用户名: 密码: 验证码:
稻瘟病菌NAD(H)激酶MoPos5功能分析及其互作蛋白的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由稻瘟病菌(Magnaporthe oryzae)引起的稻瘟病是世界范围内水稻生产上的重要病害之一,严重制约着世界粮食安全保障。尽管对稻瘟病菌的生长发育和侵染致病等各个阶段都已开展了长期且较为系统的研究,但是迄今为止对其定殖和扩展的分子机制仍然知之甚少。由寄主防御反应产生的活性氧物质是稻瘟病菌定殖、扩展过程中的主要障碍之一,而NAD(H)激酶能通过调节胞内NAD(H)与NADP(H)之间的动态平衡参与活性氧胁迫的防御反应,因此,对稻瘟病菌NAD(H)激酶生物学功能的研究及其相关信号传导途径的探索将有助于为揭示该病原菌定殖、扩展的分子机制提供理论参考依据。
     MoPos5是稻瘟病菌三个NAD(H)激酶编码基因中的主效基因,具有NAD(H)激酶典型的保守基序和功能结构域,能够异源互补酿酒酵母POS5缺失突变的氧胁迫生长缺陷。该基因在稻瘟病菌的各个生长发育阶段和侵染致病过程中都有稳定的转录,MoPos5-GFP融合蛋白的亚细胞定位初步断定在线粒体中。
     MoPos5与稻瘟病菌菌丝体生长、产孢及致病性密切相关。MoPos5缺失导致稻瘟病菌菌丝体生长速度减慢,大约仅有野生型的50%,由于突变体中与胞内活性氧产生有关的MoNox1转录下调,因此推测MoPos5缺失影响了胞内NADPH的合成、打破了胞内活性氧动态平衡,最终影响菌丝体正常生长;MoPos5的缺失也导致稻瘟病菌产孢量下降约45%,主要原因在于分生孢子梗产量减少,而至于分生孢子梗产量减少的原因目前仍不知晓。虽然产孢量下降,但是产生的分生孢子形态结构正常,也能正常地萌发、产生具有功能的附着胞侵入寄主组织,可是侵入寄主组织后,缺失突变体因无法及时清除由寄主防御系统产生的活性氧物质而无法在寄主组织内进一步定殖、扩展,DAB染色可见在其侵染的叶鞘细胞中有大量活性氧物质积累,最终导致突变体致病性严重减弱。此外,MoPos5也是稻瘟病菌利用亚麻酸作为碳源时所必需的,因其催化产生的NADPH参与了过氧化物酶体中偶数位不饱和肪酸β-氧化。MoPos5的过量表达对稻瘟病菌的生长发育、细胞分化及致病性并无明显影响,只是产孢量略微有所增加、MoNox1的转录水平略微上调。稻瘟病菌中的另两个NAD(H)激酶编码基因MoNADK2和MoNADK3在Mopos5缺失突变体中表达上调,表明三个NAD(H)激酶间在一定程度上存在功能互补关系,MoNADK2和MoNADK3可能部分弥补着MoPos5缺失造成的功能缺陷,比如维持胞内必需的NADPH水平。
     借助酵母双杂交系统,共获得了9个MoPos5的互作蛋白,其中6个是通过酵母双杂交筛选稻瘟病菌Guy11菌丝体阶段cDNA文库获得的,另3个则属于Pos5p互作蛋白在稻瘟病菌中的同源蛋白。通过生物信息学预测分析,并结合相关同源蛋白的研究报道,MoPos5的互作蛋白很可能参与调控了细胞骨架建成、细胞运动、细胞分裂、细胞老化与死亡、线粒体功能维持、胁迫防御反应、物质与能量代谢和信号传导等多种多样的生物学进程。
     综上所述,NAD(H)激酶MoPos5可能通过多种多样的效应蛋白调节着胞内外的活性氧物质水平,从而调控了稻瘟病菌的生长发育及其在寄主组织内定殖、扩展。
Rice blast disease, caused by Magnaporthe oryzae, is one of the most destructive and prevalent diseases in global rice production, which severely restricts the food security worldwide. Although in the past decades of years, systematic research on the growth, development and pathogenicity of this fungus has been carrying out effectively, the mechanisms of colonization and expansion are still not well-understood. Host-driven ROS seem to be the first major barrier for the colonization and expansion of pathogens, while NAD(H) kinases play an important role in ROS scavenging system through regulating the fine intracellular balance between NAD(P) and NADP(H). Therefore, functional analysis of a NAD(H) kinase MoPos5in M. oryzae and exploration of the signal pathways which it is involved in will be conductive to further understanding of the molecular mechanisms of colonization and expansion of this fungus in rice plants.
     MoPos5, containing typical conserved motifs and domains of NAD(H) kinase, can functionally complement the growth deficiency of the POS5deletion mutant of Saccharomyces cerevisiae under oxidative stress. During the whole life and infection cycle of M. oryzae, MoPos5always kept in a relatively stable transcription level, and its subcellular localization was roughly considered to be mitochondria with the assistance of Janus Green B staining.
     MoPos5was proved to be closely related to the mycelia growth, conidiation and pathogenicity of M. oryzae. The deletion mutants showed obviously mycelia growth deficiency compared to the wild type strain. Due to the downregulation of MoNoxl in deletion mutants, which is involved in intracellular ROS generation, it was indicated that disfunction of MoPos5might cause negative effect on intracellular ROS scavenging systems, which then brought about cytotoxicity and the final growth defects. The conidiations of deletion mutants were also deficient, and it had been demonstrated that the decreased production of conidiophores was the primary cause. However, the conidia produced by the deletion mutants possessed normal morphology, and they could also germinate to form effective appressoria just like the wild type strain. Nevertheless, after penetration into host tissues, the mutants could not fulfill colonization and expansion successfully, which were proved by the microscopic observation and biochemical staining for the ROS accumulation around the infection site, so the pathogenicity of mutants fatally reduced. Besides, MoPos5showed to be essential for utilizing linolenic acid as carbon source, which might be connected with its NADPH generation that was necessary for β-oxidation of linolenic acid. Moreover, overexpression of MoPos5had nothing to do with fungal growth, development and pathogenicity, except for slight increase of conidiation and upregulation of MoNoxl transcription.
     Other two NAD(H) kinase genes MoNADK2and MoNADK3were both upregulated in MoPos5deletion mutants, which indicated that there was a certain degree of functional redundancy among those three NAD(H) kinases in M. oryzae, and MoNADK2and MoNADK3might partially make up for the deficiencies caused by MoPos5deletion, such as supplying an essential amount of NADPH for survival.
     Drawing support from yeast two-hybrid system, nine MoPos5interaction proteins were obtained, six of them were gained from screening the mycelia cDNA library of Guy11, and the other three were the homologous of Pos5p interactions proteins in M. oryzae. According to bioinformatical predictions and relevant research papers, the MoPos5interaction proteins were likely to participate in various biological processes, including cytoskeleton morphogenesis, cell movement, cell division, cell ageing and death, maintainance of mitochondrial function, defense response to environmental stress, material and energy metabolism and signal transduction.
     In conclusion, it appeared more likely that NAD(H) kinase MoPos5regulated both intracellular and extracellular ROS levels through diverse effectors, and was thereby directly related to the growth, conidiation, colonization and expansion in host tissues of rice blast fungus.
引文
[1]Belenky P, Bogan K L, and Brenner C. NAD+metabolism in health and disease [J]. Trends Biochem Sci,2007,32(1):12-19.
    [2]Berger F, Ramirez-Hernandez M H, and Ziegler M. The new life of a centenarian: signalling functions of NAD(P) [J]. Trends Biochem Sci,2004,29(3):111-118.
    [3]Pollak N, Dolle C, and Ziegler M. The power to reduce:pyridine nucleotides-small molecules with a multitude of functions [J]. Biochem J,2007,402(2):205-218.
    [4]Ying W. NAD+and NADH in cellular functions and cell death [J]. Front Biosci, 2006,11:3129-3148.
    [5]Ying W. NAD+and NADH in brain functions, brain diseases and brain aging [J]. Front Biosci,2007,12:,1863-1888.
    [6]Smith J S, Brachmann C B, Celic I, et al. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family [J]. Proc Natl Acad Sci USA,2000,97(12):6658-6663.
    [7]Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling [J]. Eur J Biochem,2000,267(6):1550-1564.
    [8]Blander G and Guarente L. The Sir2 family of protein deacetylases [J]. Annu Rev Biochem,2004,73:417-435.
    [9]Virag L and Szabo C. The therapeutic potential of poly (ADP-ribose) polymerase inhibitors [J]. Pharmacol Rev,2002,54(3):375-429.
    [10]Lee H C. Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers [J]. Annu Rev Pharmacol Toxicol,2001,41:317-345.
    [11]Lee H C. Multiplicity of Ca2+messengers and Ca2+stores:a perspective from cyclic ADP-ribose and NAADP [J]. Curr Mol Med,2004,4(3):227-237.
    [12]Bedard K and Krause K H. The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology [J]. Physiol Rev,2007,87(1):245-313.
    [13]McGuinnes E T, and Bulter J R. NAD kinase-a review [J]. Int J Biochem,1985, 17(1):1-11.
    [14]Kornberg A. Enzymatic synthesis of triphosphopyridine nucleotide [J]. J Biol Chem,1950,182:805-813.
    [15]Murata K, Uchida T, Tani K, el al. Metaphosphate:a new phosphoryl donor for NAD phosphorylation [J]. Agric Biol Chem,1980,44:61-68.
    [16]Kawai S, Mori S, Mukai T, et al. Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv [J]. Biochem Biophys Res Commun,2000,276(1):57-63.
    [17]Grose J H, Joss L, Velick S F, et al. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress [J]. Proc Natl Acad Sci USA,2006, 103(20):7601-7606.
    [18]Kawai S, and Murata K. Structure and function of NAD kinase and NADP phosphatase:key enzymes that regulate the intracellular balance of NAD(H) and NADP(H) [J]. Biosci Biotechnol Biochem,2008,72 (4):919-930.
    [19]Kawai S, Mori S, Mukai T, et al. Molecular characterization of Escherichia coli NAD kinase [J]. Eur J Biochem,2001,268(15):4359-4365.
    [20]Shi F, Kawai S, Mori S, et al. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae [J]. FEBS J, 2005,272(13):3337-3349.
    [21]Kawai S, Suzuki S, Mori S, et al. Molecular cloning and identification of UTR1 of a yeast Saccharomyces cerevisiae as a gene encoding an NAD kinase [J]. FEMS Microbiol Lett,2001,200(2):181-184.
    [22]Mori S, Yamasaki M, Maruyama Y, et al. NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex [J]. Biochem Biophys Res Commun,2005,327(2):500-508.
    [23]Raffaelli N, Finaurini L, Mazzola F, et al. Characterization of Mycobacterium tuberculosis NAD kinase:functional analysis of the full-length enzyme by site-directed mutagenesis [J]. Biochemistry,2004,43(23):7610-7617.
    [24]Liu J, Lou Y, Yokota H, et al. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP [J]. J Mol Biol,2005, 354(2):289-303.
    [25]Mori S, Kawai S, Shi F, et al. Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution [J]. J Biol Chem,2005,280(25): 24104-24112.
    [26]Sassetti C M, Boyd D H, and Rubin E J. Genes required for mycobacterial growth defined by high density mutagenesis [J]. Mol Microbiol,2003,48(1):77-84.
    [27]Shianna K V, Marchuk D A, and Strand M K. Genomic characterization of POS5, the Saccharomyces cerevisiae mitochondrial NADH kinase [J]. Mitochondrion,2006, 6(2):94-101.
    [28]Bieganowski P, Seidle H F, Wojcik M, et al. Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions [J]. J Biol Chem,2006,281(32):22439-22445.
    [29]Outten C E, and Culotta V C. A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae [J]. EMBO J,2003,22(9):2015-2024.
    [30]Strand M K, Stuart G R, Longley M J, et al. POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA [J]. Eukaryot Cell,2003,2(4):809-820.
    [31]Chai M F, Chen Q J, An R, et al. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection [J]. Plant Mol Biol,2005,59(4):553-564.
    [32]Berrin J G, Pierrugues O, Brutesco C, et al. Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana [J]. Mol Genet Genomics,2005,273(1):10-19.
    [33]Pollak N, Niere M, and Ziegler M. NAD kinase levels control the NADPH concentration in human cells [J]. J Biol Chem,2007,282(46):33562-33571.
    [34]Huh W K, Falvo J V, Gerke L C, et al. Global analysis of protein localization in budding yeast [J]. Nature,2003,425(6959):686-691.
    [35]Shi F, and Li Y F. The effect of NAD kinase homologues on the beta-oxidation of unsaturated fatty acids with the double bond at an even position in Saccharomyces cerevisiae [J]. Sheng Wu Gong Cheng Xue Bao,2006,22(4):667-671.
    [36]Epel D, Patton C, Wallace RW, et al. Calmodulin activates NAD kinase of sea urchin eggs:an early event of fertilization [J]. Cell,1981,23(2):543-549.
    [37]Williams M B, and Jones H P. Calmodulin-dependent NAD kinase of human neutrophils [J]. Arch Biochem Biophys,1985,237(1):80-87.
    [38]Means A R, VanBerkum M F A, Bagchi I, et al. Regulatory functions of calmodulin [J]. Pharmacol Ther,1991,50(2):255-270.
    [39]Lee S H, Seo H Y, Kim J C, et al. Differential activation of NAD kinase by plant calmodulin isoforms [J]. J Biol Chem,1997,272(14):9252-9259.
    [40]Harding S A, Oh S H, and Roberts D M. Transgenic tobacco expressing a foreign calmodulin gene shows an enhanced production of active oxygen species [J]. EMBO J, 1997,16(6):1137-1144.
    [41]Hayashi M, Takahashi H, Tamura K, et al. Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice [J]. Proc Natl Acad Sci USA,2005,102(19):7020-7025.
    [42]Ruiz J M, Sanchez E, Garcia P C, et al. Proline metabolism and NAD kinase activity in green bean plants subjected to cold-shock [J]. Phytochemistry,2002,59(5): 473-478.
    [43]Takahashi H, Watanabe A, Tanaka A, et al. Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis [J]. Plant Cell Physiol,2006,47(12):1678-1682.
    [44]Turner W L, Waller J C, Vanderbeld B, et al. Cloning and characterization of two NAD kinases from Arabidopsis. Identification of a calmodulin binding isoform [J]. Plant Physiol,2004,135(3):1243-1255.
    [45]Jo S H, Son M K, Koh H J, et al. Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase [J]. J Biol Chem,2001,276(19):16168-16176.
    [46]Shi F, Li Y F, Li Y, et al. Molecular properties, functions, and potential applications of NAD kinase [J]. Acta Biochim Biophys Sin (Shanghai),2009,41(5): 352-361.
    [47]Sauer U, Canonaco F, Heri S, et al. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli [J]. J Biol Chem,2004,279(8):6613-6619.
    [48]Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences [J]. Antioxid Redox Signal,2008,10(2):179-206.
    [49]Young D, Tallman M, Landy K, et al. Ocular lens NAD kinase:partial purification and metabolic implications [J]. Biochem Biophys Res Commun,1998, 247(1):154-158.
    [50]Singh R, Lemire J, Mailloux R J, et al. A novel strategy involved anti-oxidative defense:the conversion of NADH into NADPH by a metabolic network [J]. PLoS One 2008,3(7):e2682.
    [51]Singh R, Mailloux R J, Puiseux-Dao S, et al. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens [J]. J Bacteriol,2007,189(18):6665-6675.
    [52]Lemire J, Kumar P, Mailloux R J, et al. Metabolic adaptation and oxaloacetate homeostasis in P. fluorescens exposed to aluminum toxicity [J]. J Basic Microbiol, 2008,48(4):252-259.
    [53]Akella S S, and Harris C. Developmental ontogeny of NAD kinase in the rat conceptus [J]. Toxicol Appl Pharmacol,2001,170(2):124-129.
    [54]Outten C E, and Culotta V C. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase [J]. J Biol Chem,2004,279(9):7785-7791.
    [55]Cheng W, and Roth J R. Evidence for two NAD kinases in Salmonella typhimurium [J]. J Bacteriol,1994,176(14):4260-4268.
    [56]Imlay J A, and Linn S. Toxic DNA damage by hydrogen peroxide through Fenton reaction in vivo and in vitro [J]. Science,1988,240(4852):640-642.
    [57]Tuttle S W, Maity A, Oprysko P R, et al. Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration:implications for the mechanism of HIF-1 alpha stabilization under moderate hypoxia [J]. J Biol Chem,2007,282(51):36790-36796.
    [58]Anderson R M, Bitterman K J, Wood J G, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+levels [J]. J Biol Chem,2002,277(21):18881-18890.
    [59]Todisco S, Agrimi G, Castegna A, et al. Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae [J]. J Biol Chem,2006,281 (3):1524-1531.
    [60]Lerner F, Niere M, Ludwig A, et al. Structural and functional characterization of human NAD kinase [J]. Biochem Biophys Res Commun,2001,288(1):69-74.
    [61]Ou S H. Rice Diseases [M]. Kew, England:Commonwealth Mycological Institute,1985.97-184.
    [62]Baker B, Zambryski P, Staskawicz B, et al. Signal in plant-microbe interactions [J]. Science,1997,276(5313):726-733.
    [63]Valent B. Rice blast as a model system for plant pathology [J]. Phytopathology, 1990,80(1):33-36.
    [64]Talbot N J. On the trail of a cereal killer:exploring the biology of Magnaporthe grisea [J]. Annu Rev Microbiol,2003,57:177-202.
    [65]Xu J R, Peng Y L, Dickman M B, et al. The dawn of fungal pathogen genomics [J]. Annu Rev Phytopathol.2006,44:337-366.
    [66]Xu J R, Zhao X, and Dean R A. From genes to genomes:a new paradigm for studying fungal pathogenesis in Magnaporthe oryzae [J]. Adv Genet,2007,57:175-218.
    [67]Jeon J, Park S Y, Chi M H, et al. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus [J]. Nat Genet,2007,39(3):561-565.
    [68]Hamer J E, Howard R J, Chumley F G, et al. A mechanism for surface attachment in spores of a plant pathogenic fungus [J]. Science,1988,239(4837):288-290.
    [69]Lee Y H, and Dean R A. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe oryzae [J]. FEMS Microbiol Lett,1994,115(1):71-76.
    [70]Howard R J, Ferrari M A, Roach D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures [J]. Proc Natl Acad Sci USA,1991, 88(24):11281-11284.
    [71]Kankanala P, Czymmek K, and Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus [J]. Plant Cell,2007, 19(2):706-724.
    [72]Sesma A, and Osbourn A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi [J]. Nature,2004,431(7008): 582-586.
    [73]Dufresne M, and Osburn A E. Definition of tissue-specific and general requirements for plant infect in a phytopathogenic fungus [J]. Mol Plant Microbe Interact,2001,14(3):300-307.
    [74]Ebbole D J. Magnaporthe as a model for understanding host-pathogen interactions [J]. Annu Rev Phytopathol,2007,45:437-456.
    [75]Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea [J]. Nature,2005,434(7036):980-986.
    [76]Chen S, Xu X, Dai X, et al. Identification of tenuazonic acid as a novel type of natural photosystem Ⅱ inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii [J]. Biochim Biophys Acta,2007,1767(4):306-318.
    [77]Lebrun M H, Dutfoy F, Gaudemer F, et al. Detection and quantitation of the fungal phytotoxin tenuazonic acid produced by Pyricularia oryzae [J]. Phytochemistry,1990,29(12):3777-3783.
    [78]Lebrun M H, Ranomenjanahary S, Boutar M, et al. Role of the phytotoxin tenuazonic acid in rice-Pyricularia oryzae interactions [J]. Plant Physiol Biochem, 1988,26:225.
    [79]Sun C B, Suresh A, Deng Y Z, et al. A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress [J]. Plant Cell,2006,18(12):3686-3705.
    [80]Urban M, Bhargava T, and Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease [J]. EMBO J,1999,18(3):512-521.
    [81]Xue CY, Park G, Choi WB, et al. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus [J]. Plant Cell,2002,14(9):2107-2119.
    [82]Veneault-Fourrey C, and Talbot N J. Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus Magnaporthe grisea [J]. Adv Appl Microbiol,2005,57:177-215.
    [83]Ebbole D J, Jin Y, Thon M, et al. Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea:analysis of expressed sequence tags [J]. Mol Plant Microbe Interact,2004,17(12):1337-1347.
    [84]Gowda M, Venu RC, Raghupathy MB, et al. Deep and comparative analysis of the mycelium and appressorium transcriptomes of Magnaporthe grisea using MPSS, RL-SAGE, and oligoarray methods [J]. BMC Genomics,2006,7:310.
    [85]Soanes D M, Skinner W, Keon J, et al. Genomics of phytopathogenic fungi and the development of bioinformatic resources [J]. Mol Plant Microbe Interact,2002, 15(5):421-427.
    [86]Mathioni S M, Belo A, Rizzo C J, et al. Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses [J]. BMC Genomics,2011,12:49.
    [87]Clergeot P H, Gourgues M, Cots J, et al. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea [J]. Proc Natl Acad Sci USA,2001,98(12):6963-6968.
    [88]Balhadere P V, and Talbot N J. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea [J]. Plant Cell,2001,13(9):1987-2004.
    [89]Gilbert M J, Thornton C R, Wakley G, et al. A P-type ATPase required for rice blast disease and induction of host resistance [J]. Nature,2006,440(7083):535-539.
    [90]Alfano J R, and Collmer A. Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense [J]. Annu Rev Phytopathol,2004,42:385-414.
    [91]Chi M H, Park S Y, Kim S, et al. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host [J]. PLoS Pathog,2009, 5(4):e1000401.
    [92]Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants [J]. Trends Plant Sci,2004,9(10):490-498.
    [93]Rogers SA. Detoxify or Die [M]. Sarasota, FL:Sand Key Company, Inc.2002,409.
    [94]Thannickal V J, and Fanburg B L. Reactive oxygen species in cell signaling [J]. Am J Physiol Lung Cell Mol Physiol,2000,279(6):L1005-L1028.
    [95]Heller J, and Tudzynski P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease [J]. Annu Rev Phytopathol,2011,49:369-390.
    [96]Egan M J, Wang Z Y, Jone M A, et al.Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease [J]. Proc Natl Acad Sci USA, 2007,104(28):11772-11777.
    [97]Hansberg W, de Groot H, and Sies H. Reactive oxygen species associated with cell differentiation in Neurospora crassa [J]. Free Radic Biol Med,1993,14(3):287-293.
    [98]Malagnac F, Lalucque H, Lepere G, et al. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserine [J]. Fungal Genet Biol,2004,41(11):982-997.
    [99]Edens W A, Sharling L, Cheng G, et al. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox [J]. J Cell Biol,2001,154(4):879-891.
    [100]Brisson L F, Tenhaken R, and Lamb C. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance [J]. Plant Cell,1994,6(12): 1703-1712.
    [101]Jones J D G, and Dangl J L. The plant immune system [J]. Nature,2006,444: 323-329.
    [102]Doke N, Miura Y, Sanchez L M, et al. The oxidative burst protects plants against pathogen attack:mechanism and role as an emergency signal for plant bio-defence [J]. Gene,1996,179(1):45-51.
    [103]Apostol I, Heinstein P F, and Low P S. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells:role in defense and signal transduction [J]. Plant Physiol,1989,90(1):109-116.
    [104]Chen S X, and Schopfer P. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase [J]. Eur J Biochem,1999,260:726-735.
    [105]Torres M A, and Dangl J L. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development [J]. Curr Opin Plant Biol,2005,8(4):397-403.
    [106]Nurnberger T, Brunner F, Kemmerling B, et al. Innate immunity in plants and animals:striking similarities and obvious differences [J]. Immunol Rev,2004,198: 249-266.
    [107]Zhang H J, Fang Q, Zhang Z G, et al. The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana [J]. J Exp Bot,2009,60(11):3109-3122.
    [108]Gan Y Z, Zhang L S, Zhang Z G, et al. The LCB 2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death [J]. New Phytol,2009,181(1): 127-146.
    [109]Gadjev I, Stone J M, and Gechev T S. Programmed cell death in plants:new insights into redox regulation and the role of hydrogen peroxide [J]. Int Rev Cell Mol Biol,2008,270:87-144.
    [110]Zurbriggen M D, Carrillo N, Tognetti V B, et al. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria [J]. Plant J, 2009,60(6):962-973.
    [111]Lamb C, and Dixon R A.The Oxidative burst in plant disease resistance [J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48:251-275.
    [112]Mellersh D G, Foulds I V, Higgins VJ, et al. H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions [J]. Plant J, 2002,29(3):257-268.
    [113]Cessna S G, Sears V E, Dickman M B, et al. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant [J]. Plant Cell,2000,12(11):2191-2200.
    [114]Mayer A M, Staples R C, and Gil-ad N L. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response [J]. Phytochemistry,2001,58(1):33-41.
    [115]Moye-Rowley W S. Regulation of the transcriptional response to oxidative stress in fungi:similarities and differences [J]. Eukaryot Cell,2003,2(3):381-389.
    [116]Apel K, and Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction [J]. Annu Rev Plant Biol,2004,55:373-399.
    [117]Molina L, and Kahmann R. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence [J]. Plant Cell,2007,19(7):2293-2309.
    [118]Lin C H, Yang S L, and Chung K R. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus [J]. Mol Plant Microbe Interact,2009,22(8):942-952.
    [119]Guo M, Guo W, Chen Y, et al. The basic leucine zipper transcription factor Moatfl mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae [J]. Mol Plant Microbe Interact,2010,23(8): 1053-1068.
    [120]Guo M, Chen Y, Du Yan, et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. PLoS Pathog,2011,7(2):e1001302.
    [121]Navarro R E, Stringer M A, Hansberg W, et al. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase [J]. Curr Genet,1996, 29(4):352-359.
    [122]Kawasaki L, Wysong D, Diamond R, et al. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress [J]. J Bacteriol,1997,179(10):3284-3292.
    [123]Lanfranco L, Novero M, and Bonfante P. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts [J]. Plant Physiol,2005,137(4):1319-1330.
    [124]Skamnioti P, Henderson C, Zhang Z, et al. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea [J]. Mol Plant-Microbe Interact,2007,20(5):568-580.
    [125]Tanabe S, Ishii-Minami N, Saitoh K I, et al. The role of catalase-peroxidase secreted by Magnaporthe oryzae during early infection of rice cells [J]. Mol Plant Microbe Interact,2011,24(2):163-171.
    [126]Huang K, Czymmek K J, Caplan J L, et al. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus [J]. PLoS Pathog,2011,7(4):e1001335.
    [127]Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy:the proteomics server for in-depth protein knowledge and analysis [J]. Nucleic Acids Res,2003,31(13):3784-3788.
    [128]Saitou N, and Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol,1987,4(4):406-425.
    [129]何月秋.真菌菌丝体培养和提取DNA方法的改进[J].菌物系统,2000,19(3):434-434.
    [130]Livak K J, and Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔCt method [J]. Methods,2001,25(4):402-408.
    [131]Bustin S A, Benes V, Garson J A, et al.The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem, 2009,55(4):611-622.
    [132]萨姆布鲁克 J,拉塞尔D W.分子克隆实验指南(第三版)[M].2002:492-499.
    [133]Ye P, Peyser B D, Pan X, et al. Gene function prediction from congruent synthetic lethal interactions in yeast [J]. Mol Syst Biol,2005,1:2005.0026.
    [134]Pan X, Ye P, Yuan DS, et al. A DNA integrity network in the yeast Saccharomyces cerevisiae [J]. Cell,2006,124(5):1069-1081.
    [135]Li Y F, and Shi F. Partial rescue of pos5 mutants by YEF1 and UTR1 genes in Saccharomyces cerevisiae [J]. Acta Biochim Biophys Sin (Shanghai),2006,38(5): 293-298.
    [136]Bieganowski P, Seidle H F, Wojcik M, et al. Synthetic lethal and biochemical analyses of NAD and NADH kinases in Saccharomyces cerevisiae establish separation of cellular functions [J]. J Biol Chem,2006,281(32):22439-22445.
    [137]Colomina N, Ferrezuelo F, Wang H, et al. Whi3, a developmental regulator of budding yeast, binds a large set of mRNAs functionally related to the endoplasmic reticulum [J]. J Biol Chem,2008,283(42):28670-28679.
    [138]Batisse J, Batisse C, Budd A, et al. Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure [J]. J Biol Chem,2009,284(50):34911-34917.
    [139]Libuda D E, and Winston F. Alterations in DNA replication and histone levels promote histone gene amplification in Saccharomyces cerevisiae [J]. Genetics,2010, 184(4):985-997.
    [140]Szappanos B, Kovacs K, Szamecz B, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism [J]. Nat Genet,2011, 43(7):656-662.
    [141]Zhou Du, Xin Zhou, Yi Ling, et al. agriGO:a GO analysis toolkit for the agricultural community [J]. Nucleic Acids Res,2010,38:W64-W70.
    [142]Brun S, Malagnac F, Bidard F, et al. Functions and regulation of the nox family in the filamentous fungus Podospora anserina:a new role in cellulose degradation [J]. Mol Microbiol,2009,74(2):480-496.
    [143]Grissa I, Bidard F, Grognet P, et al. The Nox/Ferric reductase/Ferric reductase-like families of eumycetes [J]. Fungal Biol,2010,114(9):766-777.
    [144]Kim K H, Willger S D, Park S W, et al. TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen [J]. PLoS Pathog,2009,5(11):e1000653.
    [145]Mouassite M, Camougrand N, Schwob E, et al. The'SUN'family:yeast SUN4/SCW3 is involved in cell septation [J]. Yeast,2000,16(10):905-919.
    [146]Camougrand N, Kissova I, Velours G, et al. Uthlp:a yeast mitochondrial protein at the crossroads of stress, degradation and cell death [J]. FEMS Yeast Res, 2004,5(2):133-140.
    [147]Camougrand N, Mouassite M, Velours G, et al. The SUN family:UTH1, an ageing gene, is also involved in the regulation of mitochondria biogenesis in Saccharomyces cerevisiae [J]. Arch Biochem Biophys,2000,375(1):154-160.
    [148]Kissova I, Deffieu M, Manon S, et al. Uthlp is involved in the autophagic degradation of mitochondria [J]. J Biol Chem,2004,279(37):39068-39074.
    [149]Krysan D J, Ting E L, Abeijon C, et al. Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae [J]. Eukaryot cell,2005,4(8):1364-1374.
    [150]Gagnon A I, Tremblay J, and Bourbonnais Y. Fungal yapsins and cell wall:a unique family of aspartic peptidases for a distinctive cellular function [J]. FEMS Yeast Res,2006,6(7):966-978.
    [151]Albrecht A, Felk A, Pichova I, el al. Glycosylphosphatidylinositol-anchored proteinases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions [J]. J Biol Chem,2006,281(2):688-694.
    [152]Robinson R C, Turbedsky K, Kaiser D A, et al. Crystal structure of Arp2/3 complex [J]. Science,2001,294(5547):1679-1684.
    [153]Higgs H N, and Pollard T D. Regulation of actin filament network formation through ARP2/3 complex:Activation by a diverse arrayof protein [J]. Annu Rev Biochem,2001,70:649-676.
    [154]Smith T F, Gaitatzes C, Saxena K, et al. The WD repeat:a common architecture for diverse functions [J]. Trends Biochem Sci,1999,24 (5):181-185.
    [155]Hiltunen J K, Wenzel B, Beyer A, et al. Peroxisomal multifunctional beta-oxidation protein of Saccharomyces cerevisiae. Molecular analysis of the fox2 gene and gene product [J]. J Biol Chem,1992,267(10):6646-6653.
    [156]Hardwick K G, and Pelham H R B. ⅩⅢ.Yeast sequencing reports. SED6 is identical to ERG6, and encodes a putative methyltransferase required for ergosterol synthesis [J]. Yeast,1994,10(2):265-269.
    [157]Yazdi M A, and Moir A. Characterization and cloning of the gerC locus of Bacillus subtilis 168 [J]. J Gen Microbiol,1990,136(7):1335-1342.
    [158]Wang X P, Mann C J, Bai Y L, et al. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae [J]. J Bacteriol,1998,180(4):822-830.
    [159]Saint-Prix F, Bonquist L, and Dequin S. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose:the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation [J]. Microbiology,2004,150(7):2209-2220.
    [160]Moon K H, Abdelmegeed M A, and Song B J. Inactivation of cytosolic aldehyde dehydrogenase via S-nitrosylation in ethanol-exposed rat liver [J]. FEBS Lett,2007,581(27):3967-3972.
    [161]Surrenti C, and Galli M. Molecular mechanisms of alcohol induced liver injury. An Update [J]. Minerva Gastroenterol Dietol,2003,49(2):95-105.
    [162]Narita M, Kitagawa K, Nagai Y, et al. Effects of aldehyde dehydrogenase genotypes on carotid atherosclerosis [J]. Ultrasound Med Biol,2003,29(10):1415-1419.
    [163]Boles E, de Jong-Gubbels P, and Pronk J T. Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme [J]. J Bacteriol,1998,180(11):2875-2882.
    [164]Chi W, Yang J H, Zhang Q C, et al. Different expression patterns of four NADP-malic enzyme genes in rice [J]. Progress in Natural Science,2004,14(12): 1402-1410.
    [165]Wynn J P, Hamid A A, and Ratledge C, et al. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi [J]. Microbiology,1999,145(8): 1911-1917.
    [166]Hansberg W, and Aguirre J. Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen [J]. J Theor Biol,1990,142(2):201-221.
    [167]Aguirre J, Rios-Momberg M, Hewitt D, el al. Reactive oxygen species and development in microbial eukaryotes [J]. Trends Microbiol,2005,13(3):111-118.
    [168]Aguirre J, and Lambeth JD. Nox enzymes from fungus to fly to fish and what they tell us about nox function in mammals [J]. Free Radic Biol Med,2010,49(9): 1342-1353.
    [169]Bedard K, and Krause K H. The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology [J]. Physiol Rev,2007,87(1):245-313.
    [170]Voegele RT, Hahn M, Lohaus G, et al. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae [J]. Plant Physiol, 2005,137(1):190-198.
    [171]Nathues E, Joshi S, Tenberge KB, et al. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale [J]. Mol Plant Microbe Interact,2004,17(4):383-393.
    [172]Nathues E, Jorgens C, Lorenz N, et al. The histidine kinase CpHK.2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea [J]. Mol Plant Pathol,2007,8(5):653-665.
    [173]Alkan N, Davydov O, Sagi M, et al. Ammonium secretion by Colletotrichum coccodes activates host NADPH oxidase activity enhancing host cell death and fungal virulence in tomato fruits [J]. Mol Plant Microbe Interact,2009,22(12):1484-1491.
    [174]Shetty N P, Mehrabi R, Lutken H, et al. Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat [J]. New Phytol,2007,174(3):637-647.
    [175]Huckelhoven R, and Kogel K. Reactive oxygen intermediates in plant-microbe interactions:Who is who in powdery mildew resistance [J]. Planta,2003,216(6):891-902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700