用户名: 密码: 验证码:
基于臭氧氧化的印染废水生化出水深度处理组合工艺及有机物去除行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题以某印染废水生化出水为研究对象,依据有机物在不同处理过程中的去除、转化行为,构建了多个基于臭氧氧化(03)的深度处理组合工艺,使处理水水质满足印染行业生产用水要求。
     首先,在引入ADMI值(美国染料制造商协会单位)表征水样色度的同时,使用XAD树脂分离、超滤膜(表观)分子量分级和光谱分析技术详细描述了生化出水中有机物(EfOM)的组成和特性。EfOM主要以溶解态的形式(DOM)存在,富含类色氨酸和类腐殖质等化合物。其中,疏水性与亲水性有机物DOC的比值为1.5-2.0:1,水样在254nm处的紫外吸光度(UV254)和ADMI值大部分来自于表观分子量(AMW)在10k Da以上的疏水性物质。
     其次,考察了臭氧投加量、水温条件和初始pH等因素对臭氧氧化处理印染废水生化出水的影响,并对EfOM可生化性和可吸附性随比臭氧消耗量发生规律性变化的原因作出了解释。臭氧氧化对各水质指标的去除率遵循:ADMI值>UV254>COD>DOC,根据溶解臭氧暴露量的变化可以确定有机物去除速率的临界时间。由热力学分析可知,03的矿化作用比去除UV254和ADMI值更容易受到水温变化的影响。在水样的原始pH(约8.0)条件下,臭氧氧化的处理效果良好。随着比臭氧消耗量的增大,EfOM的可生化性显著提高,亲水性物质成为溶解性可生物降解有机碳(BDOC)的主要成分。臭氧氧化一方面通过降低有机物的平均分子量,改善了部分DOC的可吸附性,另一方面又会因导致有机物亲水性的增强,使得难吸附DOC的比例不断上升。在理想状态下,预计臭氧氧化-生物活性炭法对生化出水DOC、UV254和ADMI值的去除率可以分别达到83.4%、95.9%和99.6%。
     再次,通过分析臭氧预氧化混凝对EfOM的去除效果可知,将臭氧投加量控制在0.6mg O3·mg-1COD,可以在有效降低生化出水色度、UV254和荧光峰强度的同时,限制BDOC的生成,并减小预氧化对后续混凝的不利影响。向臭氧反应器内投加一定量颗粒活性炭(GAC/O3)能显著提高预氧化阶段对中小分子DOM的处理效果,并有利于增强铝盐混凝对疏水性、大分子有机物的去除能力。经过参数优化,梯度混凝-中间GAC/O3氧化新工艺充分利用了不同处理方法的优势和互利关系,实现了对印染废水生化出水的高效净化。生化出水经聚合氯化铝(PACl)预混凝处理(pH8.0)后,pH变化很小,但疏水性有机物的百分比却大幅降低。这有利于GAC/O3体系发挥催化氧化作用,其处理水水质能在较长时间的连续运行中保持稳定。此外,二次混凝(pH5.5)对AMW在1-10k Da的亲水性有机物具有良好的去除效果。当预混凝和二次混凝中PACl投加量均为25mg Al·L-1,GAC/O3氧化中使用3.1mg O3·mg-1COD和10g GAC·L-1时,组合工艺对生化出水浊度、COD、DOC、UV254和ADMI值的去除率分别达到了95.8%、88.1%、68.7%、90.5%和97.5%,每立方米废水的处理成本约为3.20元,中间氧化过程的费用占到了80%。
     在去除了水中大部分EfOM的前提下,使用HD-8型强酸阳树脂和D315型弱碱阴树脂串联技术进行脱盐处理。当交换流量为每小时4倍床层数(4BV·h-1)时,单次处理水量可达40-46BV,脱盐水水质(TDS<35mg·L-1,电导率<50μS·cm-1)远优于纺织染整工业回用水水质标准(FZ/T01107-2011)的要求。离子交换树脂经酸碱溶液再生后可以重复使用。
In this study, several hybrid processes based on ozonation (O3) were designed for the reclamation of biotreated textile wastewater, according to removal and transformation behavior of effluent organic matter (EfOM) in the different steps. The quality of treated water was considered to satisfy the requirement of dyeing and printing in textile industry for process use.
     Firstly, with the color being represented by ADMI value (American Dye Manufactures Institute), EfOM characterization was conducted by XAD resin absorbents and Ultra filtration cut-off fractionation, and spectroscopy technologies. Results showed that dissolved organic matter (DOM) predominated in EfOM, being rich in tryptophan-like and humic-like compounds. The percent ratio between hydrophobic and hydrophilic fractions was around1.5~2.0:1in terms of DOC, while both UV254and ADMI value of raw sample were mostly contributed by hydrophobic one of apparent molecular weight (AMW) higher than10k Da.
     Secondly, effects of ozone dose, reaction temperature and intial pH on the ozonation efficacy of biotreated textile wastewater were evaluated, and the regular changes of EfOM biodegradability and adsorbability on activated carbon with the specific ozone consumption were also elucidated. The removal efficiencies of water quality parameters in ozonation were in the following order:ADMI value>UV254> COD> DOC. The critical time of EfOM removal rate could be indentified, based on ozone exposure in the aqueous phase. It was known from thermodynamics analysis that, the minerlization efficiency in ozonation was more sensitive to the change of reaction temperature than the removal of UV254and ADMI value. At original pH (around8.0), the ozonation efficacy was proved to be acceptable. In addition, the increase of specific ozone consumption improved EfOM biodegradability significantly, with hydrophilic organic matter as the predominate fraction of biodegradable DOC (BDOC) produced by O3. On the one hand, ozonation improved the adsorbability of some compounds by causing the decrease of average apparent molecular weight of EfOM, and on the other, resulted in the acculumation of non-adsorbable fraction by increasing its hydrophilicity. Idealy, the estimated removal efficiencies of DOC, UV254and ADMI value in biotreated textile wastewater by using ozonation followed by biological activated carbon could reach83.4%,95.9%and99.6%, respectively.
     The performance of coagulation with pre-ozonation made it obvious that, the ozone dose of0.6mg03·mg-1COD employed in pre-oxidation step, not only helped reducing samples UV254, ADMI value and fluorescence intensity, but also limited the formation of BDOC and the adverse effect on subsequent coagulation. Ozonatin in the presence of granular activated carbon (GAC/O3) presented a higher pre-oxidation efficacy, and improved the treatability of hydrophobic and high molecular weight fractions by aluminium coagulation. After the optimization design, a novel hybrid process including stepwise coagulation and intermediate GAC/O3oxidation was employed in the reclamation of biotreated textile wastewater. It made full use of each technology advantages and their beneficial interactions. Pre-coagulation using polyalumium chloride (PACl) at pH8.0did not result in an obvious decrease of samples pH, but the effective removal of hydrophobic compounds, which was in favor of maintaining a strong catalytic ozonation in GAC/O3, even under continuous operation lasting several hours, and enhanced the removal of hydrophilic fractions of AMW in1~10k Da via post-coagulation at pH5.5. When the PAC1dose of25mg·L-1as A1was used in both pre-and post-coagulation, and3.1mg03·mg-1COD and10g GAC·L-1were applied in GAC/O3, the highest removal efficiencies of water quality parameters like turbidity, colour, COD, DOC and UV254were95.8%,97.5%,88.1%,68.7%and90.5%, respectively. Under this condition, its operating cost was3.20yuan per ton wastewater, in which the percent of intermediate oxidation step was around80%.
     Following the effective removal of EfOM, the desalination of reclaimed water was conducted by the ion exchange resin train, including strong acid type HD-8cation one and weak base type D315anion one. With the exchange flow rate of4times resin bed volume (BV) per hour, the water yield in one turn was around40to46BV. Its quality, such as total dissolved solid (TDS) less than35mg·L-1and conductivity less than50μS·cm-1etc, was far superior to the requirements of reuse water quality standard in textile industry (FZ/T01107-2011). Additionally, ion exchange resin could be reused, after being regenerated sufficiently by HCl or NaOH solution.
引文
[1]马春燕,陈季华,徐淑红,等.纺织染整工业回用水水质标准解读[R].常州:蓝天中国印染行业节能环保年会,2009:40-42.
    [2]O'neil C, Hawkes F R, Hawkes D L. Colour in textile effluents - sources, measurement, discharge consents and simulation:A review[J]. Journal of Chemical Technology and Biotechnology,1999,74(11):1009-1018.
    [3]Bisschops I, Spanjers H. Literature review on textile wastewater characterisation[J]. Environmental Technology,2003,24(11):1399-1411.
    [4]陆继来,任洪强,夏明芳,等.新排放标准的印染废水深度处理技术进展[J].工业水处理,2009,29(7):7-11.
    [5]Shon H K, Vigneswaran S. Effluent organic matter (EfOM) in wastewater:constituents, effects and treatment[J]. Critical Reviews in Environmental Science & Technology,2006, 36(4):327-374.
    [6]Chalor J, Gary A. Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM)[J]. Water Research,2007,41(12):2787-2793.
    [7]Baker D J, Stuckey D C. A review of soluble microbial products (SMP) in wastewater treatment systems[J]. Water Research,1999,33(14):3063-3082.
    [8]Levine A D, Tchobanoglous G, Asano T. Characterization of the size distribution of contaminants in wastewater:Treatment and reuse implications [J]. Joural of the Water Pollution Control Federation,1985,57(7):805-816.
    [9]Leenheer J A, Croue J P. Characterizing aquatic dissolved organic matter[J]. Environmental Science & Technology,2003,37(1):18A-26A.
    [10]Volk C, Bell K, Ibrahim E, et al. Impact of enhanced and optimized coagulation on removal of organic mater and its biodegradable fraction in drinking water[J]. Water Research, 2000,34(12):3247-3257.
    [11]Colin C, Ocelie K. Assimilable organic carbon and biodegradable dissolved organic carbon in Norwegian raw and drinking waters[J]. Water Research,2000,34(10):2629-2642.
    [12]王立英,吴丰昌,张润宇.应用XAD系列树脂分离和富集天然水体中溶解有机质的研究进展[J].地球与环境,2006,34(1):90-96.
    [13]Swietlik J, Dabrowska A, Raczyk-Stanislawiak U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research,2004,38(3):547-558.
    [14]Haberkamp J, Ruhl A S, Ernst M, et al. Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration[J]. Water Research,2007,41(17):3794-3802.
    [15]Chen J, Gu B H, Leboeuf E J, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J]. Chemosphere,2002,48(1):59-68.
    [16]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报, 2002,24(2):61-65.
    [17]Edzwald J K, Toblason J E. Enhanced Coagulation:US requirements and a broader view[J]. Water Science and Technology,1999,40(9):63-70.
    [18]钟海庆.红外光谱法入门[M].北京:化学工业出版社,1984:13-21.
    [19]Gur-Reznik S, Katz I, Dosoretz C G, Removal of dissolved organic matter by granular activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents[J]. Water Research,2008,42(6-7):1595-1605.
    [20]Chon K K, Seung J, Moon J, et al. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation:an autopsy study of a pilot plant[J]. Water Research,2012,46(6):1803-1816.
    [21]Chen J, Leboef E J, Dai S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere,2003,50(5):639-647.
    [22]宋晓娜,于涛,张远,等.利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J].环境科学学报,2010,30(11):2321-2331.
    [23]Henderson R K, Baker A, Murphy K R, et al. Fluorescence as a potential monitoring tool for recycled water systems:a review[J]. Water Research,2009,43(4):863-881.
    [24]薛爽,梁雷,赵庆良,等.二级处理出水中溶解性有机物的荧光特性[J].环境科学与技术,2010,33(7):177-182.
    [25]Baker A, Curry M. Fluorescence of leachates from three cotrasting landfills[J]. Water Research,2004,38(10):2605-2613.
    [26]Liu T, Chen Z L, Yu W Z, et al. Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy[J]. Water Research,2011,45(5): 2111-2121.
    [27]Zhang T, Lu J F, Ma J, et al. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere,2008,71(5):911-921.
    [28]Swietlik J, Sikorska E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone[J]. Water Research,2004, 38(17):3791-3799.
    [29]Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology,2003,37(24):5701-5710.
    [30]Hoge F E, Vodacek A, Blough N V. Inherent optical properties of the ocean:retrieval of the adsorption coefficient of chromophoric dissolved organic matter from fluorescence measurements[J]. Limnology and Oceanography,1993,38(7):1394-1402.
    [31]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002:89-91,100,266-268.
    [32]Hao O J, Kim H, Chiang P C. Decolorization of waste water [J]. Critical Reviews in Environmental Science & Technology,2000,30(4):449-505.
    [33]Shyh F K, Shiann P K. Correlation among indicators in regulating colored industrial wastewaters[J]. Chemosphere,1999,39(12):1983-1996.
    [34]Kao C M, Chou M S, Fang W L, et al. Regulating colored textile wastewater by 3/31 wavelength ADMI methods in Taiwan[J]. Chemosphere,2001,44(5):1055-1063.
    [35]APHA-AWWA-WEF. Standard methods for the examination of water and wastewater, 21st Ed.[M], Baltmore:Port City Press,2005:1101-1108.
    [36]Ruey F Y, Ho W C, Wen P C, et al. Measurements wastewater true color by 4/6 wavelength methods and artificial neural network[J]. Environmental Monitoring and Assessment,2006,118(1-3):195-209.
    [37]Wong P Y, Yuen P K. Decolorization and biodegradation of Methyl Red by Klebsiella Pneumoniae Rs-13[J]. Water Research,1996,30(7):1736-1744.
    [38]Zissi U, Lyberatos G. Azo-dye biodegradation under anoxic conditions[J]. Water Science and Technology,1996,34(5/6):495-500.
    [39]Razo-Flores E, Luijten M, Donlon B, et al. Biodegradation of selected azo dyes under methanogenic conditions [J]. Water Science and Technology,1997,36(6/7):65-72.
    [40]Pierce J. Colour in textile effluents - the origins of the problem[J]. Joural of the Society of Dyers and Colourists,1994,110(4):131-133.
    [41]Porter J J, Snider E H. Long term biodegradability of textile chemicals[J]. Journal of water pollution control Federation,1976,48(9):2198-2210.
    [42]邱仁荣,赵颖,姚曙光,印染废水深度处理及回用技术的研究现状[J].工业水处理,2007,27(9):11-15.
    [43]郑冀鲁,范娟,阮复昌.印染废水脱色技术与理论述评[J].环境污染治理技术与设备,2000,1(5):29-35.
    [44]Matsui M, Kobayashi K, Shibata K, et al. Ozonation of dyes Ⅱ-ozone treatment of 4-Phenylazo-1-Naphthol[J]. Joural of the Society of Dyers and Colourists,1981,97(5): 210-213.
    [45]Naumczyk J, Szpyrkowicz L, Zilio-Grandi F. Electrochemical treatment of textile wastewater[J]. Water Science and Technology,1996,34(11):17-24.
    [46]Davis R J, Gainer J L, O'Neal G, et al. Photocatalytic decolorization of wastewater dyes[J]. Water Environmental Research,1994,66(1):50-53.
    [47]Umesh K K, Purnendu B, Padma S V. Impact of ozonation on subsequent treatment of azo dye solutions[J]. Journal of Chemical Technology and Biotechnology,2007,82(11): 1012-1022.
    [48]Lee B H, Song W C, Manna B, et al. Dissolved ozone flotation (DOF) - a promising technology in municipal wastewater treatment[J]. Desalination,2008,225(1-3):260-273.
    [49]Chang E E, Hsing H J, Chiang P C, et al. The chemical and biological characteristics of coke-oven wastewater by ozonation[J]. Journal of Hazardous Materials,2008,156(1-3): 560-567.
    [50]Wert E C, Rosario-Ortiz F L, Snyder S A. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater[J]. Water Research,2009,43(4):1005-1014.
    [51]Kasprzyk-Hordern B, Ziolek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment[J]. Applied Catalysis B-Environmental,2003,46(4):639-669.
    [52]徐新华,赵伟荣.水与废水的臭氧处理[M].北京:化学工业出版社环境科学与工程出版中心,2003:64-66,80-83.
    [53]Tadao M, Hiroshi T, Harumi Y, et al. Removal characteristics of organic pollutants in sewage treatment by a pre-coagulation, ozonation and ozone/hydrogen peroxide process[J]. Ozone:Science & engineering,2008,30(4):263-274.
    [54]Dulov A, Dulova N, Trapido M. Combined physicochemical treatment of textile and mixed industrial wastewater[J]. Ozone:Science & engineering,2011,33(4):285-293.
    [55]Santos M A, Bocanegra F J L, Martin A M, et al. Ozonation of vinasse in acid and alkaline media[J]. Journal of Chemical Technology and Biotechnology,2003,78(11): 1121-1127.
    [56]Lucas M S, Peres J A, Lan B Y, et al. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor [J]. Water Research,2009,43(6):1523-1532.
    [57]Lee Y H, Gunten U V. Oxidative transformation of micropollutants during municipal wastewater treatment:comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI and ozone) and non-selective oxidants (hydroxyl radical)[J]. Water Research,2010, 44(2):555-566.
    [58]Rosal R, Rodriguez A, Perdigon-Melon J A, et al. Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater [J]. Water Research,2008,42(14):3719-3728.
    [59]Wert E C, Rosario-Ortiz F L, Drury D D, et al. Formation of oxidation byproducts from ozonation of wastewater [J]. Water Research,2007,41(7):1481-1490.
    [60]Hasegawa E, Yamada H, Tsuno H. Effective ozonation of secondary effluents with initial ozone demand[J]. Ozone:Science & Engineering,2008,30(5):376-386.
    [61]Rivas F J, Beltran F, Gimeno O, et al. Stabilized leachates:ozone-activated carbon treatment and kinetics[J]. Water Research,2003,37(20):4823-4834.
    [62]Lan B Y, Nigmatullin R, Puma G L. Ozonation kinetics of cork-processing water in a bubble column reactor [J]. Water Research,2008,42(10-11):2473-2482.
    [63]王晟,王晓昌,张玉先,等.污水厂二级出水的臭氧反应动力学研究[J].中国给水排水,2003,19(7):56-57.
    [64]王磊,王旭东,段文松,等.臭氧氧化对城市二级处理水中溶解性有机物特性的影响及反应动力学分析[J].环境工程,2005,23(4):33-35.
    [65]Takahashi N, Kumagai T, Shimizu M, et al. Removal of dissolved organic carbon and color from dyeing wastewater by pre-ozonation and subsequent biological treatment using test-scale plant[J]. Ozone:Science & Engineering,2007,29(2):139-145.
    [66]Xu B, Gao N Y, Sun X F, et al. Characteristics of organic material in Huangpu river and treatability with the O3-BAC process[J]. Separation and Purification Technology,2007,57(2): 348-355.
    [67]Trequer R, Tatin R, Couvert A, et al. Ozonation effect on natural organic matter adsorption and biodegradation-application to a membrane bioreactor Containing activated carbon for drinking water production[J]. Water Research,2010,44(3):781-788.
    [68]Lin S H, Lai C L. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds[J]. Water Research,2000,34(3):763-772.
    [69]Rivera-Utrilla J, Mendez-Diaz J, Sanchez-Polo M, et al. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon:comparison with systems based on O3 and O3/H2O2[J]. Water Research, 2006,40(8):1717-1725.
    [70]Faria P C C, Orfao J J M, Pereira M F R. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon[J], Water Research,2005,39(8):1461-1470.
    [71]Faria P C C, Orfao J J M, Pereira M F R. Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents[J]. Applied Catalysis B-Environmental, 2009,88(3-4):341-350.
    [72]Beltran F J, Pocostales J P, Alvarez P M, et al. Mechanism and kinetic considerations of TOC removal from the powdered activated carbon ozonation of Diclofenac aqueous solutions[J]. Journal of Hazardous Materials,2009,169(1-3):532-538.
    [73]Beltran F J, Pocostales J P, Alvarez P M, et al. Diclofenac removal from water with ozone and activated carbon[J]. Journal of Hazardous Materials,2009,163(2-3):768-776.
    [74]王琳,王宝贞.饮用水深度处理技术[M].北京:化学工业出版社,2002:165-170,196-197.
    [75]Faria P C C, Orfao J J M, Pereira M F R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries[J]. Water Research,2004,38(8): 2043-2052.
    [76]Rivera-Utrilla J, Sanchez-Polo M. Ozonation of 1,3,6-Naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase[J]. Applied Catalysis B-Environmental,2002, 39(4):319-329.
    [77]Alvarez P M, Garcia-Araya J F, Beltran F J. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach[J]. Carbon,2006(44):3102-3112.
    [78]马军,张涛,陈忠林,等.水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨[J].环境科学,2005,26(2):7882.
    [79]Li L S, Zhu W P, Zhang P Y, et al. Comparison of AC/O3-BAC and O3-BAC processes for removing organic pollutants in secondary effluent[J]. Chemosphere,2006,62(9): 1514-1522.
    [80]马军,韩帮军,张涛,等.臭氧多相催化氧化处理微污染水中试研究[J].环境科学学报,2006,26(9):1412 1419.
    [81]Dehouli H, Chedeville O, Cagnon B, et al. Influences of pH, temperature and activated carbon properties on the interaction ozone/activated carbon for a wastewater treatment process[J]. Desalination,2010,254(1-3):12-16.
    [82]Ko C H, Hsieh P H, Chang M W, et al. Kinetics of pulp mill effluent treatment by ozone-based processes[J]. Journal of Hazardous Materials,2009,168(2-3):875-881.
    [83]Gu L, Zhang X, Lei L. Degradation of aqueous p-Nitrophenol by ozonation integrated with activated carbon[J]. Industrial and Engineering Chemistry Research,2008,47(18): 6809-6815.
    [84]查人光,韩帮军,马军,等.臭氧多相催化氧化技术在水厂深度处理中的应用[J].中国给水排水,2007,23(17):1-5,10.
    [85]Qu X F, Zheng J T, Zhang Y Z. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor[J]. Journal of Colloid and Interface Science,2007, 309(2):429-434.
    [86]Yan M Q, Wang D S, W, Ni J R, et al. Mechanism of natural organic matter removal by polyaluminum chloride:Effect of coagulation particle size and hydrolysis kinetics[J]. Water Research,2008,42(13):3361-3370.
    [87]周玲玲,张永吉,孙丽华,等.铁盐和铝盐混凝对水中天然有机物的去除特性研究[J].环境科学,2008,29(5):1187-1191.
    [88]Matilainen A, Lindqvist N, Tuhkanen T. Comparison of the effiency of aluminium and ferric sulphate in the removal of natural organic matter during drinking water treatment process[J]. Enviromental technology,2005,26(8):867-876.
    [89]阮复昌,莫炳禄,徐国想,等.铝系净水剂混凝过程的理论分析与计算[J].化学反应工程与工艺,1997,13(4):413-418.
    [90]Chow C W K, Van Leeuwen J A, Fabris R, et al. Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon[J]. Desalination,2009,245(1-3):120-134.
    [91]Pei Y S, Yu J, Guo Z, et al. Pilot study on pre-ozonation enhanced drinking water treatment process[J]. Ozone:Science & engineering,2007,29:317-323.
    [92]Yan M Q, Wang D S, Shi B Y, et al. Transformations of particles, metal elements and natural organic matter in different water treatment processes [J]. Journal of Environmental Sciences-China,2007,19:271-277.
    [93]Orta de Velasquez M T, Campos-Reales-Pineda A E, Monje-Ramirez I, et al. Ozone application during coagulation of wastewater:Effect on dissolved organic matter[J]. Ozone: Science & engineering,2010,32(5):323-328.
    [94]Liu S, Wang Q H, Sun T C, et al. The effect of different types of micro-bubbles on the performance of the coagulation flotation process for coke wastewater [J]. Journal of Chemical Technology Biotechnology,2012,87(2):206-215.
    [95]Jasim S Y, Ndiongue S, Johnson B, et al. The effect of ozone on cold water coagulation[J]. Ozone:Science & engineering,2008,30(1):27-33.
    [96]Bose P, Reckhow D A. The effect of ozonation on natural organic matter removal by alum coagulation [J]. Water Research,2007,41(7):1516-1524.
    [97]Croue J P, Lefebvre E, Martin B, et al. Removal of dissolved hydrophobic and hydrophilic organic substances during coagulation/flocculation of surface waters[J]. Water Science and Technology,1993,27(11):143-152.
    [98]Sam S, Yukselen M A, Zorba M, et al. The effect of ozone on the reversibility of floc breakage:Suspensions with high humic acid content [J]. Ozone:Science & engineering,2010, 32(6):435-443.
    [99]许保玖.给水处理理论[M].北京:中国建筑工业出版社,2000:500-505,557-565.
    [100]崔玉川.水的除盐方法与工程应用[M].北京:化学工业出版社,2009:3-7,50-55.
    [101]胡萃,黄瑞敏,谢春生,等.印染废水回用中除盐技术的应用[J].印染助剂,2006,23(9):34-36.
    [102]徐竟成,朱清漪,李光明,等.印染废水微滤-反渗透工艺深度处理研究[J].印染,2008,34(5):24-27.
    [103]王薇,杜启云.纳滤技术用于垃圾渗滤液深度处理[J].水处理技术,2009,35(11):72-74.
    [104]Barredo-Damas S, Iborra-Clar M I, Bes-Pia A, et al. Study of preozonation influence on the physical-chemical treatment of textile wastewater[J]. Desalination,2005,182(1-3): 267-274.
    [105]Kim K Y, Kim H S, Kim J, et al. A hybrid microfiltration-granular activated carbon system for water purification and wastewater reclamation/reuse [J]. Desalination,2009, 243(1-3):132-144.
    [106]Shon H K, Vigneswaran S, Kim I S, et al. The effect of pretreatment to ultrafiltration of biologically treated sewage effluent:A detailed effluent organic matter (EfOM) characterization[J]. Water Research,2004,38(7):1933-1939.
    [107]陈建军,陈灵聪,谢正苗.混凝-纳滤预处理环氧树脂废水的研究[J].水处理技术,2008,34(5):63-66.
    [108]Walsh M E, Zhao N, Gora S L, et al. Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process[J]. Enviromental technology,2009, 30(9):927-938.
    [109]邓旭亮,荣丽丽,张春燕,等.膜滤浓缩液处理技术研究进展[J].工业水处理,2011,31(6):10-13.
    [110]Dialynas E, Mantzavinos D, Diamadopoulos E. Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater[J]. Water Research, 2008,42(18):4603-4608.
    [111]Lee L Y, Ng H Y, Ong S L, et al. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery[J]. Water Research,2009,43(16): 3948-3955.
    [112]Kim W H, Nishjima W, Shoto E, et al. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment[J]. Water Science and technology,1997, 35(8):21-28.
    [113]Khan E, King S, Babcock R W, et al. Factors Influencing biodegradable dissolved organic carbon measurement[J]. Journal of Environmental Engineering,1999,125(6): 514-521.
    [114]Vogel F, Harf J, Hug A, et al. The mean oxidation number of carbon (MOC) - a useful concept for describing oxidation processes[J]. Water Research,2000,34(10):2689-2702.
    [115]Rakness K, Gordon G, Langlais B, et al. Guideline for measurement of ozone concentration in the process gas from an ozone generator[J]. Ozone:Science & engineering, 1996,18(3):209-229.
    [116]Bader H, Hoigne J. Determination of ozone in water by the Indigo method[J]. Water Research,1981,15(4):449-456.
    [117]张全忠,吴潘,梁斌,等.液相中臭氧浓度的检测[J].工业水处理,2001,21(4):30-32.
    [118]王宏洋,管运涛,水野忠雄,等.臭氧氧化法深度处理印染废水二级出水[J].化工环保,2009,29(6):530-533.
    [119]Gong J L, Liu Y D, Sun X B. O3 and UV/O3 oxidation of organic constituents of biotreated municipal waste water [J]. Water Research,2008,42(4-5):1238-1244.
    [120]刘通,孙贤波,刘勇弟.活性炭吸附对生化出水中不同种类有机物的去除效果[J].环境化学,2009,28(3):369-372.
    [121]张蕾,孙贤波,许雯佳,等.03/H2O2法对生化出水中不同种类有机物的去除效果研究[J].环境污染与防治,2009,31(10):52-56.
    [122]Hu J Y, Ong S L, Shan J H, et al. Treatability of organic fractions derived from secondary effluent by reverse osmosis membrane[J]. Water Research,2003,37(19): 4801-4809.
    [123]许文佳,孙贤波,张蕾,等.黄浦江原水中各类有机物在铝盐混凝过程中的去除效果[J].环境化学,2009,10(6):804-808.
    [124]Yan M Q, Wang D S, Shi B Y, et al. Transformation of particles, metal elements and natural organic matter in different water treatment processes [J]. Journal of Environmental Sciences-China,2007,19(3):271-277.
    [125]Beltran F J著,周云瑞译.水和废水的臭氧反应动力学[M].北京:中国建筑工业出版社,2007:54-61,114-116.
    [126]Sui M H, Sheng L, Ma J, et al. Assistance of magnesium cations on degradation of refractory organic pollutant by ozone:Nitrobenzene as model compound[J]. Ozone:Science & Engineering,2010,32(2):113-121.
    [127]邓景发,范康年.物理化学[M].北京:高等教育出版社,1993:596-600.
    [128]Mortazavi S B, Asgari G, Hashemian S J, et al. Degradation of humic acids through hetergeneous catalytic ozonation with bone charcoal[J]. Reaction Kinetics Mechanisms and Catalysis,2010,100(2):471-485.
    [129]Latifoglu A, Gurol M D. The effect of humic acids on Nitrobenzene oxidation by ozonation and O3/UV Processes[J]. Water Research,2003,37(8):1879-1889.
    [130]Chu C, Ma C M. Quantitative prediction of direct and indirect dye ozonation kinetics [J]. Water Research,2000,34(12):3153-3160.
    [131]Chaturapruek A, Visvanathan C, Ahn K H. Ozonation of membrane bioreactor effluent for landfill leachate treatment[J]. Environmental Technology,2005,26(1):65-73.
    [132]Yan M Q, Wang D S, Shi B Y, et al. Effect of pre-ozonation on optimized coagulation of a typical north China source water[J]. Chemosphere,2007,69(11):1695-1702.
    [133]刘文君,吴红伟,王占生,等.饮用水中BDOC测定动力学研究[J].环境科学,1999,20(4):20-23.
    [134]Carlson K, Amy Gary. The formation of filter-removable biodegradable organic matter during ozonation [J]. Ozone:Science & engineering,1997,19(2):179-199.
    [135]Yavich A A, Lee K H, Chen K C, et al. Evaluation of biodegradability of NOM after ozonation[J]. Water Research,2004,38(12):2839-2846.
    [136]Yapsakli K, Cecen F. Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters[J]. Process Biochemistry,2010,45(3): 355-362.
    [137]Ratpukdi T, Siripattanakul S, Khan E. Mineralization and biodegradability enhancement of natural organic matter by ozone-VUV in comparison with ozone, VUV, ozone-UV, and UV: Effects of pH and ozone dose[J]. Water Research,2010,44(11):3531-3543.
    [138]Cheng W, Dastgheib S A, Karanfil T. Adsorption of dissolved natural organic matter by modified activated carbons[J]. Water Research,2005,39(11):2281-2290.
    [139]Chiang P C, Chang E E, Liang C H. NOM characteristics and treatabilities of ozonation processes[J]. Chemosphere,2002,46:929-936.
    [140]Smith E H. Bench-scale tests and modeling of adsporption of natural organic matter by activated carbon[J]. Water Research,1994,28(8):1632-1702.
    [141]Metcalf & Eddy Inc著,秦裕珩 译.废水工程:处理及回用[M].北京:化学工业出版社,2004:246-259.
    [142]Ratnaweera H, Gjessing E, Oug E. Influence of physical-chemical characteristics of natural organic matter (NOM) on coagulation properties:An analysis of eight Norwegian water sources[J]. Water Science and Technology,1999,40(4-5):89-95.
    [143]Singer P C, Arlotta C, Snider-Sajdak N, et al. Effectiveness of pre-and intermediate ozonation on the enhanced coagulation of disinfection by-product precursors in drinking water[J]. Ozone:Science & engineering,2003,25(6):453-471.
    [144]Rivera-Utrilla J, Sanchez-Polo M, Mendez-Diaz J D, et al. Behavior of two different constituents of natural organic matter in the removal of Sodium Dodecylbenzenesulfonate by O3 and 03-based advanced oxidation processes[J]. Journal of Colloid and Interface Science, 2008,325(2):432-439.
    [145]Chaichanawong J, Yamamoto T, Ohmori T. Enhancement effect of carbon adsorbent on oaonation of aqueous phenol [J]. Journal of Hazardous Materials,2010,175(1-3):673-679.
    [146]Furlan F R, de Melo da Silva L G, Morgado A F, et al. Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon[J]. Resources Conservation & Recycling,2010,54(5):283-290.
    [147]Alvarez-Uriarte J I, Iriarte-Velasco U, Chimeno-Alanis N. et al. The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter [J]. Journal of Hazardous Materials,2010,181(1-3):426-431.
    [148]Fairey J L, Speitel G E, Katz L E. Impact of natural organic matter on Monochloramine reduction by granular activated carbon:The role of porosity and electrostatic surface properties[J]. Environmental Science & Technology,2006,40(13):4268-4273.
    [149]Ma J, Sui M, Zhang T, et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of Nitrobenzene [J]. Water Research,2005,39(5):779-786.
    [150]De Oliveira T F, Chedeville O, Cagnon B, et al. Degradation kinetics of DEP in water by ozone/activated carbon process:Influence of pH[J]. Desalination,2011,269(1-3):271-275.
    [151]Liu H L, Cheng F Q, Wang D S. Interaction of ozone and organic matter in coagulation with inorganic polymer flocculant-PACl:Role of organic components[J]. Desalination,2009, 249(2):596-601.
    [152]Wert E C, Gonzales S, Dong M M, et al. Evaluation of enhanced coagulation pretreatment to improve ozone oxidation efficiency in wastewater[J]. Water Research,2011, 45(16):5191-5199.
    [153]Davis J A, Gloor R. Adsorption of dissolved organics in lake water by aluminium oxide: Effect of molecular weight[J]. Environmental Science & Technology,1981,15(6):1223-1229.
    [154]Brian B, Gudrun A B, David D, et al. Experimental evaluation of cationic matter in conventional treatment with alum[J]. Water Science and Technology,1999,40(2):71-79.
    [155]Olivia Salome G P Soares, Patricia C C Faria, Jose J M Orfao, et al. Ozonation of textile effluents and dye solutions in the presence of activated carbon under continuous operation[J]. Separation Science and Technology,2007,42(7):1477-1492.
    [156]Seval Kutlu A S, Gokhan E U, Askin B, et al. Treatability studies with chemical precipitation and ion Exchange for an organized industrial distrist (OID) effluent in Bursa, Turkey[J]. Desalination,2007,217(1-3):301-312.
    [157]Goekhan E U, Seval K A S, Askin B. Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange:A case study [J]. Resources Conservation & Recycling,2007,52(2):425-440.
    [158]Lin S H; Chan H Y, Leu H G. Treatment of wastewater effluent from an industrial park for agricultural irrigation[J]. Desalination,2000,128(3):257-267.
    [159]Gonder B Z, Kaya Y, Vergili I, et al. Capacity loss in an organically fouled anion exchanger[J]. Desalination,2006,189(1-3):303-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700