铂纳米微粒修饰的玻碳电极对甲醇的电催化氧化[J].稀有金属材料与工程,2005,34(6):950~953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700