用户名: 密码: 验证码:
模板法制备介孔碳及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料是指孔径介于2-50nm之间的一类多孔材料,它的孔道结构高度有序,具有很高的比表面积,在多相催化、吸附、分离、传感器等众多领域有广泛的应用前景。自从1992年Mobil公司的研究人员首次报道了M41S系列的介孔材料以来,它就一直受到人们的极大关注。
     分别以三嵌段聚合物F127、P123以及P123/F127复合作为模板剂,酚醛树脂为碳前驱体,通过溶剂挥发自组装法制备有序介孔碳材料。采用凝胶渗透色谱(GPC)测定了不同合成温度酚醛树脂的分子量;使用X射线衍射(XRD)、采用透射电镜(TEM)和N2吸/脱附等手段对有序介孔碳进行了表征。研究了模板剂、合成酚醛树脂的温度、溶剂、.搅拌时间、溶剂挥发速率、溶液PH值及添加二氧化钛等因素对介孔碳孔道结构及有序性的影响。结果表明:使用复合模板剂制备的介孔的孔容和比表面积较单独使用F127作模板分别提高了50%与31%;当m(P123)/m(F127)=1/3时,酚醛树脂的合成温度为85℃时、无水乙醇为溶剂、溶液PH值为7.0、搅拌时间1h所得介孔碳有较好的有序性,BET比表面积为498.5 m2/g,介孔孔容和比表面积分别为0.173cm3/g和167.05m2/g,平均孔径为3.41nm。
     采用恒流充放电、循环伏安和交流阻抗三种测试方法在氢氧化钾电解质中研究了介孔材料的双电层电容器性能。结果表明:介孔材料均显示出理想的双电层电容行为。使用复合模板剂制备介孔碳的电极内阻较小,比容量较大,更适合大电流充放电;在300 mA/g电流下充放电的电容量达到166 F/g,较使用单一模板剂提高了17%。
As a kind of mesoporous materials with the pore size between 2-50 nm, mesoporous molecular sieves might find a lot of applications in the fields of catalysis, adsorption, sensors and so on, because of their highly ordered pore structures and very large specific surface area. Since the first report about M41S mesoporous materials by the scientists of Mobil Research and Development Corporation, it has been widespread concern by researchers around the world.
     Ordered mesoporous carbons were synthesized through Evaporation Induced Self-assembly method using phenol formaldehyde (PF) resin as carbon resource and triblock copolymer F127, P123, P123/F127as template. The molecular weight of PF resin obtained form different synthesis temperatures was measured by gel permeation chromatography(GPC) and the resultant mesoporous carbon material was characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM) and N2 adsorption/desorption. The effects of different templates, synthesis temperature of PF resin, different solvents, stirring time, solvent evaporation rate, solution PH value and adding of titanium dioxide on the pore size and orderliness of mesoporous carbon were studied. The results show that, template P123/F127 is helpful to prepare carbons with well-ordered hexagonal mesostructure. Mesopore volume and specific surface area were increased by 50% and 33% respectively. when synthesis temperature of PF resin is 85℃, and the weight ratio of P123 to F127 is 1:3, ethanol as solvent, PH value of 7.0, the stirring time 1h, the resultant mesoporous carbon has a well-ordered hexagonal meso-structure, and the BET specific surface area of which is 498.5m2/g with mesopore volume of 0.173 cm3/g, mesoproe surface area of 167m2/g and average pore size of 3.41 nm.
     Electrochemical performance of mesoproe materials as electrodes of super capacitors were characterized by galvanostatic measurements, cyclic voltammograms and AC impedance spectrum analysis. The electrode performances show that mesoporous materials exhibit the ideal behavior of the double-layer capacitance. Electrode of mesoporous carbon, which was prepared from composite template, has lower impedance and larger capacity, and is suitable for large current density charge/discharge The specific capacitance can reach 166F/g at the current density of 300mA/g,which were increased by 17%.
引文
[1]Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via temp-late-mediated structural transformation[J]. Phy Chem.,1999,53:43-77
    [2]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2004
    [3]杨海峰,张任远,屠波,赵东元,一种石墨化孔壁结构、高度有序的纳米孔碳材料的制备方法[P].中国发明专利,CN1544321A.2003-11-25
    [4]Kruk M., Dufour B, Celer et al. Diblock copolymers as templates for mesoporous silicas and precursors for mesoporous carbons[J]. J Chem Mater,2006,18(6):1417-1424
    [5]Aldo J, Zarbin G, Bertholdo R, et al. Preparation Characterization and Pyrolysis of Poly (Furfurylalcohol)/Porous Silica Glass Nanocomposites:Novel Route to Carbon Template [J]. Carbon,2002,40:2413-2422
    [6]王爱平,康飞宇,郭占成,黄正宏.铸型碳化法制备多孔碳材料的研究进展[J].化工进展,2006,(3):35-38
    [7]Tanaka S, Nishiyama N, Egashira Y,et al.Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite[J].Chem Commun,2005, (11):21-25
    [8]Zhang F Q, Meng Y, Zhao D Y, et al. A Facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3hd bicontinuous cubic structure [J]. J Am Chem Soc,205,127(39):13508-13509
    [9]He H Z, Srinivasan M P, Yaming N. Novel activation process for preparing highly microporous and mesoporous activated carbons[J]. Carbon,2001,39:877-886
    [10]Kyotani T. Control of pore structure in carbon [J]. Carbon,2000,38:269-286
    [11]张香兰,徐德平,陈清如.中孔碳的催化制备方法碳[J].碳素,2001,2:22-25
    [12]Fuertes A B, Nevskaia D M. Control of mesoporous structure of carbons synthesized using a mesostructured silica as template[J].Micropor Mesopor Mater,2003,62:177-179
    [13]沈曾民.新型碳材料[M].北京:化学工业出版社,2003
    [14]Zhang W H, Liang C H, Sun H J, et al. Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor depositio[J].Adv.Mater,2002,14:1776-1778
    [15]Kim J, Lee J, Hyeon T. Direct synthesis of uniform mesoporous carbons from the carbon-ization of as-synthesized silica/triblock copolymer nanocomposites[J]. Carbon,2004, 42:2711-2715
    [16]Moriguchi I, Koga Y, Matsukura R, et al. Novel synthesis of polymer and carbonaceous nanomaterials via a micelle/silicate nanostructured precursor [J].Chem Commun,2002,67: 18-44
    [17]Lee J, Kim J, Lee Y, et al. Simple synthesis of uniform mesoporous carbons with diverse structures from mesostructured polymer/silica nanocomposites[J]. Chem Mater,2004, 121:3316:3323
    [18]Meng Y, Gu D, Zhang F, et al. Ordered mesoporous polymers and homologous carbon frameworks:amphiphilic surfactant templating and Direct Transformation[J]. Angew Chem Int Ed,2005,(7):44-48
    [19]张爱菊,沈毅,李子成,硅基介孔材料的合成机理及其应用[J].河北理工学院学报,2006,(1):13-17
    [20]Beck J S, Vartuli J C, Roth W J. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates[J]. J Am Chem Soc.1992,114(27):10834-10837
    [21]谢永贤,陈文,徐庆.有序介孔材料的合成机理[J].材料导报,2002,1:51-53
    [22]刘超,成国祥.模板法制备介孔材料的研究进展[J].离子交换与吸附,2003,19(4):374-384
    [23]罗文斌,沈俊,张昭.模板合成法制备中孔纯硅分子筛的协同作用路线[J].现代化工,2002,22(12):26-30
    [24]Gregg S J, Sing S W. Adsorption surface area and porosity[M].2nd ed.Suffolk:.St Edmundsbury Press,1982,25.
    [25]Rouquerol F, Rouquerol J, Sing J. Adsorption by powders and porous solids[M].London:.Academic Press,1999
    [26]Sing S W. Adsorption methods for the characterization of porous materials[J].Coll Int Sci, 1998,7677(1):3-11
    [27]姚七妹.规则结构多孔碳的模板法制备与性能研究[D].大连理工大学,2005
    [28]Sakata Y, Muto A. Preparation of porous carbon membrane plates for pervaporation separation applications[J].Separation and Purification Technology,1999,17:97-100
    [29]Do D D, Do H D. Adsorption of supercritical fluids in non-porous and porous car-bons:analysis of adsorbed phase volume and density[J]. Carbon,2003,41(9):1777-1791
    [30]Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage[J]. Electrochem Soc,1991,138(6):1539-1548
    [31]侯朝辉.高比表面积中孔碳材料的制备及其双电层电容性能研究[D].中南大学.2004
    [32]查全性.电极过程动力学导论[M].北京:科学出版社,2002
    [33]Bard A J, Faulkner L R.电化学方法原理及应用(古林镁等,译者)[M].北京:化学工业出版社,1986
    [34]Yoon S, Lee J, Hyeon J, et al. Electric double-layer capacitor performance of a new mesoporous carbon[J]. Electrochem Soc,2000,147(7):2507-2512
    [35]Zhou H, Zhu S, Hibino H,et al. Electrochemical capacitance of self-ordered mesoporous carbon[J]. J Power Sources,2003,122:219-223
    [36]杨娇萍.超级电容器用多孔活性碳材料的研究[D].北京:北京化工大学,2005
    [37]Yos Hida A. Surface technology for electric double-layer capacitors [J]. Jpn Surf Technol, 1997,48(12):1163-1168
    [38]Atushi Nishino.Capacitor operating principles current market and technical trends[J]. J Power Souces,1996,60:137-147
    [39]梅滨.新型双电层电容器研究现状及展望[J].碳素,2003,2:32-36
    [40]Lee J, Yoon S, Hyeon T. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors [J]. Chem Comm,1999, (5):2177-2180
    [41]Frackowiak E, Jurewicz K, Friebe M, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43:1293-1296
    [42]Wang Q Y, Johnson J K. Optimization of carbonnanotube arrays for hydrogen adsorption[J]. Phys Chem B,1999,103:4809-4813
    [43]唐水花,张良辅,于作龙.碳纳米管贮氢研究进展[J].化学通报,2003,66(10):687-695
    [44]詹亮,李开喜,朱星明,等.超级活性碳储氢性能研究[J].材料科学与工程,2002,20(1):31-34
    [45]Holtz R L, Imam M A. Hydrogen storage capacity of submicron magnesium nickel alloys[J]. Mater Sci,1997,32(9):2267-2274
    [46]Liang G, Huot J,Boily S, et al. Hydrogen storage properties of nanocrystalline Mg119 TiO11 Nimade by mechanical alloying[J]. Alloys Comp,1999,282:286-290
    [47]Fang B, Zhou H. Honma,I. Ordered Porous Carbon with Tailored Pore Size for Electro-chemical Hydrogen Storage Application [J]. Phys. Chem.B,2006,110 (10),4875-4880
    [48]Han, Y. J, StuckyG D, Butler A. Mesoporous Silicate Sequestration and Release of Proteins [J]. Am Chem Soc,1999,121:9897-9898.
    [49]Zhao J W, Gao F, Fu Y L, et al. One step synthesis and assembly of copper sulfide nanoparticles to nanowires nanotubes and nanovesicles through an organic amine-assisted hydrothermal process [J].Chem Commun,2002,124:752-753.
    [50]Hartmann M. Ordered mesoporous materials for bioadsorption and biocatalysis[J].Chem Mater,2005,17:4577-4593
    [51]Vinu A, Murugesan V, Tangermann O. Highly sensitive and magnetically switchable biosensors using ordered mesoporous carbons[J]. Chem Mater,2004,16:3056-3065
    [52]Fan J, Shui W Q, Yang, P Y, et al. Mesoporous Silica Nanoreactors for Highly Efficient Proteolysis [J]. Chem Eur,2005,11:5391-5396
    [53]Yan X X, Yu C Z, Zhao D Y, et al. Highly Ordered Mesoporous Bioactive Glasses with Superior In Vitro Bone-Forming Bioactivities [J]. Angew Chem Int Ed,2004,43:5980-5984
    [54]刘贵阳.以非金属多孔矿物为模板所制备碳的表征及在EDLC中的应用研究[D].北京:清华大学,2005
    [55]Hu Z H, Srinvasan M, Ni Y M. Preparation of mesoporous high-surface-area activated carbon [J]. Adv. Mater.,2000,12:62-65
    [56]Spatz J P, Roescher A, Sheiko S, et al. Noble metal loaded block ionomers:micelle organization, adsorption of free chains and formation of thin films [J]. Adv Mater,1995, 7:731-735
    [57]Kuo S W, Lin C L, Chang F C. Phase behavior and hydrogen bonding in ternary polymer blends of phenolic resin/poly(ethylene oxide)/poly(ε-caprolactone)[J]. Macromolecules, 2002,35:278-285
    [58]Zhang F, Meng Y, Gu D, et al. An aqueous cooperative assembly route to mesoporous carbons with controlled structures and morphology [J]. Chem. Mater.,2006,18:5279-5288
    [59]宋怀河,李丽霞,陈晓红.有序介孔碳的模板合成进展[J].新型碳材料,2006,21(4):374-383
    [60]LuAH, LI W C, Wolfgang S, et al. Template synthesis of large pore ordered mesoporous carbon [J]. Micropor Mesopor Mater,2005,80:117-128
    [61]黄发荣,焦杨声,等.酚醛树脂及其应用技术[M].北京:化学工业出版社,2003
    [62]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279:548-552
    [63]Ohkubo T, Miyawaki J, Kaneko K, et al. Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane-experiment and GCMC simulation [J], Phys, Chem. B,2002,106:6523-6528
    [64]Viveka A, Flodstrom K. Influence of the block length of triblock copolymers on the formation of mesoporous silica[J]. Microporous and Mesoporous Materials,2003, 59:167-176.
    [65]Pius K, Andrew F, Viveka A. Triblock copolymers as templates in mesoporous silica formation:structural dependence on polymer chain length and synthesis temperature[J]. Langmuir 2001,17:5398-5402
    [66]Liu C, Li L, Song H. et al. Facile synthesis of orderod mesoporous carbons from F108/resorcinol-formaldehyde composites obtaitbd in basic media [J]. Chem. Commun.,2007, (7):757-759
    [67]Huang Y, Cai H, Yu T, et al. Fomation of mesoporous carbon with a face-centered-cubic Fd3m structure and bimodal architectural pores from the reverse amphiphilic triblock copolymer PPO-PEO-PPO[J]. Angew. Chem. lnt. Ed.,2007,46(7):1089-1093
    [68]Kruk M, Jaroniec. Gas adsorption characterization of ordered organic-Inorganic nanocomposite materials. [J]. Chem Mater,2001,13:3169.-3172
    [69]Tattershall C E, Jerome N P, Budd P M. Oxyethylene/oxybutylene block copolymers as structure-directing agents in the preparation of mesoporous silica [J]. Mater Chem,2001,11: 2979-2984
    [70]Kim S. S, Zhang W Z, Pinnavaia T J. Ultrastable mesostructured silica vesicles [J]. Science 1998,282:1302-1305
    [71]Budd P M, Nace V M J. Preparation of mesoporous silica with poly(oxyethylene)/(oxybutylene)/poly(oxyethylene) triblock copolymers as templates [J]. Mater Chem.1998,8:1839-1842
    [72]Liu T B, Zhou Z K, Wu C H. Self-Assembly of poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene)triblock copolymer in aqueous solution [J]. Phys Chem B,1997,101(43):8808-8815
    [73]Conway B E. Electrochemical supercapacitors:scientific fundamentals and technological applications [M]. New York:Kluwer Academic/Plenum,1999
    [74]Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors [J]. Carbon,2001,39:937-950
    [75]左晓希,李伟善.超级电容器用活性碳电极的制备及电化学性能研究[J].华南师范大学学报,2005,1:77-81
    [76]王晓峰,王大志,梁吉,等.碳基电化学双层电容器的研制[J].电源技术,2002,26:225-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700