用户名: 密码: 验证码:
microRNA-194在大肠癌上皮间质转化中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     结直肠癌是严重威胁人类健康的常见消化道恶性肿瘤。目前以手术为基础的综合治疗在大肠癌中发展迅速,尤其是化疗及分子靶向药物的发展及多学科诊疗模式(MDT)的建立,有效提高了大肠癌患者的生存,但统计结果显示其发病率及疾病相关死亡率仍上升非常明显。其中肿瘤转移是影响患者预后及致死的关键因素。大肠癌转移是一个十分复杂的过程,涉及多因素、多步骤,多条信号转导通路交联,相互影响。而上皮间质转化(Epithelial-mesenchymal transition, EMT)在大肠癌侵袭及转移中的作用越来越受到关注。在分子水平上对结直肠癌相关基因的研究已经较为深入,近些年越来越多的临床及基础科研工作者开始关注microRNAs (miRNAs, miRs)在大肠癌发生发展中的作用。miRNAs是在真核生物中发现的一类内源性的具有调控功能的非编码RNA,通过和靶基因1mRNA碱基配对引导沉默复合体(RISC)降解mRNA或阻碍其翻译过程。目前已有研究证实miRNAs在大肠癌早期诊断,预后判断及疗效预测中发挥作用。另外miRNAs在大肠癌细胞增殖及凋亡,新生血管生成等基础研究领域亦不断有数据更新。尽管miRNAs参与肿瘤发生及细胞凋亡的相关研究较多,但有关miRNAs介导EMT的研究仍较少。课题组之前曾关注miRNAs与肿瘤耐药的相关研究,发现1niR-200c能够抑制多药耐药基因及P-糖蛋白从而逆转乳腺癌对表柔比星的耐药。本课题依托前期miRNAs研究基础,以细胞粘附、肿瘤微环境及EMT为切入点,研究miR-194参与大肠癌EMT过程及侵袭、转移中的作用。
     实验方法及结果
     首先课题组结合前期实验基础及miRNAs芯片筛选结果,收集临床结直肠癌标本40例,利用stem-loop RT-qPCR法检测标本中:miR-194的相对表达并统计其与临床病理特征的相关性。结果显示在淋巴结阳性的原发肿瘤中miR-194的表达明显强于淋巴结阴性组,而患者不同性别、年龄、肿瘤部位、肿瘤大小、分化程度、浸润深度与1niR-194的表达无明显相关性。这些结果提示miR-194可能在结直肠癌侵袭及转移中发挥作用。
     其次课题组寻找研究miR-194在大肠癌中侵袭转移中作用的细胞模型,发现在同源性较好的大肠癌细胞系SW480与SW620中,SW620细胞miR-194相对表达明显高于SW480细胞,细胞的划痕及Transwell迁移及侵袭实验均证实了SW620细胞的迁移、侵袭能力明显强于SW480细胞。进一步研究发现在SW620细胞系中MMP-2在1mRNA及蛋白质水平上表达均明显高于SW480细胞系,但MMP-9mRNA表达两株细胞无明显差别。上皮标志物E-cadherin在SW480表达明显强于SW620,司质标志物Vimentin则呈相反的变化。因此证实MMP-2, E-cadherin, Vimentin在大肠癌EMT转化中发挥重要作用,SW480与SW620是miR-194功能研究的良好细胞模型。
     之后课题组将miR-194构建质粒载体稳定转染入相对低表达的SW480细胞中,筛选高表达miR-194的细胞克隆,成功建立稳定转染细胞系niR-194-480。细胞形态学观察发现稳定转染后的miR-194-480细胞由转染前的扁圆形转变为梭形,发生明显的间质性改变。细胞增殖MTT实验显示miR-194转染SW480后,细胞增殖能力并未见明显变化。而迁移、侵袭实验结果则表明稳转细胞系miR-194-480在细胞迁移、侵袭能力方面大大增强。因此,我们认为1niR-194可能对大肠癌细胞增殖影响不大,却明显增加了大肠癌细胞的迁移、侵袭能力。之后RT-qPCR及Western Blot以及明胶酶谱实验证实,高表达miR-194能够增加MMP-2蛋白表达及活性,降解细胞外基质,同时E-cadherin表达下降,而Vimentin则明显表达增强。因此证实miR-194通过增加MMP-2, Vimentin表达,降低E-cadherin表达,在大肠癌EMT改变中发挥重要作用。
     同样,细胞骨架染色实验证实miR-194-480细胞系在细胞微丝数量上明显多于未转染细胞系。这说明miR-194在大肠癌细胞中能够影响细胞微丝,改变细胞骨架,增加大肠癌细胞的迁移、侵袭能力。
     接下来课题组对miR-194可能参与的细胞信号转导通路进行了预测。经生物信息学筛选,TargetScan, miRanda, RNA22等miRNA靶基因预测软件预测,PKC有可能是miR-194的靶标,PKC对ERK通路的活化也是目前的研究热点。课题组预想miR-194是否通过PKC的活化,从而激活ERK通路,参与大肠癌EMT转化。但实验结果与预期差异较大,在阴性对照组及转染组均未检测到PKC-α的表达,分析原因可能是miR-194参与了其他通路而反馈抑制了PKC-α,当然不能排除自身实验技术的不够成熟。由于课题时间有限未能更进一步深入探究。
     结论
     miR-194在淋巴结阳性的结直肠癌患者中高表达,而与患者性别、年龄、肿瘤部位、肿瘤大小、分化程度、浸润深度无明显相关性;miR-194通过调节MMP-2, E-cadherin, Vimentin的表达,参与大肠癌细胞EMT,能够明显增加大肠癌细胞的迁移、侵袭能力;miR-194参与大肠癌EMT过程中伴随细胞骨架的改变;PKC通路可能在miR-194参与大肠癌EMT转化过程中不起关键作用。
Background:
     Colorectal cancer is the most common gastrointestinal malignancy, which seriously threat to human health. Currently, multidisciplinary treatments based on surgical resection is rapid development in colorectal cancer. Especially chemotherapy, molecular targeted drugs are familiar in clinical application, which effectively improve the overall survival for the colorectal cancer patients. However, statistics showed that the incidence and disease-related mortality rate is still rising obviously. Diastant metastases is a key factor affecting prognosis and death for colorectal cancer patients.The formation of metastases is a multistep process, in which malignant cells disseminate from the primary tumour to colonize distant organs. This is a highly inefficient and complex process. It is now recognized that the epithelial mesenchymal transition (EMT) may represent a critical component permitting the progression of carcinomas towards invasive and metastatic disease. Colorectal cancer carcinogenesis has been extensively studied at a molecular level in recent years and has recently entered the era of microRNAs (miRNAs). MiRNAs are a family of small, highly conserved non-coding RNAs that post-transcriptionally regulate gene expression, which act as endogenous suppressors of gene expression through imperfect binding of RNA-induced silencing complex (RISC) to the target mRNAs. MiRNAs have been studied in colorectal cancer as potential biomarkers of diagnosis, prognosis or response to treatment as well as colon cancer cell proliferation, apoptosis and angiogenesis. However, researches on miRNAs mediated EMT are still rare. Our studay group previously concerned reaearch on the relationship between miRNAs and chemotherapy-resistance, which showed up-regulation of miR-200c with transfection of miR-200c mimics in breast cancer cells could enhance the chemosensitivity to epirubicin and reduce expression of multidrug resistance-1mRNA and P-glycoprotein. In this study, our group will focus on the effects and potential mechanisms of microRNA-194on EMT process of colorectal cancer.
     Methods and results
     Firstly, our research group collected40specimens of colorectal cancer, using stem-loop RT-qPCR technique to evaluate the relative expression of miR-194in different specimens and add up the correlation with clinicopathological features. The results showed that miR-194expression was significantly increased in lymph node-positive colorectal cancers. However, miR-194expression level was not significant correlation to gender, age, tumor location, tumor size, degree of differentiation and T stage. The results suggest that miR-194may play an important role in metastasis of colorectal cancer.
     Secondly, our team looking for appropriate cell model to the further study on the effects and potential mechanisms of microRNA-194in colorectal cancer invasion and metastasis. We found miR-194was significantly higher expression in SW620than SW480cell line. Subsequent wound healing and Transwell assay confirmed the ability of migration and invasion of SW620cells was significantly increased than SW480cells. Further studies showed that the expression of MMP-2not only in mRNA but protein level was significantly higher in SW620v.s SW480, however, MMP-9mRNA expression was no significant difference. The expression of epithelial cell marker E-cadherin was significantly higher in SW480, mesenchymal cell marker Vimentin was contrary. Therefore it confirmed that MMP-2, E-cadherin, Vimentin play an important role in colorectal cancer EMT process.
     Next, miR-194plasmid vector is constructed and stably transfected into the relatively low expression cell lin SW480. We successfully established a stably transfected cell line and named miR-194-480by screening high expression of miR-194cell clones. Morphological observation showed the shape of miR-194-480was significantly into fusiform compared with the non-transfected cell line SW480, which illustrate the visible interstitial changes. MTT assay showed overexpression of miR-194had no significant effect in cell proliferation, while, wound healing and Transwell assay confirmed the ability of migration and invasion of miR-194-480was significantly increased. Therefore, we believe that miR-194may have little effect in proliferation of colon cancer cells, but manifest increase the ability of migration and invasion. RT-qPCR, Western Blot and gelatin zymography assay demonstrated overexpression of miR-194can increase MMP-2protein expression and activity involved in degradation of the extracellular matrix, while decreased expression of E-cadherin, however Vimentin expression was significantly enhanced. Therefore, we confirmed that overexpression of miR-194play an important role in colorectal cancer EMT process by changing the expression of MMP-2, E-cadherin and Vimentin.
     Cytoskeletal staining experiment confirmed that overexpression miR-194can increase the number of cell microfilaments. The result showed that miR-194can affect cell microfilament, changing cytoskeleton, and ultimately increase the ability of migration and invasion in colon cancer cell.
     Our group next concern the cellular signal transduction pathways. By predicting of bioinformatics screening as TargetScan, miRanda, RNA22software, PKC may be a target of miR-194. More and more research concerned PKC activated the ERK pathway. We predict whether miR-194can increase PKC expression, thereby activating the ERK pathway, finally involved in colorectal cancer EMT transformation. But we got a negative result. Analyze the reasons may be involved in other pathways and miR-194feedback inhibition of PKC-alpha, of course, can not be ruled out experimental techniques are not mature enough. Analysis of the reasons, miR-194may be involved in other pathways then feedback inhibition of PKC-alpha, and of course can not rule out our immature experimental techniques. However, we are unable to further delve into the subject because of time constraints.
     Conclusions:
     MiR-194expression was significantly increased in lymph node-positive colorectal cancers, however, which was not significant correlation to gender, age, tumor location, tumor size, degree of differentiation and T stage. MiR-194play an important role in colorectal cancer EMT process by changing the expression of MMP-2, E-cadherin and Vimentin. Overexpression miR-194can increase the number of cell microfilaments. PKC-alpha pathway may not be the core signaling pathway in miR-194-mediated EMT process in colorectal cancer.
引文
1 Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin 2012; 62(1):10-29.
    2 Rahbari NN, Bork U, Motschall E, Thorlund K, Buchler MW, Koch M, Weitz J. Molecular detection of tumor cells in regional lymph nodes is associated with disease recurrence and poor survival in node-negative colorectal cancer:a systematic review and meta-analysis. J Clin Oncol 2012; 30(1):60-70.
    3 Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells 2012; 30(3):363-371.
    4 Lim J, Thiery JP. Epithelial-mesenchymal transitions:insights from development. Development 2012; 139(19):3471-3486.
    5 Gao D, Vahdat LT, Wong S, Chang JC, Mittal V. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res 2012; 72(19): 4883-4889.
    6 Leopold PL, Vincent J, Wang H. A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22(5-6):471-483.
    7 Leonardo TR, Schultheisz HL, Loring JF, Laurent LC. The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 2012; 14(11): 1114-1121.
    8 Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6(11):857-866.
    9 Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs--the micro steering wheel of tumour metastases. Nat Rev Cancer 2009; 9(4):293-302.
    10 Jin K, Li G, Cui B, Zhang J, Lan H, Han N, Xie B, Cao F, He K, Wang H, Xu Z, Teng L, Zhu T. Assessment of a novel VEGF targeted agent using patient-derived tumor tissue xenograft models of colon carcinoma with lymphatic and hepatic metastases. PLoS One 2011; 6(12):e28384.
    11 Park KS, Kim SJ, Kim KH, Kim JC. Clinical characteristics of TIMP2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. J Gastroenterol Hepatol 2011; 26(2):391-397.
    12 Deng Z, Cheng Z, Xiang X, Yan J, Zhuang X, Liu C, Jiang H, Ju S, Zhang L, Grizzle W, Mobley J, Roman J, Miller D, Zhang HG. Tumor cell cross talk with tumor-associated leukocytes leads to induction of tumor exosomal fibronectin and promotes tumor progression. Am J Pathol 2012; 180(1):390-398.
    13 Wanebo HJ, LeGolvan M, Paty PB, Saha S, Zuber M, D'Angelica MI, Kemeny NE. Meeting the biologic challenge of colorectal metastases. Clin Exp Metastasis 2012; 29(7):821-839.
    14 Taketo MM. Roles of stromal microenvironment in colon cancer progression. J Biochem 2012:151(5):477-481.
    15 Bassi DE, Fu J, Lopez DCR, Klein-Szanto AJ. Proprotein convertases:"master switches" in the regulation of tumor growth and progression. Mol Carcinog 2005; 44(3):151-161.
    16 Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 2004; 23(1-2):101-117.
    17 Tallant C, Marrero A, Gomis-Ruth FX. Matrix metalloproteinases:fold and function of their catalytic domains. Biochim Biophys Acta 2010; 1803(1):20-28.
    18 Saitou T, Itano K, Hoshino D, Koshikawa N, Seiki M. Ichikawa K, Suzuki T. Control and inhibition analysis of complex formation processes. Theor Biol Med Model 2012; 9:33.
    19 Detry B, Erpicum C, Paupert J, Blacher S, Maillard C, Bruyere F, Pendeville H, Remacle T, Lambert V, Balsat C, Ormenese S, Lamaye F, Janssens E, Moons L, Cataldo D, Kridelka F, Carmeliet P, Thiry M, Foidart JM, Struman I, Noel A. Matrix metalloproteinase-2 governs lymphatic vessel formation as an interstitial collagenase. Blood 2012; 119(21):5048-5056.
    20 Weng CJ, Yen GC. The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clin Exp Metastasis 2010; 27(5):361-369.
    21 Natalwala A, Spychal R, Tselepis C. Epithelial-mesenchymal transition mediated tumourigenesis in the gastrointestinal tract. World J Gastroenterol 2008; 14(24): 3792-3797.
    22 Gao D, Vahdat LT, Wong S, Chang JC, Mittal V. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res 2012; 72(19): 4883-4889.
    23 Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 2013; 92(2):114-121.
    24 Garcia DHA, Baulida J. Cooperation, amplification, and feed-back in epithelial-mesenchymal transition. Biochim Biophys Acta 2012; 1825(2):223-228.
    25 Zhang L, Jouret F, Rinehart J, Sfakianos J, Mellman I, Lifton RP, Young LH, Caplan MJ. AMP-activated protein kinase (AMPK) activation and glycogen synthase kinase-3beta (GSK-3beta) inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane. J Biol Chem 2011; 286(19): 16879-16890.
    26 Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J Dent Res 2013; 92(2):114-121.
    27 Li Y, Tang Y, Zhou R, Sun D, Duan Y, Wang N, Chen Z, Shen N. Genetic polymorphism in the 3'-untranslated region of the E-cadherin gene is associated with risk of different cancers. Mol Carcinog 2011; 50(11):857-862.
    28 Carneiro P, Fernandes MS, Figueiredo J, Caldeira J, Carvalho J, Pinheiro H, Leite M, Melo S, Oliveira P, Simoes-Correia J, Oliveira MJ, Carneiro F, Figueiredo C, Paredes J, Oliveira C, Seruca R. E-cadherin dysfunction in gastric cancer--cellular consequences, clinical applications and open questions. Febs Lett 2012; 586(18): 2981-2989.
    29 Andrews JL, Kim AC, Hens JR. The role and function of cadherins in the mammary gland. Breast Cancer Res 2012; 14(1):203.
    30 Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010; 291(1): 59-66.
    31 Toh Y, Nicolson GL. The role of the MTA family and their encoded proteins in human cancers:molecular functions and clinical implications. Clin Exp Metastasis 2009; 26(3):215-227.
    32 Saito D, Kyakumoto S, Chosa N, Ibi M, Takahashi N, Okubo N, Sawada S, Ishisaki A, Kamo M. Transforming growth factor-betal induces epithelial-mesenchymal transition and integrin alpha3betal-mediated cell migration of HSC-4 human squamous cell carcinoma cells through Slug. J Biochem 2013:153(3):303-315.
    33 Sakamoto K, Imanishi Y, Tomita T, Shimoda M, Kameyama K, Shibata K, Sakai N, Ozawa H, Shigetomi S, Fujii R, Fujii M, Ogawa K. Overexpression of SIP1 and downregulation of E-cadherin predict delayed neck metastasis in stage Ⅰ/Ⅱ oral tongue squamous cell carcinoma after partial glossectomy. Ann Surg Oncol 2012; 19(2):612-619.
    34 Jung YS, Liu XW. Chirco R, Warner RB, Fridman R, Kim HR. TIMP-1 induces an EMT-like phenotypic conversion in MDCK cells independent of its MMP-inhibitory domain. PLoS One 2012; 7(6):e38773.
    35 Hsu KW, Hsieh RH, Huang KH, Fen-Yau LA, Chi CW, Wang TY, Tseng MJ, Wu KJ, Yeh TS. Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression. Carcinogenesis 2012; 33(8):1459-1467.
    36 Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68(18):3033-3046.
    37 Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ. PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. Embo J 2005; 24(22):3834-3845.
    38 Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 2010; 21(1):49-59.
    39 MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol 2012; 4(12).
    40 Maitah MY, Ali S, Ahmad A, Gadgeel S, Sarkar FH. Up-regulation of sonic hedgehog contributes to TGF-betal-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One 2011; 6(1):e16068.
    41 Kang MH, Kim JS, Seo JE, Oh SC, Yoo YA. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp Cell Res 2010; 316(1):24-37.
    42 Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity 2010; 32(1):14-27.
    43 Hudson LG, Choi C, Newkirk KM, Parkhani J, Cooper KL, Lu P, Kusewitt DF. Ultraviolet radiation stimulates expression of Snail family transcription factors in keratinocytes. Mol Carcinog 2007; 46(4):257-268.
    44 Lee MK, Pardoux C, Hall MC, Lee PS, Warburton D, Qing J, Smith SM, Derynck R. TGF-beta activates Erk MAP kinase signalling through direct phosphorylation of ShcA. Embo J 2007; 26(17):3957-3967.
    45 Weiss MB, Abel EV, Mayberry MM, Basile KJ, Berger AC, Aplin AE. TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res 2012; 72(24):6382-6392.
    46 Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2013; 513(1):1-13.
    47 Han S, Meier KE. Integrated modulation of phorbol ester-induced Raf activation in EL4 lymphoma cells. Cell Signal 2009; 21(5):793-800.
    48 Kazi JU, Soh JW. Induction of the nuclear proto-oncogene c-fos by the phorbol ester TPA and v-H-Ras. Mol Cells 2008; 26(5):462-467.
    49 Guha S, Lunn JA, Santiskulvong C, Rozengurt E. Neurotensin stimulates protein kinase C-dependent mitogenic signaling in human pancreatic carcinoma cell line PANC-1. Cancer Res 2003; 63(10):2379-2387.
    50 Lujambio A, Lowe SW. The microcosmos of cancer. Nature 2012; 482(7385): 347-355.
    51 Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M. HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells. Am J Pathol 2009; 174(3):854-868.
    52 Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M. Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, Wang E. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010; 16(2): 430-441.
    53 Liu Y, Yin B, Zhang C, Zhou L, Fan J. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc. Biochem Biophys Res Commun 2012; 417(1):371-375.
    54 Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17(2):193-199.
    55 Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011; 8(5):706-713.
    56 Zhu Y, Yu X, Fu H, Wang H, Wang P, Zheng X, Wang Y. MicroRNA-21 is involved in ionizing radiation-promoted liver carcinogenesis. Int J Clin Exp Med 2010; 3(3):211-222.
    57 Zhang YK, Wang H, Leng Y, Li ZL, Yang YF, Xiao FJ, Li QF, Chen XQ, Wang LS. Overexpression of microRNA-29b induces apoptosis of multiple myeloma cells through down regulating Mcl-1. Biochem Biophys Res Commun 2011; 414(1): 233-239.
    58 Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, Hildesheim A, Sugden B, Ahlquist P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A 2008; 105(15):5874-5878.
    59 Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. Embo Rep 2009; 10(4):400-405.
    60 Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S, Li YC, Hart J, Goss K, Fichera A, Joseph L, Bissonnette M. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 2011; 9(7):960-975.
    61 Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 2007; 56(3):248-253.
    62 Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, Ju J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010; 9:96.
    63 Marzi MJ, Puggioni EM, Dall'Olio V, Bucci G, Bernard L, Bianchi F, Crescenzi M, Di Fiore PP, Nicassio F. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation. J Cell Biol 2012; 199(1):77-95.
    64 Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, Kwok TT. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31(3):350-358.
    65 Liu L, Chen L, Xu Y, Li R, Du X. microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun 2010; 400(2):236-240.
    66 Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ. MicroRNA in colorectal cancer:from benchtop to bedside. Carcinogenesis 2011; 32(3):247-253.
    67 Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12(3):247-256.
    68 Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. Embo Rep 2009; 10(4):400-405.
    69 Kong W, Yang H, He L, Zhao JJ, Coppola D, Dalton WS, Cheng JQ. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28(22):6773-6784.
    70 Wu H, Zhu S, Mo YY. Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 2009; 19(4):439-448.
    71 Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, Parenti AR, Daidone MG, Bicciato S, Piccolo S. A MicroRNA targeting dicer for metastasis control. Cell 2010; 141(7): 1195-1207.
    72 Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, Wang WJ, Chen Q, Tang F, Liu XP, Xu ZD. Involvement of NF-kappaB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ 2011; 18(1):16-25.
    73 Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ, Rosner MR. Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. Embo J 2009; 28(4):347-358.
    74 Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10(2):202-210.
    75 Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196:critical roles and clinical applications in development and cancer. J Cell Mol Med 2011; 15(1): 14-23.
    76 Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer 2011; 30(6):371-380.
    77 Hu M, Xia M, Chen X, Lin Z, Xu Y, Ma Y, Su L. MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Dig Dis Sci 2010; 55(8):2365-2372.
    78 Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22(7):894-907.
    79 Hurteau GJ, Spivack SD, Brock GJ. Potential mRNA degradation targets of hsa-miR-200c, identified using informatics and qRT-PCR. Cell Cycle 2006; 5(17): 1951-1956.
    80 Christoffersen NR, Silahtaroglu A, Orom UA, Kauppinen S, Lund AH. miR-200b mediates post-transcriptional repression of ZFHX1B. Rna 2007; 13(8):1172-1178.
    81 Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68(19): 7846-7854.
    82 Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. Embo Rep 2008; 9(6):582-589.
    83 Colwell CS. Light and serotonin interact in affecting the circadian system of Aplysia. J Comp Physiol A 1990; 167(6):841-845.
    84 Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5):871-890.
    85 Chen ML, Liang LS, Wang XK. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis 2012; 29(5):457-469.
    86 Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002; 99(24): 15524-15529.
    87 Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101(9):2999-3004.
    88 Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65(16): 7065-7070.
    89 Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9(3):189-198.
    90 Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, Radova L, Fabian P, Slaba K, Kiss I, Vyzula R, Slaby O. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med 2012; 16(11):2655-2666.
    91 Retraction:An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PLoS One 2011; 6(9).
    92 Gao P, Xing AY, Zhou GY, Zhang TG, Zhang JP, Gao C, Li H, Shi DB. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 2013; 32(4):491-501.
    93 Peng X, Guo W, Liu T, Wang X, Tu X, Xiong D, Chen S, Lai Y, Du H, Chen G, Liu G, Tang Y, Huang S, Zou X. Identification of miRs-143 and-145 that is associated with bone metastasis of prostate cancer and involved in the regulation of EMT. PLoS One 2011; 6(5):e20341.
    94 Motoyama K, Inoue H, Nakamura Y, Uetake H, Sugihara K, Mori M. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res 2008; 14(8):2334-2340.
    95 Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 2009; 137(6):2136-2145.
    96 Taki M, Verschueren K, Yokoyama K, Nagayama M, Kamata N. Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Int J Oncol 2006; 28(2):487-496.
    97 Maity G, Sen T, Chatterjee A. Laminin induces matrix metalloproteinase-9 expression and activation in human cervical cancer cell line (SiHa). J Cancer Res Clin Oncol 2011; 137(2):347-357.
    98 Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 2011; 145(6): 926-940.
    1 Nana-Sinkam SP, Croce CM. Clinical applications for microRNAs in cancer. Clin Pharmacol Ther 2013; 93(1):98-104.
    2 Lages E, Ipas H, Guttin A, Nesr H, Berger F, Issartel JP. MicroRNAs:molecular features and role in cancer. Front Biosci 2012; 17:2508-2540.
    3 de Krijger I, Mekenkamp LJ, Punt CJ, Nagtegaal ID. MicroRNAs in colorectal cancer metastasis. J Pathol 2011; 224(4):438-447.
    4 Dienstmann R, Vilar E, Tabernero J. Molecular predictors of response to chemotherapy in colorectal cancer. Cancer J 2011; 17(2):114-126.
    5 Li FY, Lai MD. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B 2009; 10(3):219-229.
    6 Hong SP, Min BS, Kim TI, Cheon JH, Kim NK, Kim H, Kim WH. The differential impact of microsatellite instability as a marker of prognosis and tumour response between colon cancer and rectal cancer. Eur J Cancer 2012; 48(8):1235-1243.
    7 Arain MA, Sawhney M, Sheikh S, Anway R, Thyagarajan B, Bond JH, Shaukat A. CIMP status of interval colon cancers:another piece to the puzzle. Am J Gastroenterol 2010; 105(5):1189-1195.
    8 Earle JS, Luthra R, Romans A, Abraham R, Ensor J, Yao H, Hamilton SR. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 2010; 12(4):433-440.
    9 Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, Wiuf C, Sorensen FJ, Kruhoffer M, Laurberg S, Kauppinen S, Orntoft TF, Andersen CL. Diagnostic and prognostic microRNAs in stage Ⅱ colon cancer. Cancer Res 2008; 68(15):6416-6424.
    10 Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B; Wolff RK. MicroRNAs and colon and rectal cancer:differential expression by tumor location and subtype. Genes Chromosomes Cancer 2011; 50(3):196-206.
    11 Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. Bmc Cancer 2010; 10:616.
    12 Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28(10): 1385-1392.
    13 Akao Y, Nakagawa Y, Naoe T. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 2006; 29(5):903-906.
    14 Earle JS, Luthra R, Romans A, Abraham R, Ensor J, Yao H, Hamilton SR. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 2010; 12(4):433-440.
    15 Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28(10): 1385-1392.
    16 Abali EE, Skacel NE, Celikkaya H, Hsieh YC. Regulation of human dihydrofolate reductase activity and expression. Vitam Horm 2008; 79:267-292.
    17 Boni V, Bitarte N, Cristobal I, Zarate R, Rodriguez J, Maiello E, Garcia-Foncillas J, Bandres E. miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol Cancer Ther 2010; 9(8):2265-2275.
    18 Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, Ju J. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer 2010; 9:96.
    19 Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17(2):193-199.
    20 Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26(5):745-752.
    21 Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC, Elia A, Kress TR, Dickens M, Clemens MJ, Heery DM, Gaestel M, Eilers M, Willis AE, Bushell M. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci U S A 2010; 107(12):5375-5380.
    22 Cannell IG, Bushell M. Regulation of Myc by miR-34c:A mechanism to prevent genomic instability? Cell Cycle 2010; 9(14):2726-2730.
    23 Braun CJ, Zhang X, Savelyeva I, Wolff S, Moll UM, Schepeler T, Orntoft TF, Andersen CL, Dobbelstein M. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 2008; 68(24):10094-10104.
    24 Liu L, Chen L, Xu Y, Li R, Du X. microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun 2010; 400(2):236-240.
    25 Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, Wang NS. MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency. Am J Nephrol 2011; 34(6):549-559.
    26 Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer 2010; 127(5):1072-1080.
    27 Prager GW, Poettler M. Angiogenesis in cancer. Basic mechanisms and therapeutic advances. Hamostaseologie 2012; 32(2):105-114.
    28 Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 2010; 107(14):6334-6339.
    29 Starkel P, Charette N, Borbath I, Schneider-Merck T, De Saeger C, Abarca J, Leclercq I, Horsmans Y. Ras inhibition in hepatocarcinoma by S-trans-trans-farnesylthiosalicyclic acid:association of its tumor preventive effect with cell proliferation, cell cycle events, and angiogenesis. Mol Carcinog 2012; 51(10):816-825.
    30 Italiano A, Thomas R, Breen M, Zhang L, Crago AM, Singer S, Khanin R, Maki RG, Mihailovic A, Hafner M, Tuschl T, Antonescu CR. The miR-17-92 cluster and its target THBS1 are differentially expressed in angiosarcomas dependent on MYC amplification. Genes Chromosomes Cancer 2012; 51(6):569-578.
    31 Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene 2010; 29(7):937-948.
    32 Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. Embo Rep 2008; 9(6):582-589.
    33 Cottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem 2010; 285(46):35293-35302.
    34 Glinsky GV, Krones-Herzig A, Glinskii AB. Malignancy-associated regions of transcriptional activation:gene expression profiling identifies common chromosomal regions of a recurrent transcriptional activation in human prostate, breast, ovarian, and colon cancers. Neoplasia 2003; 5(3):218-228.
    35 Santarpia L, Nicoloso M, Calin GA. MicroRNAs:a complex regulatory network drives the acquisition of malignant cell phenotype. Endocr Relat Cancer 2010; 17(1):F51-F75.
    36 Huang JB, Ding Y, Huang DS, Liang AJ, Zeng WK, Zeng ZP, Qin CQ, Barden B. Inhibition of the PI3K/AKT Pathway Reduces Tumor Necrosis Factor-Alpha Production in the Cellular Response to Wear Particles In Vitro. Artif Organs 2013; 37(3):298-307.
    37 Sessa R, Seano G, di Blasio L, Gagliardi PA, Isella C, Medico E, Cotelli F, Bussolino F, Primo L. The miR-126 regulates angiopoietin-1 signaling and vessel maturation by targeting p85beta. Biochim Biophys Acta 2012; 1823(10): 1925-1935.
    38 Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, Moehler M, Gockel I. High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol 2009; 15(17):2089-2096.
    39 Lankat-Buttgereit B, Goke R. The tumour suppressor Pdcd4:recent advances in the elucidation of function and regulation. Biol Cell 2009; 101(6):309-317.
    40 Blasi F, Sidenius N. The urokinase receptor:focused cell surface proteolysis, cell adhesion and signaling. Febs Lett 2010; 584(9):1923-1930.
    41 Mudduluru G, Medved F, Grobholz R, Jost C, Gruber A, Leupold JH, Post S, Jansen A, Colburn NH, Allgayer H. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 2007; 110(8):1697-1707.
    42 Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27(15):2128-2136.
    43 Bronnum H, Andersen DC, Schneider M, Sandberg MB, Eskildsen T, Nielsen SB, Kalluri R, Sheikh SP. miR-21 Promotes Fibrogenic Epithelial-to-Mesenchymal Transition of Epicardial Mesothelial Cells Involving Programmed Cell Death 4 and Sprouty-1. PLoS One 2013; 8(2):e56280.
    44 Ahmed MI, Mardaryev AN, Lewis CJ, Sharov AA, Botchkareva NV. MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes. J Cell Sci 2011; 124(20):3399-3404.
    45 Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18(3):350-359.
    46 Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol 2013; 42(1):219-228.
    47 Loayza-Puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M. Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene 2010; 29(18):2638-2648.
    48 Nagao Y, Hisaoka M, Matsuyama A, Kanemitsu S, Hamada T, Fukuyama T, Nakano R, Uchiyama A, Kawamoto M, Yamaguchi K, Hashimoto H. Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Mod Pathol 2012; 25(1):112-121.
    49 Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124(6):1169-1181.
    50 Bach JP, Deuster O, Balzer-Geldsetzer M, Meyer B, Dodel R, Bacher M. The role of macrophage inhibitory factor in tumorigenesis and central nervous system tumors. Cancer 2009; 115(10):2031-2040.
    51 Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ, Jimenez P, Rodriguez J, Garcia-Foncillas J. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 2009; 15(7): 2281-2290.
    52 Tsuchiya S, Oku M, Imanaka Y, Kunimoto R, Okuno Y, Terasawa K, Sato F, Tsujimoto G, Shimizu K. MicroRNA-338-3p and microRNA-451 contribute to the formation of basolateral polarity in epithelial cells. Nucleic Acids Res 2009; 37(11):3821-3827.
    53 Reddy SD, Pakala SB, Ohshiro K, Rayala SK, Kumar R. MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res 2009; 69(14):5639-5642.
    54 Tuncay CS, Cimen I, Savas B, Banerjee S. MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells. Tumour Biol 2013; 34(2):1189-1204.
    55 Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, Poon TC, Ng SS, Sung JJ. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 2009; 58(10):1375-1381.
    56 Pu XX. Huang GL, Guo HQ, Guo CC, Li H, Ye S, Ling S, Jiang L, Tian Y, Lin TY. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol 2010; 25(10):1674-1680.
    57 Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer 2010; 127(1):118-126.
    58 Koga Y, Yasunaga M, Takahashi A, Kuroda J, Moriya Y, Akasu T, Fujita S, Yamamoto S, Baba H, Matsumura Y. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila) 2010; 3(11):1435-1442.
    59 Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, Goel A. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev 2010; 19(7):1766-1774.
    60 Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299(4):425-436.
    61 Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjot L, Wiuf C, Sorensen FJ, Kruhoffer M, Laurberg S, Kauppinen S, Orntoft TF, Andersen CL. Diagnostic and prognostic microRNAs in stage Ⅱ colon cancer. Cancer Res 2008; 68(15):6416-6424.
    62 Cheng H, Zhang L, Cogdell DE, Zheng H, Schetter AJ, Nykter M, Harris CC, Chen K, Hamilton SR, Zhang W. Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 2011; 6(3):e17745.
    63 Hummel R, Hussey DJ, Haier J. MicroRNAs:predictors and modifiers of chemo-and radiotherapy in different tumour types. Eur J Cancer 2010; 46(2):298-311.
    64 Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. Bmc Cancer 2010; 10:616.
    65 Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, Yamamoto M, Ju J. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics 2006; 3(5): 317-324.
    66 Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, van den Brandt PA, Bosnian FT, Weidhaas JB, van Engeland M. A let-7 microRNA SNP in the KRAS 3'UTR is prognostic in early-stage colorectal cancer. Clin Cancer Res 2011; 17(24):7723-7731.
    67 Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R, Biondi A, Di Vita M, Privitera G, Scalia M, Cappellani A, Vasquez E, Lanzafame S, Basile F, Di Pietro C, Purrello M. Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 2010; 9(12); 3396-3409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700