用户名: 密码: 验证码:
基于磷和钾回收的黄水资源化处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于未来可持续型城市排水系统的构建需求,本论文以黄水中磷和钾资源的回收为目标,研究了亚硝化/厌氧氨氧化和磷酸钾镁反应结晶的资源化处理工艺对黄水的处理效果,重点考察了磷酸钾镁的反应结晶特征,初步评估了黄水资源化处理系统的影响和价值。
     考察了亚硝化/厌氧氨氧化SBR对黄水的脱氮效果。发现该工艺可以有效进行黄水脱氮,总氮和氨氮去除率高于90%,但是,黄水中较高的有机物浓度存在对SBR稳定运行的潜在威胁。成功开发了一种黄水的预处理方法用于消除有机物对脱氮工艺的潜在影响。在预留上部空间的密闭进水桶中接种挂膜后并定期复氧,可以有效地实现有机物的好氧降解和防止氨氮挥发损失。黄水预处理能明显缩短了SBR运行的周期时间,但周期时间的缩短不会显著影响脱氮效果。
     考察了磷酸钾镁反应结晶法的影响因素和热力学特征。溶液pH值和Mg:K:P摩尔比是磷和钾回收的决定性因素。黄水中存在磷酸钾镁、磷酸铵镁和磷酸钠镁等鸟粪石系晶体的共结晶,结晶趋势强弱为:磷酸铵镁>磷酸钾镁>磷酸钠镁,这对于磷和钾回收具有重要影响。测算得到了MgKPO_4·6H_2O和MgNaPO_4·7H_2O的溶度积常数和反应标准摩尔焓变,分别为4.9×10~(-13)和2.2×10~(-12)、23.2和22.6kJ/mol。基于测定的热力学常数,利用PHREEQC软件建模模拟了黄水中的反应结晶,模拟结果得到了试验结果的良好验证。
     考察了使用折流挡板式反应结晶器对黄水中磷和钾的回收效果。搅拌转速和水力停留时间是影响反应结晶器中结晶效率和晶体沉降性的关键性因素。适宜的搅拌转速为100~200r/min,水力停留时间为7.5~12.5h。反应结晶器可以对经过脱氮处理的真实黄水实现较好的磷和钾回收效果,磷和钾的回收率分别约为78%和90%。
     基于上述研究结果和BioWIN软件,模拟评估了本论文提出的黄水资源化处理工艺,结果表明,黄水资源化能有效地降低城市生活污水处理系统的建设成本和运行成本,减少向污水环境中的氮磷排放负荷;同时,黄水中资源回收对国产磷肥产量的贡献有限,但是却能够较大的提升国产钾肥的产量,提高我国钾肥的自给率,缓解钾肥进口的压力。
Source separation and treatment of yellow water has been considered to bepart of sustainable sewerage system. Aiming to recover phosphorus andpotassium, this study investigated combined processes of nitrogen removal bynitritation/ANAMMOX (anaerobic ammonium oxidation) and nutrients recoveryby crystallization of magnesium potassium phosphate (MPP).
     It was found that about90%removal of total nitrogen and ammonium wasachieved through nitritation/ANAMMOX using a sequence batch reactor (SBR).To avoid the negative effect of urine organic matter on the SBR, a pretreatmentprocess was developed to remove organic matter prior to the SBR. Thepretreatment of yellow water decreased cycle time of the reactor operatingwithout affecting the nitrogen removal efficiency.
     Crystallization and thermodynamic characters of MPP were then studied.Solution pH and Mg:K:P molar ratio are the key factors influencing the recoveryof phosphorus and potassium. The co-crystallization of magnesium ammoniumphosphate, MPP and magnesium sodium phosphate (MSP) was confirmed viathe analysis on an X-ray diffractometer. The solubility products and standardmolar enthalpy change of reaction of MPP and MSP were calculated to be4.9×10~(-13)and2.2×10~(-12),23.23and22.65kJ/mol, respectively. Based on thethermodynamics, the crystallization in yellow water was modeled and thesimulation was well validated through batch experiments.
     MPP crystallization was then investigated in a draft tube and baffle reactor(DTBR). Mixing speed and hydraulic retention time are important operatingfactors that influence crystallization efficiency and crystal settlement. Furtherapplications of the DTBR using real urine showed that about90%K and78%Pwere recycled to multi-nutrient products, respectively.
     The effect of separation treatment of yellow water on existed wastewatertreatment system was studied via modeling using BioWIN. It was found that thetreatment of yellow water reduced the cost for constructing and operating anexistent wastewater treatment plant, and also decreased the emission of nitrogenand phosphorus to aquatic environment. Nutrients recovered from yellow water had a small contribution to phosphorus fertilizer production, but was valuable inimproving self-supplying of potassium fertilizer for China.
引文
Abbona F, Madsen H, Boistelle R. The final phases of calcium and magnesium phosphatesprecipitated from solutions of high to medium concentration. Journal of Crystal Growth,1988,89(4):592-602.
    Adnan A, Mavinic D S, Koch F A. Pilot-scale study of phosphorus recovery through struvitecrystallization-examining the process feasibility. Journal of Environmental Engineering andScience,2003,2(5):315-324.
    Altinbas M, Yangin C, Ozturk I. Struvite precipitation from anaerobically treated municipal andlandfill wastewaters. Water Science and Technology,2002,46(9):271-278.
    Ban Z, Dave G. Laboratory studies on recovery of N and P from human urine through struvitecrystallisation and zeolite adsorption. Environmental Technology,2004,25(1):111-121.
    Banks E, Chianelli R, Korenstein R. Crystal chemistry of struvite analogs of type MgMPO4.6H2O(M+=K+, Rb+, Cs+, Ti+, NH4+). Inorganic Chemistry,1975,14(7):1634-1639.
    Basakcilardan-Kabakci S, Ipekoglu A N, Talini I. Recovery of ammonia from human urine bystripping and absorption. Environmental Engineering Science,2007,24(5):615-624.
    Battistoni P, Boccadoro R, Fatone F, et al. Auto-nucleation and crystal growth of struvite in ademonstrative fluidized bed reactor (FBR). Environmental Technology,2005,26(9):975-982.
    Battistoni P, De Angelis A, Pavan P, et al. Phosphorus removal from a real anaerobic supernatant bystruvite crystallization. Water Research,2001,35(9):2167-2178.
    Battistoni P, De Angelis A, Prisciandaro M, et al. P removal from anaerobic supernatants by struvitecrystallization: long term validation and process modelling. Water Research,2002,36(8):1927-1938.
    Battistoni P, Pavan P, Prisciandaro M, et al. Struvite crystallization: a feasible and reliable way to fixphosphorus in anaerobic supernatants. Water Research,2000,34(11):3033-3041.
    Behrendt J, Arevalo E, Gulyas H, et al. Production of value added products from separately collectedurine. Water Science and Technology,2002,46(6-7):341-346.
    Beler-Baykal B, Bayram S, Akkaymak E, et al. Removal of ammonium from human urine throughion exchange with clinoptilolite and its recovery for further reuse. Water Science andTechnology,2004,50(6):149-156.
    Bhuiyan M I H, Mavinic D S, Beckie R D. Nucleation and growth kinetics of struvite in a fluidizedbed reactor. Journal of Crystal Growth,2008,310(6):1187-1194.
    Bowers K E, Westerman P W. Design of cone-shaped fluidized bed struvite crystallizers forphosphorus removal from wastewater. Transactions of the ASAE,2005a,48(3):1217-1226.
    Bowers K E, Westerman P W. Performance of cone-shaped fluidized bed struvite crystallizers inremoving phosphorus from wastewater. Transactions of the ASAE,2005b,48(3):1227-1234.
    Britton A, Koch F A, Mavinic D S, et al. Pilot-scale struvite recovery from anaerobic digestersupernatant at an enhanced biological phosphorus removal wastewater treatment plant. Journalof Environmental Engineering and Science,2005,4(4):265-277.
    Celen I, Buchanan J R, Burns R T, et al. Using a chemical equilibrium model to predict amendmentsrequired to precipitate phosphorus as struvite in liquid swine manure. Water Research,2007,41(8):1689-1696.
    Chamchoi N, Nitisoravut S, Schmidt J E. Inactivation of ANAMMOX communities underconcurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification.Bioresource Technology,2008,99(9):3331-3336.
    Chen H H, Liu S T, Yang F L, et al. The development of simultaneous partial nitrification,ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal.Bioresource Technology,2009,100(4):1548-1554.
    Chimenos J M, Fernandez A I, Villalba G, et al. Removal of ammonium and phosphates fromwastewater resulting from the process of cochineal extraction using MgO-containingby-product. Water Research,2003,37(7):1601-1607.
    Di Iaconi C, Pagano M, Ramadori R, et al. Nitrogen recovery from a stabilized municipal landfillleachate. Bioresource Technology,2010,101(6).
    Dickens B, Brown W E. The crystal structure of CaKAsO4.8H2O. Acta Crystallographica SectionB-Structural Crystallography and Crystal Chemistry,1972,B28:3056-3065.
    Doyle J D, Parsons S A. Struvite formation, control and recovery. Water Research,2002,36(16):3925-3940.
    Durrant A E, Scrimshaw M D, Stratful I, et al. Review of the feasibility of recovering phosphatefrom wastewater for use as a raw material by the phosphate industry. EnvironmentalTechnology,1999,20(7):749-758.
    Elenter D, Milferstedt K, Zhang W, et al. Influence of detachment on substrate removal andmicrobial ecology in a heterotrophic/autotrophic biofilm. Water Research,2007,41(20):4657-4671.
    Etter B, Tilley E, Khadka R, et al. Low-cost struvite production using source-separated urine inNepal. Water Research,2011,45(2):852-862.
    Fattah K P, Zhang Y, Mavinic D S, et al. Use of carbon dioxide stripping for struvite crystallizationto save caustic dosage: performance at pilotscale operation. Canadian Journal of CivilEngineering,2010,37(9):1271-1275.
    Feng D L, Wu Z C, Xu S H. Nitrification of human urine for its stabilization and nutrient recycling.Bioresource Technology,2008,99(14):6299-6304.
    Fernandez I, Mosquera-Corral A, Campos J L, et al. Operation of an Anammox SBR in the presenceof two broad-spectrum antibiotics. Process Biochemistry,2009,44(4):494-498.
    Fidaleo M, Lavecchia R. Kinetic study of enzymatic urea hydrolysis in the pH range4–9. Chemicaland Biochemical Engineering Quarterly,2003,17(4):311-318.
    Fittschen I, Hahn H H. Characterization of the municipal wastewater part human urine and apreliminary comparison with liquid cattle excretion. Water Science and Technology,1998,38(6)(6):9-16.
    Gajurel D R, Li Z, Otterpohl R. Investigation of the effectiveness of source control sanitationconcepts including pre-treatment with Rottebehaelter. Water Science and Technology,2003,48(1):111-118.
    Ganrot Z, Dave G, Nilsson E, et al. Plant availability of nutrients recovered as solids from humanurine tested in climate chamber on Triticum aestivum L. Bioresource Technology,2007a,98(16):3122-3129.
    Ganrot Z, Dave G, Nilsson E. Recovery of N and P from human urine by freezing, struviteprecipitation and adsorption to zeolite and active carbon. Bioresource Technology,2007b,98(16):3112-3121.
    Ganrot Z, Slivka A, Dave G. Nutrient recovery from human urine using pretreated zeollite andstruvite precipitation in combination with freezing-thawing and plant availability tests oncommon wheat. Clean-Soil Air Water,2008,36(1):45-52.
    Gardner G. Recycling organic waste: From urban pollutant to farm resource[R].1997.
    Gethke K, Herbst H, Pinnekamp J. Human urine-Decomposition processes and nutrient recovery:Advanced Sanitation Conference, Aachen, Germany,2007[C].
    Ghunmi L A, Zeeman G, Fayyad M, et al. Grey water treatment systems: A review. Critical Reviewsin Environmental Science and Technology,2011,41:657-698.
    Golder D, Rana S, Sarkar D, et al. Human urine is an excellent liquid waste for the culture of fishfood organism, Moina micrura. Ecological Engineering,2007,30(4):326-332.
    Griffith D P, Musher D M, Itin C. The primary cause of infection induced urinary stones.Investigative Urology,1976,13(5):346-350.
    Gunay A, Karadag D, Tosun I, et al. Use of magnesit as a magnesium source for ammoniumremoval from leachate. Journal of Hazardous Materials,2008,156(1-3):619-623.
    Guven D, Dapena A, Kartal B, et al. Propionate oxidation by and methanol inhibition of anaerobicammonium-oxidizing bacteria. Applied and Environmental Microbiology,2005,71(2):1066-1071.
    Hanaeus, Hellstr m D, Johansson E. Conversion of urea during storage of human urine. Vatten,1996,52:263-270.
    Hanaeus J, Hellstrom D, Johansson E. A study of a urine separation in an ecological village innorthern Sweden. Water Science and Technology,1997,35(9):153-160.
    Hanhoun M, Montastruc L, Azzaro-Pantel C, et al. Temperature impact assessment on struvitesolubility product: A thermodynamic modeling approach. Chemical Engineering Journal,2011,167(1):50-58.
    Hao X D, van Loosdrecht M. Model-based evaluation of COD influence on a partialnitrification-Anammox biofilm (CANON) process. Water Science and Technology,2004,49(11-12):83-90.
    Hao X D, Wang C C, Lan L, et al. Struvite formation, analytical methods and effects of pH andCa2+. Water Science and Technology,2008,58(8):1687-1692.
    Harada H, Shimizu Y, Miyagoshi Y, et al. Predicting struvite formation for phosphorus recoveryfrom human urine using an equilibrium model. Water Science and Technology,2006,54(8):247-255.
    He S L, Zhang Y, Yang M, et al. Repeated use of MAP decomposition residues for the removal ofhigh ammonium concentration from landfill leachate. Chemosphere,2007,66(11):2233-2238.
    Heinonen-Tanski H, Sjoblom A, Fabritius H, et al. Pure human urine is a good fertiliser forcucumbers. Bioresource Technology,2007,98(1):214-217.
    Helgeson H C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures.American Journal of Science,1969,267(7):729.
    Helgeson H C, Kirkham D H. Theoretical prediction of thermodynamic behavior of aqueouselectrolytes at high pressures and temperatures.1. Summary of thermodynamic-electrostaticproperties of solvent. American Journal of Science,1974a,274(10):1089.
    Helgeson H C, Kirkham D H. Theoretical prediction of thermodynamic behavior of aqueouselectrolytes at high pressures and temperatures.2. Debye-huckel parameters foractivity-coefficients and relative partial molal properties. American Journal of Science,1974b,274(10):1199.
    Helgeson H C, Kirkham D H, Flowers G C. Theoretical prediction of the thermodynamic behaviorof aqueous-electrolytes at high-pressures and temperatures.4. Calculation ofactivity-coefficients, osmotic coefficients, and apparent molal and standard and relative partialmolal properties to600-degrees-c and5kb. American Journal of Science,1981,281(10):1249-1516.
    Hellstrom D, Johannson E, Grennberg K. Storage of human urine: acidification as a method toinhibit decomposition of urea. Ecological Engineering,1999,12(3-4):253-269.
    Hellstrom D, Karrman E. Nitrogen and phosphorus in fresh and stored urine. EnvironmentalResource Forum,1996,5-6:221-226.
    H glund C. Evaluation of microbial health risks associated with the reuse of source-separated humanurine[D]. Royal Institute of TechnologyDepartment of Biotechnology,2001.
    Hotta S, Funamizu N. Inhibition factor of ammonification in stored urine with fecal contamination.Water Science and Technology,2008,58(6):1187-1192.
    Huang H M, Xiao X M, Yan B. Recycle use of magnesium ammonium phosphate to removeammonium nitrogen from rare-earth wastewater. Water Science and Technology,2009,59(6):1093-1099.
    Huang H M, Xiao X M, Yang L P, et al. Removal of ammonium from rare-earth wastewater usingnatural brucite as a magnesium source of struvite precipitation. Water Science and Technology,2011a,63(3):468-474.
    Huang H M, Xu C L, Zhang W. Removal of nutrients from piggery wastewater using struviteprecipitation and pyrogenation technology. Bioresource Technology,2011b,102(3):2523-2528.
    Isaka K, Suwa Y, Kimura Y, et al. Anaerobic ammonium oxidation (anammox) irreversiblyinhibited by methanol. Applied Microbiology and Biotechnology,2008,81(2):379-385.
    Jaffer Y, Clark T A, Pearce P, et al. Potential phosphorus recovery by struvite formation. WaterResearch,2002,36:1834-1842.
    Jenkins D H, Mccallum D A, Ruzbacky R, et al. Air stripping of ammonia and methanol in abubble-cap column. Environmental Progress,2007,26(4):365-374.
    J nsson H, Richert Stinzing A, Vinner s B, et al. Guidelines on the use of urine and faeces in cropproduction[R].2004.
    J nsson H, Stenstrom T A, Svensson J, et al. Source separated urine-nutrient and heavy metalcontent, water saving and faecal contamination. Water Science and Technology,1997,35(9):145-152.
    Jordaan E M, Ackerman J, Cicek N. Phosphorus removal from anaerobically digested swinewastewater through struvite precipitation. Water Science and Technology,2010,61(12):3228-3234.
    Kabdasli I, Parsons S A, Tunay O. Effect of major ions on induction time of struvite precipitation.Croatica Chemica Acta,2006b,79(2):243-251.
    Kabdasli I, Tunay O, Islek C, et al. Nitrogen recovery by urea hydrolysis and struvite precipitationfrom anthropogenic urine. Water Science and Technology,2006a,53(12):305-312.
    Kartal B, van Niftrik L, Rattray J, et al. Candidatus 'Brocadia fulgida': an autofluorescent anaerobicammonium oxidizing bacterium. FEMS Microbiology Ecology,2008,63(1):46-55.
    Kim D, Kim J, Ryu H, et al. Effect of mixing on spontaneous struvite precipitation fromsemiconductor wastewater. Bioresource Technology,2009,100(1):74-78.
    Kim D, Ryu H D, Kim M S, et al. Enhancing struvite precipitation potential for ammonia nitrogenremoval in municipal landfill leachate. Journal of Hazardous Materials,2007,146(1-2):81-85.
    Kirchmann H, Pettersson S. Human urine-chemical composition and fertilizer use efficiency.Fertilizer Resource,1995,40:149-154.
    Korchef A, Saidou H, Ben Amor M. Phosphate recovery through struvite precipitation by CO2removal: Effect of magnesium, phosphate and ammonium concentrations. Journal of HazardousMaterials,2011,186(1):602-613.
    Laridi R, Auclair J C, Benmoussa H. Laboratory and pilot-scale phosphate and ammonium removalby controlled struvite precipitation following coagulation and flocculation of swine wastewater.Environmental Technology,2005,26(5):525-536.
    Larsen T A, Gujer W. Separate management of anthropogenic nutrient solutions (human urine).Water Science and Technology,1996,34(3-4):87-94.
    Larsen T A, Gujer W. The concept of sustainable urban water management. Water Science andTechnology,1997,35(9):3-10.
    Larsen T A, Maurer M, Udert K M, et al. Nutrient cycles and resource management: implications forthe choice of wastewater treatment technology. Water Science and Technology,2007,56(5):229-237.
    Larsen T A, Peters I, Alder A, et al. Re-engineering the toilet for sustainable wastewatermanagement. Environmental Science and Technology,2001,35(9):192A-197A.
    Le Corre K S, Valsami-Jones E, Hobbs P, et al. Impact of calcium on struvite crystal size, shape andpurity. Journal of Crystal Growth,2005,283(3-4):514-522.
    Le Corre K S, Valsami-Jones E, Hobbs P, et al. Agglomeration of struvite crystals. Water Research,2007,41(2):419-425.
    Le Corre K S, Valsami-Jones E, Hobbs P, et al. Kinetics of struvite precipitation: Effect of themagnesium dose on induction times and precipitation rates. Environmental Technology,2007a,28(12):1317-1324.
    Le Corre K S, Valsami-Jones E, Hobbs P, et al. Struvite crystallisation and recovery using a stainlesssteel structure as a seed material. Water Research,2007b,41(11):2449-2456.
    Le Corre K S, Valsami-Jones E, Hobbs P, et al. Phosphorus recovery from wastewater by struvitecrystallization: A review. Critical Reviews in Environmental Science and Technology,2009,39(6):433-477.
    Lee S I, Weon S Y, Lee C W, et al. Removal of nitrogen and phosphate from wastewater by additionof bittern. Chemosphere,2003,51(4):265-271.
    Lew B, Phalah S, Sheindorf C, et al. Favorable Operating Conditions for Obtaining High-ValueStruvite Product from Sludge Dewatering Filtrate. Environmental Engineering Science,2010,27(9):733-741.
    Li F, Wichmann K, Otterpohl R. Review of the technological approaches for grey water treatmentand reuses. Science of the Total Environment,2009,407:3439-3449.
    Liao P H, Chen A, Lo K V. Removal of nitrogen from swine manure wastewaters by ammoniastripping. Bioresource Technology,1995,54:17-20.
    Lienert J, Larsen T A. Considering user attitude in early development of environmentally friendlytechnology: A case study of NoMix toilets. Environmental Science and Technology,2006,40(16):4838-4844.
    Lind B B, Ban Z, Byden S. Nutrient recovery from human urine by struvite crystallization withammonia adsorption on zeolite and wollastonite. Bioresource Technology,2000,73(2):169-174.
    Liu Z G, Zhao Q L, Lee D J, et al. Enhancing phosphorus recovery by a new internal recycle seedingMAP reactor. Bioresource Technology,2008b,99(14):6488-6493.
    Liu Z G, Zhao Q L, Wang K, et al. Urea hydrolysis and recovery of nitrogen and phosphorous asMAP from stale human urine. Journal of Environmental Sciences-China,2008a,20(8):1018-1024.
    Liu Z G, Zhao Q L, Wang K, et al. Comparison between complete and partial recovery of N and Pfrom stale human urine with MAP crystallization. Journal of Environmental Engineering andScience,2008c,7(3):223-228.
    Lozano J A F, Colmenares A R, Rosas D. A novel process for the production of multinutrientphosphatic base fertilizers from seawater bittern and phosphoric acid. Interciencia,1999,24(5):317-320.
    Lozano J A F, Sanvicente L. Multinutrient phosphate-based fertilizers from seawater bitterns.Interciencia,2002,27(9):496-499.
    Luff B B, Reed R B. Thermodynamic properties of magnesium potassium ortho-phosphatehexahydrate. Journal of Chemical and Engineering Data,1980,25(4):310-312.
    Ma H, Su S, Liu H, et al. Potassium resource and sustainable development of potash salt industry inChina. Earth Science Frontiers,2010,17(1):294-310.
    Marti N, Pastor L, Bouzas A, et al. Phosphorus recovery by struvite crystallization in WWTPs:Influence of the sludge treatment line operation. Water Research,2010,44(7):2371-2379.
    Mathew M, Kingsbury P, Takagi S, et al. A new struvite-type compound, magnesiumsodium-phosphate heptahydrate. Acta Crystallographica Section B-Structural Science,1982,38(JAN):40-44.
    Matynia A, Hutnik N, Piotrowski K. Recovery of Phosphate Ions by Continuous Precipitation andCrystallization of Struvite in DTM Type Crystallizer with a Jet Pump.2009:986-993.
    Maurer M, Pronk W, Larsen T A. Treatment processes for source-separated urine. Water Research,2006,40(17):3151-3166.
    Maurer M, Schwegler P, Larsen T A. Nutrients in urine: energetic aspects of removal and recovery.Water Science and Technology,2003,48(1):37-46.
    Mijangos F, Kamel M, Lesmes G, et al. Synthesis of struvite by ion exchange isothermalsupersaturation technique. Reactive and Functional Polymers,2004,60:151-161.
    Mnkeni P N S, Kutu F R, Muchaonyerwa P, et al. Evaluation of human urine as a source of nutrientsfor selected vegetables and maize under tunnel house conditions in the Eastern Cape, SouthAfrica. Waste Management and Research,2008,26(2):132-139.
    Mobley H L T, Hausinger R P. Microbial ureases: Significance, regulation, and molecularcharacterization. Microbiology Reviews,1989,53(1):85-108.
    Molinuevo B, Garcia M C, Karakashev D, et al. Anammox for ammonia removal from pig manureeffluents: Effect of organic matter content on process performance. Bioresource Technology,2009,100(7):2171-2175.
    Mosquera-Corral A, Gonzalez F, Campos J L, et al. Partial nitrification in a SHARON reactor in thepresence of salts and organic carbon compounds. Process Biochemistry,2005,40(9):3109-3118.
    Ohlinger K N, Young T M, Schroeder E D. Predicting struvite formation in digestion. WaterResearch,1998,32(12):3607-3614.
    Ohlinger K N, Young T M, Schroeder E D. Kinetics effects on preferential struvite accumulation inwastewater. Journal of Environmental Engineering-ASCE,1999,125(8):730-737.
    Pahl-Wostl C, Schonborn A, Willi N, et al. Investigating consumer attitudes towards the newtechnology of urine separation. Water Science and Technology,2003,48(1):57-65.
    Pandit S S, Jacob K T. Thermodynamic properties of magnesium phosphate (Mg3P2O8)-correctionof data in recent compilations. Metallurgical and Materials Transactions A-Physical Metallurgyand Materials Science,1995,26(1):225-227.
    Parkhurst D L, Appelo C A J. User's guide to PHREEQC (version2)-A computer program forspeciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations.U.S. Geological Survey,1999.
    Pastor L, Mangin D, Ferrer J, et al. Struvite formation from the supernatants of an anaerobicdigestion pilot plant. Bioresource Technology,2010,101(1):118-125.
    Pathak B K, Kazama F, Saiki Y, et al. Presence and activity of anammox and denitrification processin low ammonium-fed bioreactors. Bioresource Technology,2007,98(11):2201-2206.
    Pronk W, Zuleeg S, Lienert J, et al. Pilot experiments with electrodialysis and ozonation for theproduction of a fertilizer from urine. Water Science and Technology,2007,56(5):219-227.
    Rahman M M, Liu Y, Kwag J H, et al. Recovery of struvite from animal wastewater and its nutrientleaching loss in soil. Journal of Hazardous Materials,2011,186(2-3):2026-2030.
    Ronteltap M, Maurer M, Gujer W. The behaviour of pharmaceuticals and heavy metals duringstruvite precipitation in urine. Water Research,2007a,41(9):1859-1868.
    Ronteltap M, Maurer M, Gujer W. Struvite precipitation thermodynamics in source-separated urine.Water Research,2007b,41(5):977-984.
    Ronteltap M, Maurer M, Hausherr R, et al. Struvite precipitation from urine-Influencing factors onparticle size. Water Research,2010,44(6):2038-2046.
    Ryu H D, Kim D, Lee S I. Application of struvite precipitation in treating ammonium nitrogen fromsemiconductor wastewater. Journal of Hazardous Materials,2008,156(1-3):163-169.
    Ryu H D, Lee S I. Application of struvite precipitation as a pretreatment in treating swinewastewater. Process Biochemistry,2010,45(4):563-572.
    Shen Y, Ogejo J A, Bowers K E. Abating the effects of calcium on struvite precipitation in liquiddairy manure. Transactions of the Asabe,2011,54(1):325-336.
    Shimamura K, Homma Y, Watanabe A, et al. Research on MAP recovery conditions using afluidized-bed crystallized phosphorus removal system. Journal of Water and EnvironmentTechnology,2001,1(1):73-78.
    Shimamura K, Tanaka T, Miura Y, et al. Development of a high-efficiency phosphorus recoverymethod using a fluidized-bed crystallized phosphorus removal system. Water Science andTechnology,2003,48(1):163-170.
    Shu L, Schneider P, Jegatheesan V, et al. An economic evaluation of phosphorus recovery as struvitefrom digester supernatant. Bioresource Technology,2006,97(17):2211-2216.
    Simons J, Clemens J. The use of separated human urine as mineral fertilizer:2nd InternationalSymposium on ecological sanitation, Lübeck, Germany,2003[C].
    Song Y H, Hahn H H, Hoffmann E. Effects of solution conditions on the precipitation of phosphatefor recovery-A thermodynamic evaluation. Chemosphere,2002,48(10):1029-1034.
    Song Y H, Yuan P, Zheng B H, et al. Nutrients removal and recovery by crystallization ofmagnesium ammonium phosphate from synthetic swine wastewater. Chemosphere,2007,69:319-324.
    Speers A, Booker N, Burn S, et al. Sustainable urban water-analysis of the opportunities. WaterScience and Technology: Water Supply,2001,1(4):209-216.
    Stowa. Separate urine collection and treatment: Options for sustainable wastewater systems andmineral recovery., STOWA report no.2001.39[R]. Utrecht, The Netherlands:2002.
    Stratful I, Scrimshaw M D, Lester J N. Removal of struvite to prevent problems associated with itsaccumulation in wastewater treatment works. Water Environment Research,2004,76(5):437-443.
    Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for thestudy of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied andEnvironmental Microbiology,1998,50(5):589-596.
    Sumino T, Isaka K, Ikuta H, et al. Nitrogen removal from wastewater using simultaneous nitratereduction and anaerobic ammonium oxidation in single reactor. Journal of Bioscience andBioengineering,2006,102(4):346-351.
    Suzuki K, Benno Y, Mitsuoka T, et al. Urease-producing species of intestinal anaerobes and theiractivities. Applied and Environmental Microbiology,1979,37(3):379-382.
    Suzuki K, Tanaka Y, Kuroda K, et al. Removal and recovery of phosphorous from swine wastewaterby demonstration crystallization reactor and struvite accumulation device. BioresourceTechnology,2007,98(8):1573-1578.
    Suzuki K, Tanaka Y, Osada T, et al. Removal of phosphate, magnesium and calcium from swinewastewater through crystallization enhanced by aeration. Water Research,2002,36(12):2991-2998.
    Tang C J, Zheng P, Wang C H, et al. Suppression of anaerobic ammonium oxidizers under highorganic content in high-rate Anammox UASB reactor. Bioresource Technology,2010,101(6):1762-1768.
    Taylor A W, Frazier A W, Gurney E L, et al. Solubility products of di-and trimagnesium phosphatesand dissociation of magnesium phosphate solutions. Transactions of the Faraday Society,1963b,59(487):1585.
    Taylor A W, Gurney E L, Frazier A W. Solubility products of magnesium ammonium andmagnesium potassium phosphates. Transactions of the Faraday Society,1963a,59(487):1580-1584.
    Tid ker P. Life Cycle Assessment of grain production using source-separated human urine andmineral fertilizer, Report251[R].Department of Agricultural Engineering, Swedish Universityof Agricultural Sciences,2003.
    Tilley E, Atwater J, Mavinic D. Effects of storage on phosphorus recovery from urine.Environmental Technology,2008a,29(7):807-816.
    Tilley E, Atwater J, Mavinic D. Recovery of struvite from stored human urine. EnvironmentalTechnology,2008b,29(7):797-806.
    Turker M, Celen I. Removal of ammonia as struvite from anaerobic digester effluents and recyclingof magnesium and phosphate. Bioresource Technology,2007,98(8):1529-1534.
    Udert K M, Fux C, Munster M, et al. Nitrification and autotrophic denitrification of source-separatedurine. Water Science and Technology,2003,48(1):119-130.
    Udert K M, Kind E, Teunissen M, et al. Effect of heterotrophic growth on nitritation/anammox in asingle sequencing batch reactor. Water Science and Technology,2008,58(2):277-284.
    Udert K M, Larsen T A, Gujer W. Fate of major compounds in source-separated urine. WaterScience and Technology,2006,54(11-12):413-420.
    Uysal A, Yilmazel Y D, Demirer G N. The determination of fertilizer quality of the formed struvitefrom effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials,2010,181(1-3):248-254.
    Vandegraaf A A, Mulder A, Debruijn P, et al. Anaerobic oxidation of ammonium is a biologicallymediated process. Applied and Environmental Microbiology,1995,61(4):1246-1251.
    Vinner s B, J nsson H. The performance and potential of faecal separation and urine diversion torecycle plant nutrients in household wastewater. Bioresource Technology,2002,84(3):275-282.
    Vinner s B, J nsson H, Salomon E, et al. Tentative guidelines for agricultural use of urine andfaeces: The2nd International Symposium on ecological sanitation, Lübeck, Germany,2003[C].
    Vinner s B, Nordin A, Niwagaba C, et al. Inactivation of bacteria and viruses in human urinedepending on temperature and dilution rate. Water Research,2008,42(15):4067-4074.
    Wang C, Lee P, Kumar M, et al. Simultaneous partial nitrification, anaerobic ammonium oxidationand denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal ofHazardous Materials,2010,175(1-3):622-628.
    Warmadewanthi, Liu J C. Selective precipitation of phosphate from semiconductor wastewater.Journal of Environmental Engineering-Asce,2009,135(10):1063-1070.
    Werner C. Closing the loop through ecological sanitation: World Toilet Expo&Forum2006,Bangkok, Thailand,2006[C].
    Wilsenach J A. Treatment of source separated urine and its effects on wastewater systems[D]. DelftUniversity of Technology,2006b.
    Wilsenach J A, Schuurbiers C A H, van Loosdrecht M C M. Phosphate and potassium recovery fromsource separated urine through struvite precipitation. Water Research,2007,41(2):458-466.
    Wilsenach J A, van Loosdrecht M C M. Integration of processes to treat wastewater andsource-separated urine. Journal of Environmental Engineering-Asce,2006a,132(3):331-341.
    Wilsenach J, van Loosdrecht M. Impact of separate urine collection on wastewater treatmentsystems. Water Science and Technology,2003,48(1):103-110.
    Xu K, Wang C, Liu H, et al. Simultaneous removal of phosphorus and potassium from syntheticurine through the precipitation of magnesium potassium phosphate hexahydrate. Chemosphere,2011,84(2):207-212.
    Xu Z Y, Zeng G M, Yang Z H, et al. Biological treatment of landfill leachate with the integration ofpartial nitrification, anaerobic ammonium oxidation and heterotrophic denitrification.Bioresource Technology,2010,101(1):79-86.
    Yang H X, Sun H J. Crystal structure of a new phosphate compound, Mg2KNa(PO4)(2)center dot14H(2)O. Journal of Solid State Chemistry,2004,177(9):2991-2997.
    Yoshino M, Yao M, Tsuno H, et al. Removal and recovery of phosphate and ammonium as struvitefrom supernatant in anaerobic digestion. Water science and Technology,2003,48(1):171-178.
    Zhang T, Ding L L, Ren H Q. Pretreatment of ammonium removal from landfill leachate bychemical precipitation. Journal of Hazardous Materials,2009,166(2-3):911-915.
    Zhang T, Ding L L, Ren H Q, et al. Thermodynamic modeling of ferric phosphate precipitation forphosphorus removal and recovery from wastewater. Journal of Hazardous Materials,2010,176(1-3):444-450.
    程乃良,牛四通,徐桂英.纯物质热化学数据手册.北京:科学出版社,2003.
    冯元琦.我国有关钾肥的统计数据汇集.化肥设计,2011(01):55-60.
    国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型[M].上海:同济大学出版社,2002.
    国家环境保护总局.水和废水监测分析方法.4版.北京:中国环境科学出版社,2006.
    郝晓地,王崇臣,金文标.磷危机概观与磷回收技术.北京:高等教育出版社,2011.
    胡勇有,梁辉强,朱静平,等.有机碳源环境下的厌氧氨氧化批式实验.华南理工大学学报(自然科学版),2007(06):116-119.
    金昌权.城市污水处理厂关键环节基准能效及节能潜力研究[硕士学位论文].北京:清华大学环境科学与工程系,2009.
    联合国环境规划署.全球环境展望[G].中国科学院地理科学与资源研究所,译.北京:中国环境科学出版社,2002.
    伦斯,泽曼,莱廷格.分散式污水处理和再利用[M].王晓昌,彭党聪,黄廷林,译.北京:化学工业出版社,2004.
    沈童刚,邱勇,应启锋,等.污水处理厂模拟软件BioWIN的应用.给水排水,2009(S1):459-462.
    孙爱文,张卫峰,杜芬,等.中国钾资源及钾肥发展战略.现代化工,2009(09):10-14.
    王芳,杨凤林,宫正,等.炭管膜曝气生物膜反应器SNAD脱氮研究.环境工程学报,2009(03):405-408.
    王军民,薛芳渝,刘芸.物理化学[Z].北京:1992.
    魏俊发.兰氏化学手册.2版.北京:科学出版社,2003.
    温东辉.天然沸石吸附:生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究.北京:中国环境科学出版社,2003:21-40.
    武雪梅.2007年我国磷肥、硫酸行业生产消费情况概述.磷肥与复肥,2008(04):1-4.
    武雪梅.2008年我国磷肥、硫酸行业生产与消费概述.磷肥与复肥,2009(04):1-5.
    叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社,2006.
    叶铁林.化工结晶过程原理及应用.北京:北京工业大学出版社,2006.
    张自杰,林荣忱,金儒霖.排水工程.北京:中国建筑工业出版社,1999:306-308.
    赵庆良,刘志刚,李巍,等. MAP结晶法回收和去除尿液中的磷.环境科学,2007(10):2223-2229.
    中华人民共和国国家统计局.2010年第六次全国人口普查主要数据公报.2011.
    周少奇,张鸿郭.垃圾渗滤液厌氧氨氧化与反硝化的协同作用.华南理工大学学报(自然科学版),2008(03):73-76.
    朱明石,周少奇.厌氧氨氧化—反硝化协同脱氮研究.化工环保,2008(03):214-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700