用户名: 密码: 验证码:
速度与衰减结构成像及其在滇中地区的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震层析成像与断裂构造的相关性是近年来地震学研究的一个重要方向。前人从不同侧面开展了这方面的研究,这些研究成果为我们从新的角度探讨地震层析成像与断裂构造的关系提供了很好的思路,同时,也为我们进一步开展相关研究奠定了坚实的基础。
     ⒈论文研究方法
     首先对地震层析成像方法进行了较为系统的学习和研究。地震层析成像方法主要包括四个方面:(1)模型的参数化;(2)地震射线追踪;(3)反演成像;(4)解的评价。本论文包括速度结构层析成像和衰减结构层析成像。
     速度结构层析成像:(1)确定初始模型在水平和垂直方向的网格划分。垂直方向的网格划分主要是依据研究区域的速度模型;水平方向的网格划分主要依据是研究区域内台站和地震的分布以及地震射线的覆盖情况。然后通过检测板分辨实验来检测划分的网格是否能达到较好的分辨率。(2)基于初始的每个网格点的位置和速度,通过地震射线追踪方法正演得到理论走时。(3)结合理论走时与观测走时反演得到每个网格点的实际速度,并得到不同深度的速度图像。(4)用检测板分辨实验给出不同深度解的分辨率,用以判断速度图像的可信度。
     衰减结构层析成像:(1)截取地震记录的波形数据和噪声数据,并采用快速傅立叶变换(FFT)将截取的波形和噪声数据转化为波形的位移谱。(2)假定震源为Brune的ω2震源模型,利用遗传算法拟合出f c、Ω0、t?三个参数值。(3)利用衰减因子t?,在已知射线路径和三维速度结构的基础上,采用类似走时速度反演的方法获得三维衰减结构。
     ⒉论文研究内容及结果
     本论文在建立速度结构和衰减结构层析成像方法和程序的基础上,对两个差异较大的地区进行了地震层析成像与断裂构造相关性的研究。
     (一)是研究一个较小的区域(点),范围是(λE 101°~101.25°,φN 25.45°~25.65°),对2000年姚安6.5级地震的余震序列数据资料进行较为精细的三维速度结构和衰减结构层析成像进行分析。研究结果表明:姚安6.5级地震的余震在研究区域内主要沿北西向成带状分布,并且该条带西北端的地震相对于东南端的地震成团状分布,在深度上余震震源主要集中在2-12km。姚安6.5级主震发生在高、低VP、VS和QS过渡区域内;大部分余震均发生在低VP、VS和QS扰动区域内;余震在水平方向主要沿北西向高、低VP和QS过渡带分布;主震周围的团状余震似乎也有沿着北北东向高、低VP和QS过渡带分布的趋势。从余震分布特征以及三维VP、VS、QS的层析成像结果推测,在姚安震源区内存在一条北西向断裂带,并且该断裂带西北端较东南端破裂要深;同时在北西向主断裂带的两侧可能还各存在一条北西向的断裂带,即与通海-牟定、楚雄-建水断裂相连的北西向隐伏断裂带;北西向主断裂带的两端也分别存在一条与之交错的北东-北北东向断裂带。但考虑到一个地震序列资料数据少,且区域范围小的限制,该北东-北北东向断裂带在这里没有明确结论。
     (二)是研究一个较大的区域(面),范围是(λE 99.5°~102.5°,φN 24°~28°),对包括2000年姚安6.5级地震以及2003年大姚6.2、6.1级地震在内的滇中地区数据资料进行三维速度结构和衰减结构的层析成像分析。研究结果表明:研究区域内的主要断裂带,如南北向的程江断裂带、绿汁江断裂带、北东向的锦屏山-玉龙雪山断裂带以及北西向的楚雄-建水断裂带等,在不同深度都显示出明显的低VP、QP扰动异常。历史上大于6级的强震基本上都发生在高、低VP和高、低QP过渡区域内。从整个研究区域显示的低VP、低QP扰动异常看,其断裂构造的优势方向为近南北向、北西-北北西向和北东-北北东向。这可能与滇中地区整体上受到的区域应力场有关。
     2000年姚安6.5级地震震区存在北西向低VP、低QP扰动异常和北东向低VP、低QP扰动异常;主震位于北西向和北东向高、低VP和QP扰动异常交界带的交点附近。2003年大姚6.2级、6.1级地震震区也存在北西向低VP、低QP扰动异常和北东向低VP、低QP扰动异常,并且该北东向低QP扰动异常导致北西向低QP扰动异常呈现出两段的特点;两次主震位于北西向和北东向高、低VP和QP扰动异常交界带的交点附近。
     地震发生在高、低VP和QP过渡带可能是由于高速和低衰减在周围相对低速、高衰减的环境下更容易积累能量,从而在周围的软弱地带孕育了地震。结果证实了序列研究中的疑点,即姚安震区存在北西向断裂带,且在此断裂的西北端存在与之交错的北北东向断裂,并延伸到大姚震区。
     另外,在衰减结构层析成像的研究中,我们通过4种不同的方案对如何设定初始Q值进行了初步的探讨。通过先由平均然后逐渐分层,再根据结果进行调整的方法,得到Q值初始模型应该类似于速度初始模型那样进行分层设值是比较合理的结论。最后综合比较后,以第四种方案,即QP初始输入模型根据速度的分层分为四层,地表-4km设置为200,地下1.5km设置为400,中间层都设置为600,最底下一层设置为800做为论文最终的初始Q值模型。
     ⒊论文研究结论
     综合地震序列(点)和滇中地区(面)并结合速度结构和衰减结构层析成像的结果,以及其他人的研究成果,本论文研究认为,大姚震区和姚安震区都存在北西向隐伏断裂构造带,这可能是近水平的北西-北北西向压应力作用的结果。大姚震区和姚安震区之间还存在北东-北北东向隐伏断裂带,这可能是近南北的北东-北北东向压应力作用的结果。我们推测,姚安震区到大姚震区之间存在的北东-北北东向隐伏断裂带,导致2000年姚安6.5级地震发生后姚安震区北西向断裂带的破裂受到阻碍,还导致2003年大姚6.2、6.1级两次地震一个往北西方向破裂,另一个往东南方向破裂。
     根据姚安震区所处的构造背景以及本论文序列和区域得到的层析成像结果推测,2000年姚安6.5级地震的构造活动可能大致分为三个层次:首先是在滇中块体顺时针水平旋转运动的作用下,在块体内部形成了北西向和北东-北北东向隐伏断裂带;然后在楚雄-建水和牟定-通海等周边断裂带活动的影响下,由于深部构造和结构的改变,在震区内某个隐伏的北西向和北东-北北东向断裂的交点上形成了应力集中区;最后形成姚安震源区的发震构造。
     ⒋论文研究意义
     本论文研究结果表明,综合地震序列(点)和地震区域(面)的三维速度结构和三维衰减结构层析成像结果,能更好地解释2000年姚安6.5级地震和2003年大姚6.2、6.1级地震的发震构造以及两次地震所处的滇中地区的整体区域构造特点。速度结构和衰减结构的结合,能更好地约束地下介质的物理性质,从而能更好地认识震源区地壳内介质物理性质的非均匀性、推测震源区的断层分布以及研究震源区的发震构造。同时,通过比较地震序列和区域地震在层析成像研究中的异同,建立精细构造与区域构造联合解释的方法,为今后在其它地区进行应用打下基础。
The relativity between seismic tomography and fault structure is one of the important fields in seismology research. There are many researchers who have already carried out this work from many aspects. These can help us to discuss the relationship between seismic tomography and fault structure from new aspects, and are also a basis for us to do further correlative research.
     1. Research Technique
     In the first place, we study systematically seismic tomography method, which includes four aspects: (1) model parameterization, (2) seismic ray tracing, (3) inversion, and (4) result estimation. The thesis includes velocity structure tomography and attenuation structure tomography.
     Velocity structure tomography is: (1) The grid of original model in level and vertical directions is set respectively. The grid division in vertical direction is based mostly on the velocity model of the research area, and the grid division in level direction mostly by the distribution of the stations, earthquakes and seismic rays in the research area. Then the checkerboard method is used to test whether the gridding scheme can obtain good resolving power. (2) The seismic ray tracing method is used to get the theoretical time according to the location and original velocity of each gridding point. (3) We inverse the true velocity of each gridding point combining the theoretical and observational time. Then we obtain images of velocity in different depth. (4) The checkerboard method is used to get the resolving power in different depth, which can judge the reliability of the velocity images.
     The attenuation structure tomography is: (1) The wave and noise data of seismic record are intercepted respectively. Then FFT method is used to transform the intercepted wave and noise data into displacement spectrum. (2) The source model is assumed as Brune’sω2 model, and the heredity arithmetic is used to get the three parameters f c、Ω0、t? . (3) Based on the known ray trace and 3-D velocity structure, we use the result of t? , and adopt the same method of the 3-D velocity structure inversion to obtain the 3-D attenuation structure.
     2. Research Content and Result
     Based on the established tomography methods and program of velocity and attenuation structure, we carry out the research on the relativity between the seismic tomography and fault structure on two different areas in this paper.
     One is applying to a smaller area (point), (λE 101°~101.25°,φN 25.45°~25.65°). We use the data of Yaoan earthquake sequence to analyze its 3-D velocity and attenuation structures. The results show that: The earthquake sequence is distributed mostly along the direction of NW and in depth of 2-12km in the research area and agglomerated in the WN end of the NW strip. The Yaoan M6.5 earthquake is in sandwiched VP, VS and QS zones between higher and lower values. Most of the aftershocks are in the area with low-VP, low-VS and low-QS disturbance anomalies. The agglomerated aftershocks around the M6.5 earthquake seems distribute along the direction of NNE. It is conferred that there is a NW fault in the earthquake area of Yaoan, whose northwest end is deeper than the southeast end, from the characteristic of the aftershocks and the 3-D tomography results of VP, VS and QS. At the same time, there is another NW fault respectively in the north side and the south side of the NW fault. Furthermore, there seem two interlaced NE-NNE faults on the northwest end and the southeast end of the NWW fault. Considering the limit of the earthquake sequence data and the research area, that NE-NNE fault are not confirmed here.
     The other is applying to a bigger area (region), (λE 99.5°~102.5°,φN 24°~28°). We use the data of earthquakes in middle-Yunnan area, which includes the Yaoan M6.5 earthquake and the Dayao M6.2, M6.1 earthquakes, to analyze its 3-D velocity and attenuation structures. The results showed that: Most faults in research area, such as Chengjiang fault, Lvzhijiang fault, Jinpingshan-Yulongshan fault, and Chuxiong-Jianshui fault, et al., are showed obvious low-VP and low-QP disturbance anomalies in different depth. The strong earthquakes with M≥6.0 in history mostly occurred in the transition area with high-low VP and QP disturbance anomalies. From the characteristic in the whole research area, it can be seen that most faults are near SN direction, or NW-NNW direction, and or NE-NNE direction. It may be related to the result of the whole region stress field.
     In Yaoan earthquake area, there exist NW and NE low-VP, low-QP disturbance anomalies. The mainshock locates around their point of intersection. In Dayao earthquake area, there also exist NW and NE low-VP, low-QP disturbance anomalies. The two mainshocks locate around their point of intersection too. The NE low-VP disturbance anomaly result in the NW low-VP disturbance anomaly presents two segments.
     Earthquakes occur in the transition area with high-low VP and QP. It may be that the high velocity and low attenuation can accumulate energy more easily than their circumstance, where the earthquakes are gestated. The results confirm the doubtful point in earthquake sequence research that there not only exist NW fault, but also exist interlaced NNE fault, which extends to Dayao earthquake area, on the northwest end of the NW fault in Yaoan earthquake area.
     In addition, we provide four different schemes to do some primary discuss on the research of the original attenuation model. We use the method that from same value model to changed value model with depth gradually, which is more reasonable, and then adjust it by the results. As a result, we take the fourth scheme as the final research method that the original QP model is delaminated as four layers, the first layer (-4km) set 200, the second layer (1.5km) set 400, other layers set 600, and the final layer set 800.
     3. Research Conclusions
     Combining the results of 3-D velocity and attenuation structure tomography in different regions, and other research results, our conclusions are that there are NW concealed faults in Dayao and Yaoan earthquake areas, which may be the results of the level NW-NNW and NE-NNE main press stress respectively. It is conferred that there are NE-NNE concealed faults, which extends from Yaoan earthquake area to Dayao earthquake area. The faults blocks the break of the NW fault in Yaoan earthquake area and results in the two Dayao earthquake sequences in Dayao earthquake area, whcih break towards opposite directions.
     Based on the tomography results in this paper and the fault background of Yaoan earthquake area, it is inferred that the fault movement of Yaoan M6.5 earthquake is that the NW and NE-NNE concealed faults is firstly formed inside the block under the clockwise rotation of the middle-Yunnan block, then the stress increasing area in a intersection of NW and NE-NNE concealed faults is formed due to the change of deep structure and constitution on the influence of the faults around the block, such as Chuxiong-Jianshui fault and Tonghai-Mouding fault, finally, the fault of Yaoan earthquake is formed..
     4. Meaning of research
     The thesis results show that it can explain better the elaborate conformation of Yaoan and Dayao earthquake areas and the holistic conformation of middle-Yunnan region that combine the results of 3-D velocity and attenuation structure tomography in different regions. The combination of velocity and attenuation structure can restrict better the physical characteristic of underground medium. So that, we can understand the nonsymmetrical characteristic of underground medium, deduce the distributing of faults, and study the conformation of earthquake area. At the same time, we can establish a method that how to explain simultaneous the elaborate conformation and region conformation by comparing the similarities and differences between earthquake sequence and region earthquake in tomography research. And it is a basis on applying to other areas in the future.
引文
Aki K., Lee W., Determination of three dimension velocity anomalies under a seismic array using first P arrival times from local earthquakes. 1. A homogeneous initial model. J. Geophys. Res., 1976, Vol.81, 4381-4399.
    Aki K., Chrisstoffersson, A., Husebye E. S., Determination of the three dimensional seismic structure of the lithosphere. J. Geophys. Res., 1977, Vol.82, 277-296.
    Anstey, N.A., Velocity in thin section. First Break, 1990, Vol.9(10).
    Aleqabi G.I., Michael E.W., QLg Distribution in the basin and range province of the western United States. Bull Seism Soc Amer, 2006, Vol.96(1), 348-354.
    Brune J.N., Tectonic stress and spectra of seismic shear wave form earthquake[J]. J. Geophys. Res., 1970, Vol.75, 4997-5009.
    Crosson R.S., Crustal structure modeling of earthquake data, 1, Simultaneous least square estimation of hypocenter and velocity parameters. J. Geophys. Res., 1976, Vol.81(17), 3036-3046.
    Clawson S.R., Smith R.B., Bend H.M., P wave attenuation of the Yellowstone caldera from three-dimension inversion of spectral decay using explosion source seismic data. J. Geophys. Res., 1989, Vol.94(B6), 7205-7222.
    Dziewonski A., Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J. Geophys. Res., 1984, Vol.89, 5929-5952.
    Evans J.R., Zucca J.J., Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range. J. Geophys. Res., 1988, Vol.93, 15016-15036.
    Eberhart-Phillips D., Chadwick M., Three-dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula[J], New Zealand, J. Geophys. Res., 2002, Vol.107, 2033, doi:10.1029/2000JB000046.
    Eberhart-Phillips, McVerry, Estimating Slab Earthquake Response Spectra from a 3D Q Model, Bulletin of the Seismological Society of America, 2003, Vol.93(6), 2649–2663.
    Goldberg D.E., Genetic Algorithms in Search, Optimization and Machine Learning[M]. Boston: Kluwer Academic Publishers, 1989.
    Gori D., Chiarabba P.C., Patane D., QP structure of Mount Etna: Constraints for the physics of the plumbing system. J. Geophys. Res., 2005, Vol.110, B05303, doi:10.1029/2003JB002875.
    Herglotz G., Uber das Bunndorfsche problem der Fortpflanxunggesch-Windigkeit der Erdbebenstrahlen, Phys., 1907, Z. 8, 145-147.
    Horie A., Three-dimensional seismic velocity structure beneath the Kanto district by inversion of P-wave arrival times. phD Thesis, University of Tokyo, 1980.
    Humphreys E., Clayton R.W., Adaptation of Back Projection Tomography to Seismic Travel Time Problems, J. Geophys. Res., 1988, Vol.93(B2), 1073-1085.
    Huang J., Zhao D., Zheng S., Lithosphere structure and its relationship to seismic and volcanic activity in southwest China . J. Geophys Res. 2002, Vol.107(B10), doi:10.1029/2000JB000137.
    Hansen S., Thurber C., Mandernach M., et al, Seismic Velocity and Attenuation Structure of the East Rift Zone and South Flank of Kilauea Volcano, Hawaii[J]. Bulletin of the Seismological Society of America, 2004, Vol.94(4):1430–1440.
    Hauksson E., Shearer P.M., Attenuation models (QP and QS) in three dimensions of the southern California crust: Inferred fluid saturation at seismogenic depths. J. Geophys. Res., 2006, Vol.111, B05302, doi:10.1029/2005JB003947.
    He Z.Q., Ye T.L., Su W., 3-D velocity structure of the middle and upper crust in the Yunnan region, China[J]. Pure Appl. Geophys, 2005, Vol.162: 2355-2368.
    Inoue H., Fukae Y., Tanabe K., et al., Whole mantle P-wave travel time tomography[J]. Phys Earth Planet Inter. 1990, Vol.59, 294-328.
    Jacob K., Three-dimensional seismic ray tracing in a laterally heterogeneous spherical Earth. J. Geophys. Res., 1970, Vol.75, 6675-6689.
    Jacson D., Matsuura M., A Bayesian approach to non-linear inversion. J. Geophys. Res., 1985, Vol.90, 581-591.
    Junho Um, Clifford Thurber., A fast algorithm for two-point seismic ray tracing[J]. Bulletin of Seismological Society of America, 1987, Vol.77(3), 972-986.
    Jun Shao, Dongsheng Tu, The jackknife and bootstrap, 1995, ISBN 0387945156, 9780387945156.
    Kodaira S., Lidaka T., Kato A., et al., High pore fluid pressure may cause silent slip in the Nankai trough [J]. Science, 2004, Vol.304, 1295-1298.
    Lee J., Crosson R., Tomographic inversion of three-dimensional velocity structure at Mount St. Helens using earthquake data. J. Geophys. Res., 1989, Vol.94, 5716-5729.
    Lee J.M., Lindley G.T., Three dimensional attenuation tomography at Loma Priete, Inversion of for Q. J Geophys Res, 1994, Vol.99(134), 6843-6863.
    Lars Ottem ller, Nikolai M., Shapiro et al, Lateral variation of Lg wave propagation in Southern Mexico. J Geophys Res, 2002, Vol.107(B1), ESE3-1-3-13.
    Mishra O.P., Zhao D.P., Crack density, saturation rate and porosity at the 2001 Bhuj, India earthquake hypocenter: a fuid-driven earthquake? Earth Planet Sci. Lett., 2003, Vol.212, 393-405.
    Pavlis L.G., Booker J.R., The mixed discrete-continuous inverse problem:application to the simultaneous determination of earthquake hypocenters and velocity structure. J. Geophys. Res., 1980, Vol.85, 4801-4810.
    Richard C., Aster, Brian Brochers, and Clifford Thurber. Parameter estimation and inverse problems. June 9, 2004.
    Spencer and Gubbins, Travel-time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophysical Journal of the Royal Astronomical Society, 1980, Vol.63, 95-116.
    Stein S. and Wysession M., An Introtuction To Seismology, Earthquakes, and Earth Structure. Scherbaum F, Wyss M. Distribution of attenuation in the Kaoiki, Hawaii, Source volume estimated by inversion of P wave spectra. J. Geophys. Res., 1990, Vol.95(B8), 12439-12488.
    Thruber C. and Ellsworth W., Rapid solution of ray tracing problems in heterogeneous media. Bull. Seismol. Soc. Am., 1980, Vol.70, 1137-1148.
    Tarantola A. and Valette B., Generalized nonlinear inverse problems solved using the least-squares criterion. Reviews of Geophysics and Space Physics, 1982, Vol.20, 219-232.
    Thurber C., Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J. Geophys. Res., 1983, Vol.88, 8226-8236.
    Um J. and Thurber C., A Fast Algorithm For Tow-Point Seismic Ray Tracing. Bull. Seismol. Soc. Am., 1987, Vol.77(3), 972-986.
    Wiechert E., Bestimmung der weges der ErdbebeNWellen in ErdiNNErn, 1. Theoretisches, Phys., Z. 11, 294-304, 1910.
    Wang C. Y., Chan W. W., Mooney W D. Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys Res, 2003, Vol.108(B9), 2442, doi:10.1029/2002JB001973.
    Walck M.C., Tree-dimensional vP/vSvariations for the Coso region, California[J]. J Geophys Res, 1988. Vol.93, 2047-2053.
    Young C., Ward R. W., Three-dimensional Q-1 model of the Coso hot springs know geothermal resource area. J Geophys Res, 1980, Vol.85, 2459-2470.
    Zhao et. al. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J Geophys Res., 1992a, Vol.97(B13), 19909-19928.
    Zhou H., Direct inversion of velocity interfaces[J]. Geophys Res Lett, 2004, Vol.7, doi:10.1029/2003GL019318, 294-328
    Zhang H.J., Liu Y.F., Xu Z., et al., Characterizing high-resolution seismic velocity and attenuation structure of the Yunnan region, Southwest China, using double-difference tomography. 2006, AGU Fall Meeting.
    Zheng Q.H, Tailan Y. and Wei S., 3-D Velocity Structure of the Middle and Upper Crust in the Yunnan Region, China. Pure and Applied Geophysics, 2005, doi:10.1007/s00024-005-2780-x:2355-2368.
    陈颙,黄庭芳,岩石物理学,北京大学出版社,2001。
    陈培善,刘福田,李强等,云南地区速度结构的横向不均匀性[J]。中国科学(B),1990(4),431-438。
    丛连理,胡家富,傅竹武等,中国大陆及邻近地区Lg尾波的Q值分布。中国科学(D),2002,32(8),617-625。
    邓起东,张培震,冉勇康等,中国活动构造基本特征。中国科学(D),2002,45(12),1020-1030
    胡鸿翔,陆涵行,王春镛等,滇西地区地壳结构的爆破地震研究[J]。地球物理学报,1986,29,(2),133-144。
    黄金莉,赵大鹏,郑斯华,川滇活动构造区地震层析成像。地球物理学报,2001,44增刊,127-136。
    何正勤,叶太兰,苏伟,云南地区地壳中上部横波速度结构研究[J]。地球物理学报,2004,47(5),838-844。
    阚荣举等,云南地壳上地幔构造的初步研究。中国地震,1986,2(4)。
    阚荣举,韩源,云南遮放至马龙地学断面(说明书),见:国家地震局地学断面编委会。北京:地震出版社,1992。
    刘福田,李强,胡小幸,走时反演及其应用,地球物理学报,1982,25,696-710。
    刘福田,震源位置和速度结构的联合反演(Ⅰ)-理论和方法,地球物理学报,1984, 27(2),167-175。
    刘福田,李强等,用于速度图象重建的层析成象法,地球物理学报,1989,32(1),46-59。
    刘建华,刘福田,吴华等,中国南北带地壳和上地幔的三维速度结构[J]。地球物理学报,1989,32(2),143-151。
    林中洋,胡鸿翔等,滇西地区地壳上地幔速度结构特征。地震学报,1993,15(4),427-440。
    刘祖荫,苏有锦,秦嘉政等编著,20世纪云南地震活动。地震出版社,2002。
    赖晓玲,张先康等,伽师近场地震资料处理-三维速度成像。中国科学院研究生院学报,2003, 20(1),50-55。
    毛玉平,万登堡, 2000年云南姚安6.5级地震。2001,云南:云南科技出版社。
    马丽芳主编,中国地质图集。北京:地质出版社,2002,293-295。
    马宏生,汪素云,斐顺平等,川滇及周边地区地壳横波衰减的成像研究。2007,地球物理学报,50(2),465-471。
    秦嘉政等,用近震尾波估算昆明及其周围地区的Q值和地震矩。地球物理学报,1986,29(2)。
    秦嘉政,叶建庆,蔡绍平等,云南姚安、永胜地震近源数字地震观测与现代化新参数报告[M]。北京:地震出版社,2003。
    申宁华,李春华,张贵宾等,用康滇大陆古裂谷带地区航磁异常计算居里深度。地球物理学报,1986,29,496-503。
    苏有锦,2003年7月21日、10月16日云南大姚6.2级和6.1级地震预测预报回顾与讨论。国际地震动态,2004,1,18-21。
    孙若昧,刘福田,四川地区的地震层析成像。地球物理学报,1991,34(6),708-716。
    滕吉文,康滇构造带岩石圈物理与动力学。北京:科学出版社,1994。
    王家映,地球物理反演理论。2002。
    王椿镛,王溪莉,颜其中,昆明地震台网下方的三维速度结构[J]。地震学报,1994,16(2),167-175。
    王椿镛,Mooney W.D.,王溪莉等,川滇地区地壳上地幔三维速度结构研究。地震学报,2002,24(1),1-16。
    王新岭,刘杰,张国民等,姚安地震序列与永胜地震序列的高精度定位[J]。中国地震,2005, 21(3),386-397。
    王伟君,陈凌等, 2003年大姚地震震中区的速度和衰减结构。地球物理学报,2007,50(3),770-779。
    熊绍柏,滕吉文等,攀西构造带动轴部地区地壳与上地幔结构的爆炸地震研究。地球物理学报,1986,29,235-245。
    熊绍柏,郑晔等,丽江-攀枝花者海地带二维地壳结构及其构造意义。地球物理学报,1993,36(4),434-443。
    杨文采,地球物理反演的理论与方法。
    周龙泉,刘杰,陈晓非等,2003年大姚6.2和6.1级地震前三维波速结构的演化[J]。地震学报,2007,29(1),20-30
    周龙泉,刘杰,马宏生,周俊杰,2003年大姚6.2、6.1级地震序列震源位置及震源区速度结构的联合反演。地震,2009,32(2),(4月出版)。
    周龙泉,刘杰,苏有锦,等,利用S波高频衰减对云南地区衰减结构成像,2009,待发表。
    郑建常,顾瑾平,张元生,联合反演研究华北地区三维速度结构[J]。地球物理学进展,2007,22(6),1706-1714。
    周连庆,赵翠萍等,利用天然地震研究地壳Q值的方法和进展,国际地震动态,2008,2,1-11。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700