用户名: 密码: 验证码:
FP1和HP在6-羟基多巴胺导致的腹侧中脑神经元和MES23.5细胞铁聚积中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是一种多发于中老年的中枢神经系统退行性疾病。PD的神经病理学基础是黑质(substantia nigra,SN)致密带多巴胺(dopamine,DA)能神经元的变性脱失以及由此而导致的纹状体DA含量降低。迄今为止,PD的病因学仍未完全明了,基因变异(如PARK1,2,5,6,8等)和环境因素(如杀虫剂、毒品、金属离子等)都被认为参与了PD的发病。越来越多的证据表明铁在PD的发病中是一个关键因素,研究表明在残存的DA能神经元内铁含量明显高于对照组。目前,PD中铁选择性沉积的原因仍不清楚。本实验室的前期工作证实,二价金属离子转运体(divalent metal transporter 1,DMT1)的表达异常,可能参与了PD中SN区铁的聚积。脑细胞铁平衡取决于细胞铁转入和转出两个环节,而DMT1仅是转入蛋白,如果铁转出蛋白的功能正常,DMT1的表达异常将无法导致细胞内的铁聚积。因此本研究我们拟探讨铁转出蛋白ferroportin1(FP1)和hephaestin(HP)在PD SN异常铁聚积中的作用。FP1是一种具有十个跨膜区的铁转出蛋白。HP是与铜蓝蛋白结构和功能类似的一种亚铁氧化酶,只有一个跨膜区域,必须与PP1协同作用使铁转出细胞。目前FP1和HP在脑细胞中的功能和调节仍知之甚少。我们的在体实验证实在6—羟基多巴胺(6-hydroxydopamine,6-OHDA)制备的PD模型大鼠SN区,FP1和HP的表达下降可能参与了SN的铁聚积。本研究选用体外培养的腹侧中脑(ventralmesencephalic,VM)神经元和MES23.5细胞系,应用免疫荧光、分子生物学、激光共聚焦扫描技术、流式细胞仪技术等多项研究方法来探讨了FP1和HP在6-OHDA导致的细胞铁聚积中的作用;并进一步探讨了其表达调控的深入机制。
     结果表明:
     1.体外培养的VM神经元和MES23.5细胞上均有FP1和HP的共表达。
     2.10μmol/L 6-OHDA处理24 h后,体外培养的VM神经元和MES23.5细胞铁的转出功能明显降低,FP1和HP蛋白和mRNA表达水平均有明显降低。
     3.100μg/ml或1 mg/ml枸橼酸铁胺(ferric ammonium citrate,FAC)处理24 h后,体外培养的VM神经元和MES23.5细胞FP1mRNA表达水平明显增加,且1 mg/ml处理组比100μg/ml处理组增加得更明显,HP mRNA表达水平没有变化。
     4.10μmol/L 6-OHDA处理24 h后,体外培养的VM神经元和MES23.5细胞中铁调节蛋白(iron regulatory protein,IRP)1和IRP2蛋白和mRNA的表达水平都有明显上调。
     5.成功构建了pSilencer-IRP1和pSilencer-IRP2 siRNA表达载体。特异性的沉默IRP1或IRP2的表达后,IRP1蛋白水平下降了71±6%;IRP2蛋白水平下降了65±5%。
     6.干涉IRP1或IRP2后,FP1蛋白和mRNA表达水平与空载体对照组相比都明显上调。10μmol/L 6-OHDA处理24 h后,FP1mRNA的表达水平仍有降低,但降低的幅度明显减轻;HP mRNA的表达下降被完全逆转,其表达出现了上调。
     7.成功构建了pSilencer-FP1和pSilencer-HP siRNA表达载体。特异性的沉默FP1或HP的表达后,FP1蛋白水平下降了57±3%;HP蛋白水平下降了61±5%。
     8.FP1干涉后,100μmol/L铁孵育4 h后细胞内铁含量明显增加,细胞内增加的铁上调了L型铁蛋白mRNA水平,进一步增加了细胞内高铁导致的乳酸脱氢酶(lactate dehydrogenase,LDH)释放和活性氧物质(reactive oxide species,ROS)的生成,降低了线粒体跨膜电位(mitochondrial transmembrane potential,△ψm)。HP干涉后,除了使△ψm降低得更明显外,对细胞内的铁水平、L型铁蛋白的表达、LDH的释放和ROS的生成都没有影响。铁离子螯合剂去铁胺1mmol/l预孵育3 h可以完全阻断细胞内高铁引起的LDH的释放、ROS的生成和△ψm的下降。
     9.成功构建了pIRES-FP1和pIRES-HP-FP1表达载体。pIRES-FP1转染的MES23.5细胞中,FP1蛋白水平是空载体对照组的3.38±0.06倍;pIRES-HP-FP1转染MES23.5细胞中,FP1蛋白水平是空载体转染组的2.86倍±0.04,HP蛋白水平是空载体转染组的3.21±0.06倍。
     10.高表达FP1和HP的MES23.5细胞铁转出功能都明显增强。
     11.pcDNA3.1-HP-Flagtag转染的MES23.5细胞中,HP蛋白水平是空载体对照组的3.81±0.07倍。高表达HP的MES23.5细胞铁转出功能也明显增强。
     12.高表达FP1和/或HP能够转出更多的铁,在铁负载状态下能够降低细胞内的铁水平,阻断了高铁引起的L型铁蛋白mRNA水平的上调和FP1的表达上调,从而阻断或减轻了细胞内高铁导致的LDH释放和ROS的生成,在一定程度上恢复△ψm。
     上述结果表明,铁转出蛋白FP1和HP在体外培养的VM神经元和MES23.5细胞中部有表达;FP1和HP的表达降低参与了6-OHDA导致的铁聚积;6-OHDA诱导的FP1和HP的表达降低不是细胞内高铁的结果;细胞内IRPs可能参与了6-OHDA对FP1和HP的表达调节;FP1的表达下降会增加细胞内的铁水平,从而加重细胞内高铁引起的氧化应激损伤,表现为LDH释放和ROS生成的增加、△ψm的下降;高表达FP1和/或HP能够转出更多的铁,减少LDH的释放和ROS的生成,在一定程度上恢复△ψm,因此能保护细胞免受高铁引起的氧化应激的损伤。本研究为FP1和HP参与脑铁代谢提供最直接的证据,为阐明PD SN内铁选择性聚积的原因提供部分的实验基础,并为铁特异性地损伤多巴胺能神经元提供更加详实和有力的理论依据,并为药物干预提供可能的作用靶点。
Parkinson's disease(PD) is an adult-onset progressive neurodegenerative disorder. Neuropathological hallmarks of the disease include the degeneration and loss of dopaminergic neurons in the substantia nigra(SN) and the subsequent dopamine(DA) depletion in the striatum.Although the causes of PD are not known,both genetic mutations(such as PARK 1,2,5,6,8 gene) and environmental factors(pesticide,toxin, metal) are considered to be involved.Amounting evidence demonstrate that iron plays a key role in the pathogenesis of PD.In PD patients,individual dopaminergic neuron showed increased iron levels compared to the control.To date,it is still unknown what causes this selective iron accumulation in the SN of PD.Our previous studies demonstrated that divalent metal transporter 1(DMT1) up-regulation was involved in the nigral iron accumulation in PD animal models.For maintenance of a balanced iron homeostasis in brain cells,the cellular iron influx,as well as iron efflux must be tightly regulated.Since DMT1 is an iron importer,in the present study,we set out to investigate the roles of iron exporters-ferroportinl(FP1) and hephaestin(HP) in the iron accumulation of PD.FP1 was a multiple transmembrane domain protein identified in several cell types involved in the export of cellular iron.HP,a multicopper ferroxidase,is a membrane bound ceruloplasmin homologue.In the presence of iron transporter FP1 and a ferroxidase HP,the newly released ferrous iron could be oxidized to its ferric form,which then binds to transferrin.The roles of FP1 and HP in cellular iron homeostasis in the CNS are still unknown.Our in vivo experiments suggested that decreased FP1 and HP might account for the cellular iron accumulation in the SN of 6-hydroxydopamine(6-OHDA) lesioned rats.Using immunofluorescence,molecular biology,laser confocal scanning microscopy,flow cytometry and other methods,in the present study we investigate the role of FP1 and HP in 6-OHDA induced iron accumulation in primary cultured ventral mesencephalic(VM) neurons and MES23.5 cells.The mechanisms underlying the regulation of FP1 and HP by 6-OHDA were investigated.The results were as follows:
     1.Both FP1 and HP were expressed on primary cultured VM neurons and MES23.5 cells.
     2.Iron efflux was decreased with 10μmol/L 6-OHDA treatment for 24 h in primary VM neurons or MES23.5 cells.FP1 and HP were down-regulated on both protein and mRNA levels in these cells.
     3.FP1 mRNA level was up-regulated with 100μg/ml or 1 mg/ml ferric ammonium citrate(FAC) treatment for 24 h in primary VM neurons and MES23.5 cells.There was a more dramatic up-regulation in 1 mg/ml group compared to 100μg/ml group.HP mRNA level showed no response to 100μg/ml or 1 mg/ml FAC treatment.
     4.Iron regulatory protein(IRP) 1 and IRP2 were up-regulated on both protein and mRNA levels with 10μmol/L 6-OHDA treatment for 24 h in primary VM neurons and MES23.5 cells.
     5.pSilencer-IRP1 and pSilencer-IRP2 siRNA expression vectors were successfully constructed.IRP1 protein levels were significantly suppressed about 71±6%,in MES23.5 cells with IRP1 RNA interfering.IRP2 protein levels were significantly suppressed about 65±5%in MES23.5 cells with IRP2 RNA interfering.
     6.FP1 protein and mRNA levels were both up-regulated in MES23.5 cells with IRP1 or IRP2 RNA interfering.IRP1 or IRP2 knockdown partially blocked the down-regulation of FP1 mRNA level and reversed the down-regulation of HP mRNA level in MES23.5 cells with 6-OHDA treatment.
     7.pSilencer-FP1 and pSilencer-HP siRNA expression vectors were successfully constructed.FP1 mRNA and protein levels were significantly suppressed about 57±3% in MES23.5 cells with FP1 RNA interfering.HP protein level was significantly suppressed about 61±5%in MES23.5 cells with HP RNA interfering.
     8.Cellular iron levels were further increased with FP1 knockdown in MES23.5 cells with 100μmol/L iron incubation for 4 h.The increased intracellular iron further induced up-regulation of ferritin L mRNA level,lactate dehydrogenase(LDH) leakage, reactive oxide species(ROS) generation,and reduction of mitochondrial ransmembrane potential(△Ψm).HP knockdown further reduced△Ψm and had no effects on the intracellular iron level,as well as ferritin L mRNA level,LDH leakage and ROS generation.Pretreatment of deferoxamine mesylate for 3 h could fully abolish ron induced LDH leakage,ROS generation and△Ψm reduction.
     9.pIRES-FP1 and pIRES-HP-FP1 expression vectors were successfully constructed. FP1 mRNA and protein levels were significantly increased 4.72±0.772 and 3.38±0.06 folds,respectively,in MES23.5 cells with pIRES-FP1 transfection.In cells with pIRES-HP-FP1 transfection,FP1 mRNA and protein levels were significantly increased 8.42±1.591 and 2.86±0.04 folds,respectively;HP mRNA and protein level was significantly increased 5.49±0.211 and 3.21±0.06 folds,respectively.
     10.Iron efflux was enhanced in MES23.5 cells with over-expression of FP1 and HP.
     11.HP mRNA and protein levels were significantly increased to 5.62±0.121 and 3.81±0.07 fold,respectively,in MES23.5 cells with pcDNA3.1-HP transfection.Iron efflux was also enhanced in MES23.5 cells with over-expression of HP.
     12.High expression of FP1 and/or HP could lower cellular iron level and thus block the up-regulation of ferritin L and FP1 mRNA level under iron overloaded conditions. ROS generation was then partially suppressed and△Ψm was partially restored,due to more iron efflux out of the cells.
     The above results suggest that FP1 and HP are co-localized on primary VM neurons and MES23.5 cells;down-regulations of FP1 and HP are involved in 6-OHDA induced iron accumulation in these cells.Down-regulations of FP1 and HP are not the secondary event due to increased intracellular iron level.IRPs are involved in 6-OHDA induced down-regulations of FP1 and HE FP1 knockdown results in cellular iron accumulation,thus aggravates iron induced oxidative stress indicated by LDH leakage, ROS generation and△Ψm reduction.Over-expression of FP1 and/or HP can transport more iron outsides,thus protect cells from iron induced oxidative stress indicated by suppression of LDH leakage and ROS generation,as well as△Ψm restoration.Our findings provide direct evidence that both FP1 and HP are responsible for the iron efflux process in brain cells and elucidate their involvement and underlying mechanisms in PD iron accumulation.We aim to put powerful evidence to iron induced dopaminergic neurons injury in PD and further show some light on the development of potential clinical approaches.
引文
1 Rouault TA. Iron on the brain. Nat Genet. 2001, 28, 299-300.
    2 Berg D. In vivo detection of iron and neuromelanin by transcranial sonography—a new approach for early detection of substantia nigra damage. J Neural Transm. 2006, 113, 775-80.
    3 Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology. 2007, 68, 1820-5.
    
    4 Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends in Molecular Medicine, 2001, 7, 103-8.
    5 Jiang H, Qian ZM, Xie JX. Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice. Sheng Li Xue Bao. 2003, 55, 571-6.
    6 Song N, Jiang H, Wang J, Xie JX. Divalent metal transporter 1 upregulation is involved in the 6-hydroxydopamine induced ferrous iron influx. J Neurosci Res. 2007, 85, 3118-26.
    7 Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000, 275, 19906-12.
    8 Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI. Positional cloning of zebrafish ferroportinl identifies a conserved vertebrate iron exporter. Nature. 2000, 403, 776-81.
    
    9 McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell, 2000, 5, 299-309.
    10 Devalia V, Carter K, Walker AP, Perkins SJ, Worwood M, May A, Dooley JS. Autosomal dominant reticuloendothelial iron overload associated with a 3-base pair deletion in the ferroportin 1 gene (SLC11A3). Blood. 2002, 100, 695-7.
    11 Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport , is defective in the sla mouse. Nat Genet. 1999,21, 195-9.
    12 Anderson GJ, Frazer DM, McKie AT, Vulpe CD. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption. Blood Cells Mol Dis. 2002, 29, 367-75
    13 Griffiths TA, Mauk AG, MacGillivray RT. Recombinant expression and functional characterization of human hephaestin: a multicopper oxidase with ferroxidase activity. Biochemistry. 2005, 44, 14725-31.
    
    14 Gregory J. Anderson, David M. Frazer et al. The expression and regulation of the iron transport molecules Hephaestin and Iregl. Cell Biochemistry and Biophysics, 2002, 36, 137-46.
    15 Kaplan J, Kushner JR Mining the genome for iron. Nature, 2000,403, 711-3.
    16 Montosi G, Donovan A, Totaro A, et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest, 2001, 108, 619-623
    17 De Domenico I, Ward DM, Nemeth E, Vaughn MB, Musci G, Ganz T, Kaplan J. The molecular basis of ferroportin-linked hemochromatosis. Proc Natl Acad Sci U S A. 2005, 102, 8955-60.
    18 Bannerman RM, Cooper RG Sex-linked anemia: a hypochromic anemia of mice. Science. 1966, 151,581-2.
    19 Pinkerton PH, Bannerman RM. Hereditary defect in iron absorption in mice. Nature. 1967, 216, 482-3.
    20 Wang J, Jiang H, Xie JX. Ferroportinl and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur J Neurosci, 2007, 25, 2766-72.
    21 Burdo JR, Menzies SL, Simpson IA, Garrick LM, Garrick MD, Dolan KG, Haile DJ, Beard JL, Connor JR. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J Neurosci Res. 2001, 66, 1198-207.
    
    22 Jiang DH, Ke Y, Cheng YZ, Ho KP, Qian ZM. Distribution of ferroportin 1 protein in different regions of developing rat brain. Dev Neurosci. 2002, 24, 94-8.
    23 Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA. Expression of the iron transport ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res. 2004, 1001, 108-17.
    24 Jeong SY, David S. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem. 2003, 278, 27144-8.
    25 Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, Dunaief JL. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A. 2004, 101, 13850-5.
    26 Wang J, Jiang H, Xie JX. Time dependent effects of 6-OHDA lesions on iron level and neuronal loss in rat nigrostriatal system. Neurochem Res. 2004, 29, 2239-43.
    27 Crawford GD Jr, Le WD, Smith RG, Xie WJ, Stefani E, Appel SH. A novel N18TG2 x mesencephalon cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neurosci. 1992, 12, 3392-8.
    28 Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004, 306,2090-3.
    29 Simovich MJ, Conrad ME, Umbreit JN, Moore EG, Hainsworth LN, Smith HK. Cellular location of proteins related to iron absorption and transport. Am J Hematol. 2002, 69, 164-70.
    30 Kuo YM, Su T, Chen H, Attieh Z, Syed BA, McKie AT, Anderson GJ, Gitschier J, Vulpe CD. Mislocalisation of hephaestin, a multicopper ferroxidase involved in basolateral intestinal iron transport, in the sex linked anaemia mouse. Gut. 2004, 53, 201-6.
    31 Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci. 2004, 1012, 306-25.
    32 Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MB. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology. 2004,46, 254-63.
    33 Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol. 2002, 175, 303-17.
    34 Monteiro HP, Winterbourn CC. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol. 1989, 38,4177-82.
    35 Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M. In vitro studies of ferritin iron release and neurotoxicity. J Neurochem. 1998, 70, 2492-9.
    36 Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, Hentze MW, Rouault TA, Andrews NC, Hediger MA. 2001. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett 509, 309-16.
    37 Wang X, Ghio AJ, Yang F, Dolan KG, Garrick MD, Piantadosi CA Iron uptake and Nramp2/DMT1/DCT1 in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2002, 282, L987-95.
    38 Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A. The role of the iron responsive element in the control of ferroportinl/IREG1/MTP1 gene expression. J Hepatol. 2003, 39,710-5.
    39 Yang F, Wang X, Haile DJ, Piantadosi CA, Ghio AJ. Iron increases expression of iron-export protein MTP1 in lung cells. Am J Physiol Lung Cell Mol Physiol. 2002, 283, L932-9.
    40 Knutson MD, Vafa MR, Haile DJ, Wessling-Resnick M. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages. Blood. 2003, 102, 4191-7.
    41 Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, Haile DJ, Vogel W, Weiss G Expression of the duodenal iron transporters divalent-metal transporter 1 and ferroportin 1 in iron deficiency and iron overload. Gastroenterology. 2001, 120, 1412-9.
    
    42 Martini LA, Tchack L, Wood RJ. Iron treatment downregulates DMT1 and IREG1 mRNA expression in Caco-2 cells. J Nutr. 2002, 132, 693-6.
    43 Chen Y, Qian ZM, Du J, Duan X, Chang Y, Wang Q, Wang C, Ma YM, Xu Y, Li L, Ke Y. Iron loading inhibits ferroportinl expression in PC12 cells. Neurochem Int. 2005,47, 507-13.
    44 Frazer DM, Vulpe CD, McKie AT, Wilkins SJ, Trinder D, Cleghorn GJ, Anderson GJ.Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. Am J Physiol Gastrointest Liver Physiol. 2001,281, G931 -9.
    
    45 Sakakibara S, Aoyama Y. Dietary iron-deficiency up-regulates hephaestin mRNA level in small intestine of rats. Life Sci. 2002, 70, 3123-9.
    46 Chen H, Su T, Attieh ZK, Fox TC, McKie AT, Anderson GJ, Vulpe CD. Systemic regulation of ephaestin and Iregl revealed in studies of genetic and nutritional iron deficiency. Blood. 2003, 102, 1893-9.
    
    47 Zoller H, Theurl I, Koch RO, McKie AT, Vogel W, Weiss G. Duodenal cytochrome b and hephaestin expression in patients with iron deficiency and hemochromatosis. Gastroenterology. 2003, 125, 746-54.
    
    48 Gleeson F, Ryan E, Barrett S, Russell J, Kelleher B, Crowe J. Duodenal Dcytb and hephaestin mRNA expression are not significantly modulated by variations in body iron homeostasis. Blood Cells Mol Dis. 2005, 35, 303-8.
    
    49 Eisenstein RS. Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr. 2000, 20, 627-62.
    
    50 Klausner RD, Rouault TA. A double life: cytosolic aconitase as a regulatory RNA binding protein. Mol Biol Cell. 1993,4, 1-5.
    
    51 Pantopoulos K, Weiss G, Hentze MW. Nitric oxide and oxidative stress (H_2O_2) control mammalian iron metabolism by different pathways. Mol Cell Biol. 1996, 16, 3781-8.
    
    52 Hentze MW, Kiihn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A. 1996, 93, 8175-82.
    
    53 Cairo G, Pietrangelo A. Iron regulatory proteins in pathobiology. Biochem J. 2000, 352 Pt 2:241-50.
    
    54 Martins EA, Robalinho RL, Meneghini R. Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake. Arch Biochem Biophys. 1995, 316, 128-34.
    55 Nunez-Millacura C, Tapia V, Munoz P, Maccioni RB, Nunez MT. An oxidative stress-mediated positive feedback iron uptake loop in neuronal cells. J Neurochem. 2002 , 82, 240-8
    56 Ljungdahl A, Hokfelt T, Jonsson G, Sachs C. Autoradiographic demonstration of uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Experientia. 1971, 27, 297-9.
    57 Blum D, Torch S, Nissou MF, Benabid AL, Verna JM. Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett. 2000,283, 193-6.
    58 Hanrott K, Gudmunsen L, O'Neill MJ, Wonnacott S. 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem. 2006, 281, 5373-82.
    
    59 Kaur D and Andersen J. Does cellular iron dysregulation play a causative role in Parkinson's disease? Ageing Res Rev. 2004, 3, 327-43.
    
    60 LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R 3rd, Grinberg A, Love P, Tresser N, Rouault TA. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001, 27, 209-14.
    61 Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, Land W, Ollivierre-Wilson H, Grinberg A, Love P, Rouault TA. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004, 23, 386-95.
    
    62 Galy B, Ferring D, Minana B, Bell O, Janser HG, Muckenthaler M, Schumann K, Hentze MW. Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood. 2005, 106,2580-9.
    
    63 Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol. 2006,2,406-14.
    
    64 Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. J Neurochem. 2002, 83, 320-30.
    
    65 Galli A, Bergamaschi G, Recalde H, Biasiotto G, Santambrogio P, Boggi S, Levi S, Arosio P, Cazzola M. Ferroportin gene silencing induces iron retention and enhances ferritin synthesis in human macrophages. Br J Haematol. 2004, 127, 598-603.
    66 Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996, 1275, 161-203.
    67 Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med. 2002, 33, 457-63.
    68 Sargent PJ, Famaud S, Evans RW. Structure/function overview of proteins involved in iron storage and transport. Curr Med Chem. 2005, 12, 2683-93.
    69 Wessling-Resnick M. Iron imports. III. Transfer of iron from the mucosa into circulation. Am J Physiol Gastrointest Liver Physiol. 2006, 290, G1-6.
    70 Harris ZL, Takahashi Y, Miyajima H, Serizawa M, MacGillivray RT, Gitlin JD. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A. 1995, 92, 2539-43.
    
    71 Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr. 2002, 22,439-58. 72 Sofic E, Paulus W, Jellinger K, Riederer P, Youdim MB Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem. 1991, 56, 978-82.
    
    73 Gotz ME, Double K, Gerlach M, Youdim MB and Riederer P. The relevance of iron in the pathogenesis of Parkinson's disease. Ann N Y Acad Sci. 2004, 1012, 193-208.
    
    74 Halliwell B. Reactive oxygen species and the central nervous system. J Neurochem. 1992, 59, 1609-23.
    
    75 el-Agnaf OM, Irvine GB. Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem Soc Trans. 2002; 30: 559-65.
    
    76 Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. 1997, 94, 7531-6.
    77 Polla BS. Therapy by taking away: the case of iron. Biochem Pharmacol. 1999, 57, 1345-9.
    78 Whitnall M, Richardson DR. Iron: a new target for pharmacological intervention in neurodegenerative diseases. Semin Pediatr Neurol. 2006, 13, 186-97.
    79 Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson's disease. Neurobiol Dis. 2000, 7, 240-50.
    80 Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004, 3, 205-14.
    81 Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res. 2000, 1, 181-95.
    82 Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA. Dopamine neurotoxicity: age-dependent behavioral and histological effects. Neurobiol Aging. 2003, 24, 697-706.
    83 Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in Neuroscience. 2007, 30, 244-7.
    84 Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ, Zhuang X. Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci. 2008, 28,425-33.
    85 Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature. 1988, 334, 345-8.
    86 Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB. Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem. 1992, 59, 1168-71.
    87 Double KL, Riederer P and Gerlach M. Significance of neuromelanin of parkinson's disease. Drug News Perspect. 1999, 12, 333-340.
    88 Depboylu C, Matusch A, Tribl F, Zoriy M, Michel PP, Riederer P, Gerlach M, Becker S, Oertel WH, Hoglinger GU. Glia protects neurons against extracellular human neuromelanin. Neurodegener Dis. 2007,4,218-26.
    89 Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003, 39, 889-909.
    90 Hasbani DM, Perez FA, Palmiter RD, O'Malley KL. Dopamine depletion does not protect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in vivo. J Neurosci. 2005, 25, 9428-33.
    
    91 Harley A, Cooper JM, Schapira AH. Iron induced oxidative stress and mitochondrial dysfunction: relevance to Parkinson's disease. Brain Res. 1993, 627, 349-53.
    92 Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev. 2004, 3,265-301.
    93 Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000, 6, 513-9.
    94 Gong P, Cederbaum AI, Nieto N. Heme oxygenase-1 protects HepG2 cells against cytochrome P450 2El-dependent toxicity. Free Radic Biol Med. 2004, 36, 307-18.
    95 Simpkins JW, Dykens JA. Mitochondrial mechanisms of estrogen neuroprotection. Brain Res Rev. 2007 Apr 27.
    96 Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M. Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation and alpha-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci. 2002, 24, 143-53.
    97 Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J. 2003, 371, 151-64.
    98 Jiang H, Luan Z, Wang J, Xie J. Neuroprotective effects of iron chelator Desferal on dopaminergic neurons in the substantia nigra of rats with iron-overload. Neurochem Int. 2006, 49, 605-9.
    99 Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush Al, Andersen JK. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron. 2003, 37, 899-909.
    
    100 Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol. 2005, 146,1041-59.
    101 Syed BA, Beaumont NJ, Patel A, Naylor CE, Bayele HK, Joannou CL, Rowe PS, Evans RW, Srai SK. Analysis of the human hephaestin gene and protein: comparative modelling of the N-terminus ecto-domain based upon ceruloplasmin. Protein Eng. 2002, 15, 205-14.
    102 De Domenico I, Ward DM, di Patti MC, Jeong SY, David S, Musci G, Kaplan. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007,26,2823-31.
    103 Li L, Vulpe CD, Kaplan J. Functional studies of hephaestin in yeast: evidence for multicopper oxidase activity in the endocytic pathway. Biochem J. 2003, 375, 793-8.
    104 Roy CN, Enns CA. Iron homeostasis: new tales from the crypt. Blood. 2000, 96,4020-7.
    105 Leveugle B, Faucheux BA, Bouras C, Nillesse N, Spik G, Hirsch EC, Agid Y, Hof PR. Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson's disease cases. Acta Neuropathol. 1996, 91, 566-72.
    106 Chu Y, Kordower JH.Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: Is this the target for Parkinson's disease? Neurobiol Dis. 2007, 25, 134-49.
    107 Maingay M, Romero-Ramos M, Carta M, Kirik D.Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression.Neurobiol Dis. 2006, 23, 522-32.
    108 Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC. Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Neural Transm. 2006, 113, 757-67.
    109 Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008, 70, 1411-7.
    1 Beard JL, Connor JR. Iron status and neural functioning. Annu Rev Nutr. 2003, 23,41-58.
    
    2 Baynes RD, Bothwell TH. Iron deficiency. Ann Rev Nutr. 1990, 10, 133-48.
    3 Rao R, Tkac I, Townsend EL, Gruetter R, Georgieff MK. Perinatal iron deficiency alters the neurochemical profile of the developing rat hippocampus. JNutr. 2003,133, 3215-21.
    4 Halliday JW, Powell LW. Iron overload. Semin Hematol. 1982, 19,42-53.
    5 Powers KM, Smith-Weller T, Franklin GM, Longstreth WTJr, Swanson PD, Checkoway H. Parkinson's disease risks associated with dietary iron, manganese, and other nutrient intakes. Neurology. 2003, 60, 1761-6.
    
    6 Youdim MB, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci. 2004, 1012, 306-25.
    7 Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004, 5, 863-73.63 Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000, 275,19906-12.
    8 Berg D, Hochstrasser H. Iron metabolism in Parkinsonian syndromes. Mov Disord. 2006, 9, 1299-310.
    9 Puccio H, Koenig M. Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum Mol Genet. 2000, 9, 887-92.
    10 Campuzano V, Montermini L, Molto MD, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996, 271, 1423-27.
    11 Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998,62,111-21.
    
    12 Cavadini P, Gellera C, Patel PI, et al. Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet. 2000, 9, 2523-30.
    13 Foury F, Talibi D. Mitochondrial control of iron homeostasis. A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J Biol Chem. 2001, 276, 7762-8.
    
    14 Radisky DC, Babcock MC, Kaplan J. The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem. 1999, 274, 4497-9.
    15 Lutz T, Westermann B, Neupert W, et al. The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria. J Mol Biol. 2001, 307, 815-25.
    
    16 Muhlenhoff U, Richhardt N, Ristow M, et al. The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet. 2002, 11, 2025-36.
    17 Chen OS, Hemenway S, Kaplan J. Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis. Proc Natl Acad Sci USA. 2002, 99,12321-26.
    18 Li K, Besse EK, Ha D, et al. Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet. 2008 Apr 17. [Epub ahead of print]
    19 Rotig A, de Lonlay P, Chretien D, et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet. 1997,17, 215-7.
    20 Cossee M, Puccio H, Gansmuller A, et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet. 2000, 9,1219-26.
    21 Puccio H, Simon D, Cossee M, et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet. 2001,27, 181-6.
    22 Runko AP, Griswold AJ, Min KT. Overexpression of frataxin in the mitochondria increases resistance to oxidative stress and extends lifespan in Drosophila. FEBS Lett. 2008, 582, 715-9.
    23 Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, Lill R, Bishop DF. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood. 2000, 96, 3256-64.
    24 Shirihai OS, Gregory T, Yu C, et al. ABC-me: a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO J. 2000, 19, 2492-502.
    25 Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996, 13, 399-408.
    26 Waheed A, Parkkila S, Saarnio J, et al. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc Natl Acad Sci USA. 1999, 96, 1579-84.
    27 Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001, 276, 7806-10.
    28 Krause A, Neitz S, Magert HJ, et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett, 2000, 480, 147-50.
    29 Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001,276,7811-9.
    30 Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci USA. 2001, 98, 8780-5.
    31 Nicolas G, Bennoun M, Porteu A, et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Natl Acad Sci USA. 2002, 99,4596-601.
    32 Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 2003, 33, 21-2.
    33 Frazer DM, Wilkins SJ, Becker EM, et al. Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology 2002, 123, 835-44.
    
    34 Weinstein DA, Roy CN, Fleming MD, et al. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood. 2002, 100, 3776-81.
    
    35 Nicolas G, Chauvet C, Viatte L, et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest. 2002, 110, 1037-44.
    
    36 Qin W, Fang D, Zhong-Ming Q, et al. Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology. 2008 May 1. [Epub ahead of print]
    
    37 Cortell S, Conrad ME. Effect of endotoxin on iron absorption. Am J Physiol. 1967, 213, 43-7.
    
    38 Nemeth E, Valore EV, Territo M, et al. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood. 2003, 10, 2461-3.
    39 Courselaud B, Pigeon C, Inoue Y, et al. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J Biol Chem. 2002, 277,41163-70.
    40 Chen OS, Schalinske KL, Eisenstein RS. Dietary iron intake modulates the activity of iron regulatory proteins (IRPs) and the abundance of ferritin and mitochondrial aconitase in rat liver. J Nutr. 1997, 127,238-48.
    41 Hentze MW, Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA. 1996, 93, 8175-82.
    42 Posch M, Sutterluety H, SkernT, Seiser C. Characterization of the translationdependent step during iron-regulated decay of transferrin receptormRNA. J Biol Chem. 1999, 274,16611-18.
    43 Butt J, Kim HY, Basilion JP, Cohen S, Iwai K, Philpott CC, Altschul S, Klausner RD, Rouault TA. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc Natl Acad Sci USA. 1996, 93,4345-49.
    44 Duncan R, Faggart MA, Roger AJ, Cornell NW. Phylogenetic analysis of the 5- aminolevulinate synthase gene. Mol Biol Evol. 1999, 16, 383-96.
    45 Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem. 2007, 103, 17-37.
    46 Friedlich AL, Tanzi RE, Rogers JT. The 5'-untranslated region of Parkinson's disease alpha-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry. 2007 Mar;12(3):222-3.
    47 Canonne-Hergaux F, Gruenheid S, Ponka P, Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999, 93,4406-17.
    48 Garrick LM, Dolan KG, Romano MA, Garrick MD. Non-transferrin-bound iron uptake in Belgrade and normal rat erythroid cells. J Cell Physiol. 1999, 178, 349-58.
    49 Mascotti DP, Rup D, Thach RE. Regulation of iron metabolism: translational effects mediated by iron, heme, and cytokines. Annu Rev Nutr. 1995, 15, 239-61.
    50 Toth I, Bridges KR. Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch. J Biol Chem. 1995, 270, 19540-44.
    51 Samaniego F, Chin J, Uwai K, Rouault TA, Klausner RD. Molecular characterization of a second iron responsive element binding protein, iron regulatory protein 2. J Biol Chem. 1994, 269, 30904-10.
    52 Allerson CR, Cazzola M, Rouault TA. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemiacataract syndrome. J Biol Chem. 1999,274, 26439-47.
    53 Levi S, Girelli D, Perrone F, Pasti M, Beaumont C, et al. Analysis of ferritins in lymphoblastoid cell lines and in the lens of subjects with hereditary hyperferritinemiacataract syndrome. Blood. 1998,91,4180-87.
    54 Flint DH, Timunello JF, Emptage MH. The inactivation of Fe-S cluster containing hydrolyases by superoxide. J BiolChem. 1993, 268, 22369-76.
    55 Weiss G, Goossen B, Doppler W, Fuchs D, Pantopoulos K, et al. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 1993, 12, 3651-57.
    56 Oria R, Sanchez L, Houston T, Hentze MW, Liew FY, et al. Effect of nitric oxide on expression of transferring receptor and ferritin and on cellular iron metabolism in K562 human erythroleukemia cells. Blood. 1995, 85, 2962-66.
    57 Weiss G, Werner-Felmayer G, Werner ER, Grunewald K,Wachter H, et al. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med. 1994, 180, 969-76.
    58 Arnaud N, Murgia I, Boucherez J, Briat JF, Cellier F, Gaymard F. An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFerl ferritin gene expression. J Biol Chem. 2006, 281, 23579-88.
    59 Pantopoulos K, Hentze MW. Activation of iron regulatory protein-1 by oxidative stress in vitro. Proc Natl Acad Sci USA. 1998, 95, 10559-63.
    60 Pantopoulos K, Mueller S, Atzberger A, AnsorgeW, StremmelW, et al. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem. 1997,272,9802-8.
    61 Pantopoulos K, Weiss G, Hentze M. Nitric oxide and oxidative stress (H_2O_2) control mammalian iron metabolism by different pathways. Mol Cell Biol. 1996, 16, 3781-88.
    62 Galy B, Holter SM, Klopstock T, Ferring D, Becker L, Kaden S, Wurst W, Grone HJ, Hentze MW. Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nat Genet. 2006, 38, 967-9.
    63 Faucheux BA, Martin ME, Beaumont C, Hunot S, Hauw JJ, Agid Y, Hirsch EC. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease. J Neurochem. 2002, 83, 320-30.
    64 Kaur D and Andersen J. Does cellular iron dysregulation play a causative role in Parkinson's disease? Ageing Res Rev. 2004, 3, 327-43.
    65 McKie AT, Barrow D, Latunde-Dada GO, et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 2001, 291, 1755-9.
    66 Wang X, Ghio AJ, Yang F, et al. Iron uptake and Nramp2/DMT1/DCT1 in human bronchial epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2002, 282, L987-95.
    67 Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem. 2000, 275, 19906-12.
    68 Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995,270,1230-7.
    69 Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000, 88, 1474-80.
    70 Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem. 2000, 275, 21048-54.
    71 Rutledge EA, Green FA, Enns CA. Generation of the soluble transferrin receptor requires cycling through an endosomal compartment. J Biol Chem. 1994, 269, 31864-8.
    72 R'Zik S, Beguin Y. Serum soluble transferrin receptor concentration is an accurate estimate of the mass of tissue receptors. Exp Hematol. 2001, 29, 677-85.
    73 Olivares M, Walter T, Cook JD, et al. Usefulness of serum transferrin receptor and serum ferritin in diagnosis of iron deficiency in infancy. Am J Clin Nutr. 2000, 72, 1191-5.
    74 Alcantara O, Javors M, Boldt DH. Induction of protein kinase C mRNA in cultured lymphoblastoid T cells by iron-transferrin but not by soluble iron. Blood. 1991, 77, 1290-7.
    75 Arredondo M, Munoz P, Mura CV, et al. HFE inhibits apical iron uptake by intestinal epithelial (Caco-2) cells. FASEB J. 2001, 15, 1276-8.
    76 Petris MJ, Mercer JF, Culvenor JG, et al. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 1996,15, 6084-95.
    77 Hirsch EC, Hunot S, Hartmann A. Neuroinflammatory processes in Parkinson's disease. Parkinsonism Relat Disord. 2005,11 Suppl 1, S9-S15.
    78 Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A. 1997, 94, 7531-6.
    79 Youdim MB, Griinblatt E, Mandel S. The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson's disease with iron chelators. Ann N Y Acad Sci. 1999, 890, 7-25.
    80 el-Agnaf OM, Irvine GB. Aggregation and neurotoxicity of alpha-synuclein and related peptides. Biochem Soc Trans. 2002, 30, 559-65.
    81 Castellani RJ, Siedlak SL, Perry G, Smith MA. Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathol. 2000, 100, 111-4.
    82 Kostka M, Hogen T, Danzer KM, et al. Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem. 2008, 283, 10992-1003.
    83 Moos T, Morgan EH. The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann N Y Acad Sci. 2004, 1012, 14-26.
    84 Brissot P, Troadec MB, Loreal O. The clinical relevance of new insights in iron transport and metabolism. Curr Hematol Rep. 2004, 3, 107-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700