用户名: 密码: 验证码:
短纤维增强反应烧结碳化硅的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代光学技术的发展,航天航空等领域对大口径、轻量化光学系统的需求越来越迫切。反应烧结碳化硅是继铍、玻璃、硅、微晶玻璃后又一种综合性能优异的光学反射镜材料。然而,反应烧结碳化硅陶瓷固有的高脆性制约了材料的机械加工,降低了构件的成品率。复合化是改善单一陶瓷性能的重要途径。本课题针对反应烧结碳化硅陶瓷的高脆性,将短纤维引入SiC/C体系,经注浆成型、反应烧结制备了短纤维增强反应烧结碳化硅复合材料,研究了原料组成、成型工艺、烧结制度对材料性能的影响。短纤维增强反应烧结碳化硅基复合材料克服了反应烧结碳化硅陶瓷脆性大、断裂韧性低的缺点,同时保留了碳化硅陶瓷比刚度高、热膨胀系数低、热导率高的特点,为大口径、轻量化、高精度反射镜的发展提供了必要的保障。
     为了增强碳纤维的抗氧化性,首先采用溶胶-凝胶法在短切碳纤维表面涂覆致密氧化锆薄膜,研究了原料组成、制备工艺对氧化锆涂层结构与性能的影响。浸渍六次后碳纤维轴向、断口处制备均匀氧化锆涂层。采用EDS法研究了纤维表面的元素组成,表明纤维表面存在致密氧化锆涂层。采用TG-DTA法研究了短纤维的抗氧化性,采用3mol.%YSZ涂覆碳纤维的开始氧化温度提高到650℃,800℃时的氧化失重降低到20%。
     以双峰碳化硅、炭黑为基体材料,短切碳纤维为增强体制备了短切碳纤维增强反应烧结碳化硅复合材料。克服短切碳纤维的团聚、成球难题,实现了短切碳纤维在SiC/C浆料中的均匀化。研究了短纤维体积分数对反应烧结碳化硅材料显微结构、体积密度、力学性能的影响:短切碳纤维以碳的形式引入材料体系,短纤维的增加提高了材料的体积密度,当短纤维体积含量超过30vol.%时纤维“架桥”效应降低了材料的体积密度;短纤维的增加提高了材料的弯曲强度和断裂韧性,当短纤维体积含量为30vol.%时,弯曲强度和断裂韧性分别为416MPa、5.1MPa·m~(1/2),分析认为纤维拔出、界面脱粘、裂纹偏折、沿晶断裂、残余压应力是主要的强韧化机制。研究了碳短切碳纤维经反应烧结、HNO3/HF腐蚀后的形貌变化,分析了形貌变化的原因,提出了硅化纤维的双层结构模型。
     短切碳纤维在反应烧结时容易与液相硅反应,使增强体的强度降低、强韧化效果下降。实验中采用热稳定性较好的碳化硅晶须为增强体,经湿法球磨、注浆成型、反应烧结制备了碳化硅晶须增强反应烧结碳化硅复合材料。反应烧结后碳化硅晶须保持了表面的竹节结构及初始尺寸,具有优良的热稳定性。晶须的“架桥”效应提高了坯体的孔隙率,增加了材料中游离硅的尺寸、含量,因此材料的体积密度较短切碳纤维增强材料的体积密度低。碳化硅晶须拥有较高的弹性模量和强度,晶须含量为20wt.%时断裂韧性达到极大值4.2MPa·m~(1/2)。材料断口处有大量的晶须拔出,表明晶须与基体间形成合适的界面结合强度,成为最有效的增韧机制。材料表面存在残余压应力,压应力抑制了表面裂纹的扩展。由于碳化硅晶须平均直径仅为1.5μm,材料力学性能的提高不大。
     反应烧结碳化硅发生惰性氧化后在材料表面形成致密氧化物薄膜,可以提高材料的可靠性。采用空气中微氧化法在反应烧结碳化硅表面制备致密二氧化硅薄膜,研究了二氧化硅薄膜的形成机制、形貌及对反应烧结碳化硅性能的影响。微氧化后材料表面的凹坑、裂纹、气孔等缺陷减少;游离硅的尖端熔化、尺寸减小;硅化纤维发生显著体积膨胀,显示较高的氧化活性。900℃微氧化形成无定型二氧化硅,1100℃微氧化后无定形二氧化硅发生晶化,晶态二氧化硅衍射峰强度随短纤维体积含量的增加而减少。对短碳纤维增强材料,1100℃微氧化材料的弯曲强度、断裂韧性分别提高34%、49%;对碳化硅晶须增强材料,晶须含量15wt.%、1100℃微氧化时材料断裂韧性达到5.1MPa·m~(1/2)。
     碳-硅反应是制备反应烧结碳化硅的基础,针对反应物炭黑,研究了炭黑含量对短纤维增强反应烧结碳化硅陶瓷结构与性能的影响。炭黑硅化后伴随显著的体积膨胀,因此随着炭黑含量的增加,短切碳纤维增强反应烧结碳化硅材料的体积密度逐渐提高。炭黑含量的增加提高了反应烧结碳化硅中碳化硅相的含量,由于碳化硅的热膨胀系数大于硅,材料的热膨胀系数呈增加趋势。当碳纤维体积分数低于20vol.%时,材料的弯曲强度逐步极高;继续增加碳纤维体积分数,炭黑团聚引起材料结构不均匀从而降低了材料的强度。随着炭黑含量的增加,材料的断裂韧性稳步提高。炭黑团聚体反应烧结形成球状SiC-Si多孔结构,空气中微氧化后球状结构表面易于形成致密二氧化硅层。
The demands for large scale, light weight optical systems are growing graduallyin the field of space and aviation with the development of modern optics. After theemployments of Be, glass, silicon and crystallite glass, reaction bonded siliconcarbide (RBSC) is becoming mirror materials with excellent comprehensiveperformances. However, the intrinsic brittleness of RBSC limits its machine work,and thus reduces the qualified rate. Composite is a significant approach to improveproperties of monolithic ceramics. To solve the above problems of RBSC, choppedfiber was introduced into SiC/C system to obtain homogeneous slurry. Randomchopped fiber reinforced RBSC composites were prepared by slip casting andreaction sintering. In this study, the influences of starting materials, forming andsintering techniques on the properties of RBSC composites were investigated.Taking advantage of random chopped fiber, the weaknesses of high brittleness andlow fracture toughness of RBSC are relieved; at the same time, the merits of highstiffness, low coefficient of thermal expansion and high thermal conductivity of SiCceramics are retained. This provides a necessary condition for the preparation oflarge scale, ultra-light weight and high precision optical mirror.
     To protect carbon fiber from destructive oxidation, a Zirconia coating wasdeposited on the chopped carbon fiber surface by sol-gel method. The influences ofmaterial constitutes and process route on the microstructure and properties ofZirconia coating were investigated. When the chopped fiber was dipped for sixcycles, a uniform coating was prepared on the axial and fracture surface. Elementalconstitute of the coating was analyzed by EDS method, which confirmed theexistence of Zirconia coating on the fiber surface. Oxidized performance wasdetermined by TG-DTA method. With respect to the carbon fiber with3mol.%YSZcoating, the destructive oxidation started at650°C and the mass loss arrived only20%until800°C.
     Random chopped fiber reinforced RBSC composites were prepared withbimodal SiC and carbon as matrix, and chopped carbon fiber as reinforcement. Thisroute solved the aggregation of chopped carbon fiber, giving rise to a homogeneousdispersion of chopped fiber in the SiC/C slurry. The volume fraction of choppedfiber is a decisive factor in the microstructure, bulk density and mechanicalproperties of the RBSC composites. The bulk density of the composites increasedwith increasing of carbon fiber which exists in the form of carbon; whereas, whenthe volume fraction exceeded30vol.%, the bridge effect of chopped fiber led to a decrease of bulk density. The introduction of chopped fiber improved both flexuralstrength and fracture toughness of the composites, reaching the peak values of416MPa and5.1MPam~(1/2), at the chopped fiber fraction of30vol.%. Severaltoughening mechanisms, such as fiber pullout, fiber debonding, crack deflection,intergranular fracture and residual stress, were found in the composites. An obviousmorphology change was observed for the chopped fiber in the reactionsintering-acid corrosion test. Based on the morphology change, a bilayer model wasproposed to characterize the structure of the siliconized fiber. The formingmechanism of the bilayer model was analyzed.
     The chopped carbon fiber reacted with liquid silicon during the sintering, andthe strengthening and toughening performances were damaged. Due to the excellentperformance at high temperature, silicon carbide whisker was chosen asreinforcement. Silicon carbide whisker reinforced RBSC composites were preparedby slip casting and reaction sintering with silicon carbide whisker as reinforcement.After sintering, the whisker maintained the burl profile on the surface and thestarting diameter, indicating excellent high temperature stability. Due to the bridgeeffect of whisker, the content and scale of residual silicon were increased in thewhisker reinforced RBSC composites, leading to a lower bulk density comparedwith the chopped fiber reinforced RBSC composites. The silicon carbide whiskerwas characterized with high elastic modulus and stiffness, so the fracture toughnessof the composites reached4.2MPam~(1/2)at the whisker fraction of20wt.%. Whiskerpullout was observed on the fracture surface, implying an appropriate bondingstrength between the whisker and the matrix. As a result, whisker pullout wasconsidered as the main toughening mechanism. The compressive residual stress,which can restrain the origin and propagation of micro-cracks, was detected on thepolished surface of the material. The diameter of whisker is approximate1.5μm,thus confining the reinforcing effect.
     A protective film was prepared on the material surface by mild oxidation inambient air. The formation mechanism, morphology and protective behavior of SiO2film were investigated. Because of the mild oxidation, the defects on the materialsurface, such as holes, cracks, pores, was healed by the SiO2film. At the mildtemperature tips of the residual silicon melted, resulting in a reduction of thediameter. The siliconized fiber underwent an obvious expansion, indicating a highreactivity for the oxidation reaction. At900°C the oxidation product was amorphousSiO2. The amorphous SiO2crystallized to cristobalite at1100°C, whose content wasdetermined by the fraction of the reinforcement. For the chopped fiber reinforcedRBSC composites, the flexural strength and fracture toughness were increased by34% and49%by mild oxidation at1100°C. For the whisker reinforced RBSC composites,the fracture toughness reached5.1MPam~(1/2)at whisker fraction of15wt.%by mildoxidation at1100°C.
     The reaction sintering of RBSC is on the basis of carbon-silicon reaction, so theeffect of carbon black in the random chopped fiber reinforced RBSC wasinvestigated. The siliconization of carbon black is accompanied by a volumeexpansion of approximate100%; as a result, the bulk density of the RBSCcomposites was increased with increasing of the carbon fraction. The CET(coefficient of thermal expansion) of SiC is higher than that of Si, so the CET of thecomposites was enhanced with the fraction increase of SiC. When the chopped fiberfraction was lower than20vol.%, the flexural strength was improved with increasingof fiber fraction; if further increasing the fiber fraction, the strength was reduced forthe nonuniform structure resulted from the carbon black aggregation. With respect tofracture toughness, the value increased steadily with increasing of carbon black. Theaggregation of carbon black was turned into porous SiC-Si structure during reactionsintering. By mild oxidation, a dense SiO2film formed on the surface of the spherestructure.
引文
[1] Suyama S, Kameda T, Itoh Y. Development of High-StrengthReaction-Sintered Silicon Carbide[J]. Diamond and Related Materials,2003,12(3-7):1201-1204.
    [2] Yoshida K,Mukai H,Imai M,Hashimoto K,Toda Y,Hyuga H,Kondo N,Kita H,Yano T. Reaction Sintering of Two-Dimensional Silicon CarbideFiber-Reinforced Silicon Carbide Composite by Sheet Stacking Method[J].Journal of Nuclear Materials,2007,367-370(Part1):769-773.
    [3] He XL, Zhou Y, Jia DC, Guo YK. Effect of Sintering Additives onMicrostructures and Mechanical Properties of Short-Carbon-Fiber-ReinforcedSiC Composites Prepared by Precursor Pyrolysis-Hot Pressing[J]. CeramicsInternational,2006,32(8):929-934.
    [4] Paik U,Park HC,Choi SC,Ha CG,Kim JW,Jung YG. Effect of ParticleDispersion on Microstructure and Strength of Reaction-Bonded SiliconCarbide[J]. Materials Science and Engineering A,2002,334(1-2):267-274.
    [5] Barber GJ,Braem A,Brook NH,Cameron W,Ambrosio CD,Harnew N,Imong J,Lessnoff K,Martin RN,Metlica FD,Romeo RC,Websdale D.Development of Lightweight Carbon-Fiber Mirrors for the RICH Detector ofLHCB, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers[J]. Detectors and Associated Equipment,2008,593(3):624-637.
    [6] Metlica FD. Development of Light-Weight Spherical Mirrors for RICHDetectors, Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers[J]. Detectors and Associated Equipment,2008,595(1):197-199.
    [7] Zhang YM,Zhang JH,Han JC,He XD,Yao W. Large-Scale Fabrication ofLightweight Si/SiC Ceramic Composite Optical Mirror[J]. Materials Letters,2004,58(7-8):1204-1208.
    [8] Cheng HB,Feng YP,Ren LQ,To S,Wang YT. Material Removal andMicro-Roughness in Fluid-Assisted Smoothing of Reaction-Bonded SiliconCarbide Surfaces[J]. Journal of Materials Processing Technology,2009,209(9):4563-4567.
    [9] Banyal RK, Ravindra B. Thermal Characteristics of a Classical SolarTelescope Primary Mirror[J]. New Astronomy,2011,16(5):328-336.
    [10] Guo XZ,Yang H,Zhang LG,Zhu XY. Sintering Behavior, Microstructure andMechanical Properties of Silicon Carbide Ceramics Containing DifferentNano-TiN Additive[J]. Ceramics International,2010,36(1):161-165.
    [11] Baud S, Thevenot F. Microstructures and Mechanical Properties ofLiquid-Phase Sintered Seeded Silicon Carbide[J]. Materials Chemistry andPhysics,2001,67(1-3):165-174.
    [12] Singh M, Behrendt DR. Microstructure and Mechanical Properties ofReaction-Formed Silicon Carbide (RFSC) ceramics[J]. Materials Science andEngineering: A,1994,187(2):183-187.
    [13] Biswas K,Rixecker G,Wiedmann I,Schweizer M,Upadhyaya GS,AldingerF. Liquid Phase Sintering and Microstructure-property Relationships of SiliconCarbide Ceramics with Oxynitride Additives[J]. Materials Chemistry andPhysics,2001,67(1-3):180-191.
    [14] Whitehead A, Page T. Fabrication and Characterization of Some NovelReaction-bonded Silicon Carbide Materials[J]. Journal of Materials Science,1992,27(3):839-852.
    [15] Suresh K,Sweety K,Anil K,Anupam S,Gupta AK,Devi GR. MechanicalProperties of LSI Based3D-Stitched-C-SiC Composites Prepared by Coal-TarPitch as Carbon Precursor[J]. Scripta Materialia,2008,58(10):826-829.
    [16] Li HW,Jin HY,Zhang Q,Yang JF,Jin ZH. SiC/C Machinable CeramicsSurface Hardening by Silicon Infiltration[J]. Scripta Materialia,2010,63(12):1177-1180.
    [17]张舸,赵汝成,赵文兴.空间用反应烧结碳化硅反射镜坯体制备技术研究[J].空间科学学报,2009,31(3):401-405.
    [18] Guo SW,Zhang GY,Li LB,Wang WY,Zhao XZ. Effect of Materials andModelling on the Design of the Space-Based Lightweight Mirror[J]. Materialsand Design,2009,30(1):9-14.
    [19] Suyama S,Itoh Y,Tsuno K,Ohno K. Optical Materials and StructuresTechnologies II[C]. San Diego:SPIE,2005:1-10.
    [20] Narayan L,Raghunathan R,Chowdhury R,Jagannadham K. Mechanism ofCombustion Synthesis of Silicon-Carbide[J]. Journal of Applied Physics,1994,75(11):7252-7257.
    [21] Kumar S,Kumari S,Kumar A,Shukla A,Devi GR,Gupta AK. Investigationof Effect of Siliconization Conditions on Mechanical Properties of3D-stitchedC-SiC Composites[J]. Materials Science and Engineering: A,2011,528(3):1016-1022.
    [22] Eustathopoulos N,Israel R,Drevet B,Camel D. Reactive Infiltration by Si:Infiltration Versus Wetting[J]. Scripta Materialia,2010,62(12):966-971.
    [23] Voytovych R,Bougiouri V,Calderon NR,Narciso J,Eustathopoulos N.Reactive Infiltration of Porous Graphite by NiSi Alloys[J]. Acta Materialia,2008,56(10):2237-2246.
    [24] Kumar G,Prabhu KN. Review of Non-Reactive and Reactive Wetting ofLiquids on Surfaces[J]. Advances in Colloid and Interface Science,2007,133(2):61-89.
    [25] Larpkiattaworn S,Ngernchuklin P,Khongwong W,Pankurddee N,Wada S.The Influence of Reaction Parameters on the Free Si and C Contents in theSynthesis of Nano-Sized SiC[J]. Ceramics International,2006,32(8):899-904.
    [26] Dezellus O,Jacques S,Hodaj F,Eustathopoulos N. Wetting and Infiltration ofCarbon by Liquid Silicon[J]. Journal of Materials Science,2005,40(9):2307-2311.
    [27] Sangsuwan P,Tewari S,Gatica J,Singh M,Dickerson R. Reactive Infiltrationof Silicon Melt through Microporous Amorphous Carbon Preforms[J].Metallurgical and Materials Transactions B,1999,30(5):933-944.
    [28] Bhatti QA,Matthai CC. Critical Thickness and Growth Modes of SiC Layerson Si Substrates-a Molecular Dynamics Study[J]. Applied Surface Science,1998,123–124:7-10.
    [29] Krenkel W.25th Annual Conference on Composites, Advanced Ceramics,Materials, and Structures: A: Ceramic Engineering and ScienceProceedings[C]. America:John Wiley&Sons, Inc,2008:443-454.
    [30] Heidenreich B. Ceramic Matrix Composites[M]. Germany:Wiley-VCH VerlagGmbH&Co. KgaA,2008:113-139.
    [31] Favre A,Fuzellier H,Suptil J. An Original Way to Investigate the Siliconizingof Carbon Materials[J]. Ceramics International,2003,29(3):235-243.
    [32] Li JG, Hausner H. Reactive Wetting in the Liquid-Silicon/Solid-CarbonSystem[J]. Journal of the American Ceramic Society,1996,79(4):873-880.
    [33] Ness JN,Page TF. Microstructural Evolution in Reaction-Bonded SiliconCarbide[J]. Journal of Materials Science,1986,21(4):1377-1397.
    [34] Pampuch R,Bia oskorski J,Walasek E. Mechanism of Reactions in the SiC+CfSystem and the Self-Propagating High-temperature Synthesis of SiliconCarbide[J]. Ceramics International,1987,13(1):63-68.
    [35] Narciso FJ,Rodriguez F,Diez MA. Influence of the Carbon Material on theSynthesis of Silicon Carbide[J]. Carbon,1999,37(11):1771-1778.
    [36] Zollfrank C,Kladny R,Sieber H,Greil P. Biomorphous SiOC/C-CeramicComposites from Chemically Modified Wood Templates[J]. Journal of theEuropean Ceramic Society,2004,24(2):479-487.
    [37] Varela F,Ramirez J,Arellano AD,Martinez J,Singh M. Reaction-FormationMechanisms and Microstructure Evolution of Biomorphic SiC[J]. Journal ofMaterials Science,2008,43(3):933-941.
    [38] Presas M,Pastor JY,Llorca J,Arellano AR,Martinez J,Sepulveda RE.Mechanical Behavior of Biomorphic Si/SiC Porous Composites[J]. ScriptaMaterialia,2005,53(10):1175-1180.
    [39] Zollfrank C,Sieber H. Microstructure Evolution and Reaction Mechanism ofBiomorphous SiSiC Ceramics[J]. Journal of the American Ceramic Society,2005,88(1):51-58.
    [40] Margiotta JC. Study of Silicon Carbide Formation by Liquid Silicon Infiltrationof Porous Carbon Structures[D]. Maryland:Johns Hopkins University,2009:23-37.
    [41] Israel R,Voytovych R,Protsenko P,Drevet B,Camel D,Eustathopoulos N.Capillary Interactions between Molten Silicon and Porous Graphite[J]. Journalof Materials Science,2010,45(8):2210-2217.
    [42] Kumar S,Kumar A,Shukla A,Gupta AK,Devi R. Capillary Infiltration Studiesof Liquids into3D-stitched C–C Preforms: Part A: Internal PoreCharacterization by Solvent Infiltration, Mercury Porosimetry, andPermeability Studies[J]. Journal of the European Ceramic Society,2009,29(12):2643-2650.
    [43] Ashby MF. Materials Selection in Mechanical Design[M]. Oxford:PergamonPress,2005:60-61.
    [44]王友兵.反应熔渗法制备SiC陶瓷材料及其结构与性能研究[D].武汉:武汉理工大学,2007:23-36.
    [45] Li Y,Lin J,Gao JQ,Qiao GJ,Wang HJ. Fabrication of Reaction-Bonded SiCCeramics by Slip Casting of SiC/C Suspension[J]. Materials Science andEngineering: A,2008,483-484:676-678.
    [46] Aroati S,Cafri M,Dilman H,Dariel MP,Frage N. Preparation of ReactionBonded Silicon Carbide (RBSC) Using Boron Carbide as an AlternativeSource of Carbon[J]. Journal of the European Ceramic Society,2011,31(5):841-845.
    [47] Hayun S,Frage N,Dariel MP. The Morphology of Ceramic Phases inBxC-SiC-Si Infiltrated Composites[J]. Journal of Solid State Chemistry,2006,179(9):2875-2879.
    [48] Hayun S,Weizmann A,Dariel MP,Frage N. Microstructural Evolution duringthe Infiltration of Boron Carbide with Molten Silicon[J]. Journal of theEuropean Ceramic Society,2010,30(4):1007-1014.
    [49] Scholl R,Bohm A,Kieback B. Fabrication of Silicide Materials and TheirComposites by Reaction Sintering[J]. Materials Science and Engineering A,1999,261(1-2):204-211.
    [50]武七德,童元丰.提高反应烧结碳化硅陶瓷性能的研究趋势[J].江苏陶瓷,2001,(4):1-3.
    [51] Esfehanian M,Guenster J,Heinrich JG,Horvath J,Koch D,Grathwohl G.High-temperature Mechanical Behavior of Carbon-Silicide-CarbideComposites Developed by Alloyed Melt Infiltration[J]. Journal of theEuropean Ceramic Society,2008,28(6):1267-1274.
    [52]陈日月,刘小磐.成型工艺对反应烧结SiC材料性能的影响[J].佛山陶瓷,2005,(11):5-8.
    [53] Kotani M,Kohyama A,Katoh Y. Development of SiC/SiC Composites by PIPin Combination with RS[J]. Journal of Nuclear Materials,2001,289(1-2):37-41.
    [54] Rebillat F,Guette A,Brosse CR. Chemical and Mechanical Alterations of SiCNicalon Fiber Properties during the CVD/CVI Process for Boron Nitride[J].Acta Materialia,1999,47(5):1685-1696.
    [55] Yonathan P,Lee JH,Yoon DH,Kim WJ,Park JY. Improvement of SiCf/SiCDensity by Slurry Infiltration and Tape Stacking[J]. Materials ResearchBulletin,2009,44(11):2116-2122.
    [56] He XB,Yang H. Preparation of SiC Fiber-Reinforced SiC Composites[J].Journal of Materials Processing Technology,2005,159(1):135-138.
    [57] Lee SP,Katoh Y,Park JS,Dong S,Kohyama A,Suyama S,Yoon HK.Microstructural and Mechanical Characteristics of SiC/SiC Composites withModified-RS Process[J]. Journal of Nuclear Materials,2001,289(1-2):30-36.
    [58] Lee SP,Yoon HK,Park JS,Katoh Y,Kohyama A,Kim DH,Lee JK. ReactionSintering Process of Tyranno SA/SiC Composites and TheirCharacterization[J]. Fusion Engineering and Design,2002,61-62:717-722.
    [59] Zhu YZ,Huang ZR,Dong SM,Yuan M,Jiang DL. Manufacturing2DCarbon-Fiber-Reinforced SiC Matrix Composites by Slurry Infiltration andPIP Process[J]. Ceramics International,2008,34(5):1201-1205.
    [60]胡路阳.碳化硅复相陶瓷的制备与组织性能分析[D].哈尔滨:哈尔滨工业大学,2006:27-37.
    [61] Schulte J,Zern A,Mayer J,Ruhle M,Frie M,Krenkel W,KochendorferR. The Morphology of Silicon Carbide in C/C-SiC Composites[J]. MaterialsScience and Engineering A,2002,332(1-2):146-152.
    [62]韩秀峰,张立同,成来飞,徐永东.基体改性对碳纤维增韧碳化硅复合材料结构与性能的影响[J].硅酸盐学报,2006,(7):871-874.
    [63] Qiao Y,Kong XG. Unstable Crack Advance Across a Regular Array of ShortFibers in Brittle Matrix[J]. Composites Science and Technology,2004,64(5):711-717.
    [64] He XL, Guo YK, Zhou Y, Jia DC. Microstructures ofShort-Carbon-Fiber-Reinforced SiC Composites Prepared by Hot-Pressing[J].Materials Characterization,2008,59(12):1771-1775.
    [65] Tsai J,Patra AK,Wetherhold R. Numerical Simulations of Fracture-ToughnessImprovement Using Short Shaped Head Ductile Fibers[J]. Composites Part A:Applied Science and Manufacturing,2003,34(12):1255-1264.
    [66] Huang H,Talreja R. Numerical Simulation of Matrix Micro-Cracking in ShortFiber Reinforced Polymer Composites: Initiation and Propagation[J].Composites Science and Technology,2006,66(15):2743-2757.
    [67] Laspalas M,Crespo C,Jimenez MA,Garcia B,Pelegay JL. Application ofMicromechanical Models for Elasticity and Failure to Short Fibre ReinforcedComposites: Numerical Implementation and Experimental Validation[J].Computers and Structures,2008,86(9):977-987.
    [68] Wang X,Luo RY,Ni YF,Zhang RQ,Wang SB. Properties of Chopped CarbonFiber Reinforced Carbon Foam Composites[J]. Materials Letters,2009,63(1):25-27.
    [69] Pan Y,Iorga L,Pelegri AA. Numerical Generation of a Random Chopped FiberComposite RVE and Its Elastic Properties[J]. Composites Science andTechnology,2008:68(13):2792-2798.
    [70] Li WQ,Zhang HB,Xiong X,Xiao F. Influence of Fiber Content on theStructure and Properties of Short Carbon Fiber Reinforced Carbon Foam[J].Materials Science and Engineering: A,2010,527(27-28):7274-7278.
    [71] Jacob GC,Starbuck JM,Fellers JF,Simunovic S,Boeman RG. FractureToughness in Random-Chopped Fiber-Reinforced Composites and Their StrainRate Dependence[J]. Journal of Applied Polymer Science,2006,100(1):695-701.
    [72] Lee HK,Simunovic S. A Damage Mechanics Model of Crack-Weakened,Chopped Fiber Composites under Impact Loading[J]. Composites Part B:Engineering,2002,33(1):25-34.
    [73]于海蛟,周新贵.短Cf增强SiC基复合材料及制备压力和Cf含量及其对其性能的影响[J].粉末冶金材料科学与工程,2006,11(1):49-53.
    [74]旷文敏,肖鹏,熊翔,杨阳.纤维分散对C/C-SiC复合材料力学性能的影响[J].粉末冶金材料科学与工程,2007,12(1):53-58.
    [75] Yang Y. Methods Study on Dispersion of Fibers in CFRC[J]. Cement andConcrete Research,2002,32(5):747-750.
    [76]海然,潘洪科.碳纤维的分散工艺对水泥基材料力学性能的影响[J].中原工学院学报,2008,(03):1-4.
    [77] Wang C,Li KZ,Li HJ,Jiao GS,Lu J,Hou DS. Effect of Carbon FiberDispersion on the Mechanical Properties of Carbon Fiber-ReinforcedCement-Based Composites[J]. Materials Science and Engineering: A,2008,487(1-2):52-57.
    [78] Viggo T. Fibre Debonding and Breakage in a Whisker-Reinforced Metal[J].Materials Science and Engineering: A,1995,190(1-2):215-222.
    [79] Lee JS,Yano T. Fabrication of Short-Fiber-Reinforced SiC Composites byPolycarbosilane Infiltration[J]. Journal of the European Ceramic Society,2004,24(1):25-31.
    [80] Tsai LW,Zhang SY. Prediction of Mixed-Mode Cracking Direction in Random,Short-Fibre Composite Materials[J]. Composites Science and Technology,1988,31(2):97-110.
    [81] Phoenix SL,Ibnabdeljalil M,Hui CY. Size Effects in the Distribution forStrength of Brittle Matrix Fibrous Composites[J]. International Journal ofSolids and Structures,1997,34(5):545-568.
    [82] Sirivedin S,Fenner DN,Nath RB,Galiotis C. Matrix Crack PropagationCriteria for Model Short-Carbon Fibre/Epoxy Composites[J]. CompositesScience and Technology,2000,60(15):2835-2847.
    [83] Beyerlein IJ, Zhu YT,Mahesh S. On the Influence of Fiber Shape inBone-Shaped Short-fiber Composites[J]. Composites Science and Technology,2001,61(10):1341-1357.
    [84] He XL,Guo YK,Zhou Y,Jia DC. Study on Microstructures and MechanicalProperties of Short-Carbon-Fiber-Reinforced SiC Composites Prepared byHot-Pressing[J]. Materials Science and Engineering: A,2009:527(1-2):334-338.
    [85] Tang HL,Zeng XR,Xiong XB,Li L,Zou JZ. Mechanical and TribologicalProperties of Short-Fiber-Reinforced SiC Composites[J]. TribologyInternational,2009,42(6):823-827.
    [86]唐汉玲,曾燮榕,熊信柏,李龙,邹继兆.短切碳纤维增强碳化硅复合材料的氧化性能研究[J].无机材料学报,2009,(2):305-309.
    [87] Ozaki T,Kume M,Oshima T,Nshima T,Nakagawa T,Matsumoto T,KanedaH,Murakami H,Kataza K,Enya K,Yui Y,Onaka T,Kroedel M. OpticalFabrication, Metrology, and Material Advancement for Telescopes[C].Bellingham:SPIE,2004:366-373.
    [88]郭领军,李贺军,李克智.短碳纤维复合材料中纤维均匀化技术的研究现状[J].兵器材料科学与工程,2003,(6):50-53.
    [89] Viksne A,Rence L,Kalnins M,Bledzki AK. The Effect of Paraffin on FiberDispersion and Mechanical Properties of Polyolefin-Sawdust Composites[J].Journal of Applied Polymer Science,2004,93(5):2385-2393.
    [90] Besshi T,Sato T,Matsui M,Oosaki T. The Extrusion of Fiber DispersionCeramic Green Bodies and Their Dewax Behavior[J]. Journal of MaterialsProcessing Technology,1999,96(1-3):157-162.
    [91] Zhou H,Qian ZZ,Meng XF,Ding YF,Zhang SM,Yang MS. Fiber Breakageand Dispersion in Carbon-Fiber-Reinforced Nylon6/Clay Nanocomposites[J].Journal of Applied Polymer Science,2007,106(3):1751-1756.
    [92] Scott DM. Nondestructive Analysis of Fiber Dispersion and Loading[J].Composites Part A: Applied Science and Manufacturing,1997,28(8):703-707.
    [93] Mishra S,Mitra R,Vijayakumar M. A Novel Route for the Dispersion of Fibersfor the Preparation of Fiber Reinforced Porous Composites[J]. MaterialsLetters,2008,62(12-13):2025-2028.
    [94] Yang FY,Zhang XH,Han JC,Du SY. Characterization of Hot-Pressed ShortCarbon Fiber Reinforced ZrB2-SiC Ultra-High Temperature CeramicComposites[J]. Journal of Alloys and Compounds,2009,472(1-2):395-399.
    [95] Zhang YL,Zhang YM,Han JC,Han YY,Yao W. Fabrication of ToughenedCf/SiC Whisker Composites and Their Mechanical Properties[J]. MaterialsLetters,2008,62(17-18):2810-2813.
    [96]张亚芳,齐雷,张春梅.增强短纤维长径比对复合材料力学性能的影响[J].广州大学学报(自然科学版),2008,(4):32-34.
    [97] Tang YP,Liu L,Li WW,Shen B,Hu WB. Interface Characteristics andMechanical Properties of Short Carbon Fiber/Al Composites with DiffernetCoatings[J]. Applied Surface Science,2009,255(8):4393-4400.
    [98] Tang SF,Deng JY,Wang SJ,Liu WC. Comparison of Thermal and AblationBehaviors of C/SiC Composites and C/ZrB2-SiC Composites[J]. CorrosionScience,2009,51(1):54-61.
    [99] Ding YS, Dong SM, Huang ZG, Jiang DL. Fabrication of Short CFiber-Reinforced SiC Composites by Spark Plasma Sintering[J]. CeramicsInternational,2007,33(1):101-105.
    [100]梁锦华.短纤维C/C-SiC复合材料的制备及性能研究[D].长沙:中南大学,2005,27-45.
    [101]Bansal NP. Mechanical Behavior of Silicon Carbide Fiber-ReinforcedStrontium Aluminosilicate Glass-Ceramic Composites[J]. Materials Scienceand Engineering A,1997,231(1-2):117-127.
    [102]Smeacetto F,Ferraris M,Salvo M,Ellacott SD,Ahmed A,Rawlings RD,Boccaccini AR. Protective Coatings for Carbon Bonded Carbon FibreComposites[J]. Ceramics International,2008,34(5):1297-1301.
    [103]尹洪峰,徐永东,成来飞,张立同.界面相对碳纤维增韧碳化硅复合材料性能的影响[J].硅酸盐学报,2000,28(1):1-5.
    [104]Kumar S,Kumari S,Kumar A,Shukla A,Devi GR,Gupta AK. Investigationof Effect of Siliconization Conditions on Mechanical Properties of3D-StitchedC-SiC Composites[J]. Materials Science and Engineering: A,2011,528(3):1016-1022.
    [105]Hirata Y,Suzue N,Matsunaga N,Sameshima S. Particle Size Effect ofStarting SiC on Processing, Microstructures and Mechanical Properties ofLiquid Phase-Sintered SiC[J]. Journal of the European Ceramic Society,2010,30(9):1945-1954.
    [106]Evans RS,Bourell DL,Beaman JJ,Campbell MI. Rapid Manufacturing ofSilicon Carbide Composites[J]. Rapid Prototyping Journal,2005,11(Compendex):37-40.
    [107]Zhou H,Singh RN. Kinetics Model for the Growth of Silicon Carbide by theReaction of Liquid Silicon with Carbon[J]. Journal of the American CeramicSociety,1995,78(9):2456-2462.
    [108]Taavoni A,Taheri E,Naghizadeh R,Akhondi H. Properties of Sol-Gel DerivedAl2O3-15wt.%ZrO2(3mol%Y2O3) Nanopowders Using Two DifferentPrecursors[J]. Ceramics International,2010,36(3):1147-1153.
    [109]Taavoni A,Taheri E,Akhondi H. The Effect of Zirconia Content on Propertiesof Al2O3-ZrO2(Y2O3) Composite Nanopowders Synthesized by AqueousSol-Gel Method[J]. Journal of Non-Crystalline Solids,2009,355(4-5):311-316.
    [110]Zhang XJ,Li Q,Zhao SY,Gao CX,Zhang ZG. Sol-Gel Al2O3/ZrO2DuplexFilms for Protection of a TiAl Based Alloy against High TemperatureOxidation[J]. Journal of Sol-Gel Science and Technology,2008,47(1):107-114.
    [111]You HC,Ko FH,Lei TF. Physical Characterization and Electrical Properties ofSol-Gel Derived Zirconia Films[J]. Journal of the Electrochemical Society,2006,153(6):F94-F99.
    [112]Zhang XR,Pei XQ,Mu B,Wang QH. Effect of Carbon Fiber SurfaceTreatments on the Flexural Strength and Tribological Properties of ShortCarbon Fiber/Polyimide Composites[J]. Surface and Interface Analysis,2008,40(5):961-965.
    [113]Fan YZ,Yang HB,Liu XZ,Zhu HY,Zou GG. Preparation and Study on RadarAbsorbing Materials of Nickel-Coated Carbon Fiber and Flake Graphite[J].Journal of Alloys and Compounds,2008,461(1-2):490-494.
    [114]Kar KK,Sathiyamoorthy D. Influence of Process Parameters for Coating ofNickel-Phosphorous on Carbon Fibers[J]. Journal of Materials ProcessingTechnology,2009,209(6):3022-3029.
    [115]Liang LP,Xu Y,Wu D,Sun YH. A Simple Sol-Gel Route to ZrO2Films withHigh Optical Performances[J]. Materials Chemistry and Physics,2009,114(1):252-256.
    [116]Oliveira AP,Torem ML. The Influence of Precipitation Variables on ZirconiaPowder Synthesis[J]. Powder Technology,2001,119(2-3):181-193.
    [117]Gu X,Trusty PA,Butler EG,Ponton CB. Deposition of Zirconia Sols onWoven Fibre Preforms Using a Dip-Coating Technique[J]. Journal of theEuropean Ceramic Society,2000,20(6):675-684.
    [118]Pivin JC,Colombo P. Ceramic Coatings by Ion Irradiation of Polycarbosilanesand Polysiloxanes: Part II Hardness and Thermochemical Stability[J]. Journalof Materials Science,1997,32(23):6175-6182.
    [119]Lima RS, Marple BR. Thermal Spray Coatings Engineered fromNanostructured Ceramic Agglomerated Powders for Structural, ThermalBarrier and Biomedical Applications: A Review[J]. Journal of Thermal SprayTechnology,2007,16(1):40-63.
    [120]Diaz A,Macias A,Ortiz AL,Cuerda EM. Effect of Calcination Temperatureon the Textural Properties of3mol%Yttria-Stabilized Zirconia Powders[J].Journal of Non-Crystalline Solids,2010,356(3):175-178.
    [121]Zhao HB,Yu FL,Bennett TD,Wadley NG. Morphology and ThermalConductivity of Yttria-Stabilized Zirconia Coatings[J]. Acta Materialia,2006,54(19):5195-5207.
    [122]Krenkel W. Handbook of Ceramic Composites[M]. Germany:Springer,2005:117-148.
    [123]Krenkel W, Berndt F. C/C-SiC Composites for Space Applications andAdvanced Friction Systems[J]. Materials Science and Engineering: A,2005,412(1-2):177-181.
    [124]乔儒生.复合材料细观力学性能[M].西安:西北工业大学出版社,1997:52-62
    [125]Suyama S, Itoh Y. Strengthening Mechanism of High-StrengthReaction-Sintered Silicon carbide[J]. Key Engineering material,2011,484:89-98.
    [126]Ortona A,Fino P,Angelo CD,Biamino S,Amico GD,Gaia D,Gianella S.Si-SiC-ZrB2Ceramics by Silicon Reactive Infiltration[J]. CeramicsInternational,2012,38(4):3243-3250.
    [127]Israel R,Combarieu G,Drevet B,Camel D,Eustathopoulos N,Raymond O.Resistance to Oxidation of Graphite Silicided by Reactive Infiltration[J].Journal of the European Ceramic Society,2011,31(12):2167-2174.
    [128]Amirthan G,Balasubramanian M. Reciprocating Sliding Wear Studies onSi/SiC Ceramic Composites[J]. Wear,2011,271(7-8):1039-1049.
    [129]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,22(3):259-269.
    [130]邓明进.高性能反应烧结碳化硅陶瓷制备及其性能研究[D].武汉:武汉理工大学,2012:37-39.
    [131]Pampuch R,Walasek E,Bialoskorski J. Reaction Mechanism in Carbon-LiquidSilicon Systems at Elevated Temperatures[J]. Ceramics International,1986,12(2):99-106.
    [132]Lim CB,Yano T,Iseki T. Microstructure and Mechanical Properties ofRB-SiC/MoSi2Composite[J]. Journal of Materials Science,1989,24(11):4144-4151.
    [133]Carroll DF,Tressler RE. Time-Dependent Strength of Siliconized SiliconCarbide under Stress at1000°C and1100°C[J]. Journal of the AmericanCeramic Society,1985,68(3):143-146.
    [134]Lange FF. Effect of Microstructure on Strength of Si3N4-SiC CompositeSystem[J]. Journal of the American Ceramic Society,1973,56(9):445-450.
    [135]王闯,李克智,李贺军,焦更生.短碳纤维的分散性与CFRC复合材料的力学性能[J].精细化工,2007,24(6):521-525.
    [136]李世斌,李养良,金志浩.硅/碳化硅材料显微特征与强度关系研究[J].陶瓷学报,2004,25(4):207-211.
    [137]Zhou Q,Dong SM,Zhang XY,Ding YS,Jiang DL. Fabrication of Cf/SiCComposites by Vapor Silicon Infiltration[J]. Journal of the American CeramicSociety,2006,89(7):2338-2340.
    [138]Drevet B,Eustathopoulos N. Wetting of Ceramics by Molten Silicon andSilicon Alloys: a Review[J]. Journal of Materials Science,2012,47(24):8247-8260.
    [139]Can A,Herrmann M,McLachlan DS,Sigalas I,Adler J. Densification ofLiquid Phase Sintered Silicon Carbide[J]. Journal of the European CeramicSociety,2006,26(9):1707-1713.
    [140]Lee JK,Park JG,Lee EG,Seo DS,Hwang Y. Effect of Starting Phase onMicrostructure and Fracture Toughness of Hot-Pressed Silicon Carbide[J].Materials Letters,2002,57(1):203-208.
    [141]Lee SH,Lee YI,Kim YW,Xie RJ,Mitomo M,Zhan GD. MechanicalProperties of Hot-Forged Silicon Carbide Ceramics[J]. Scripta Materialia,2005,52(2):153-156.
    [142]Kim WJ,Kang SM,Park JY,Ryu WS. Effect of a SiC Whisker Formation onthe Densification of Tyranno SA/SiC Composites Fabricated by the CVIProcess[J]. Fusion Engineering and Design,2006,81(8-14):931-936.
    [143]Wang CA,Huang Y,Zhai HX. The Effect of Whisker Orientation in SiCWhisker-Reinforced Si3N4Ceramic Matrix Composites[J]. Journal of theEuropean Ceramic Society,1999,19(10):1903-1909.
    [144]Jiang X,Chen Y,Sun XW,Huang LP. Mechanical Property Improvement andMicrostructure Observation of SiCW-AlN Composites[J]. Journal of theEuropean Ceramic Society,1999,19(11):2033-2038.
    [145]Takahashi K,Yokouchi M,Lee SK,Ando K. Crack-Healing Behavior of Al2O3Toughened by SiC Whiskers[J]. Journal of the American Ceramic Society,2003,86(12):2143-2147.
    [146]Zhu T, Xu L, Zhang XH, Han WB, Hu P, Weng L. Densification,Microstructure and Mechanical Properties of ZrB2-SiCWCeramicComposites[J]. Journal of the European Ceramic Society,2009,29(13):2893-2901.
    [147]Wu P,Zheng Y,Zhao YL,Yu HZ. Effect of SiC Whisker Addition on theMicrostructures and Mechanical Properties of Ti(C, N)-Based Cermets[J].Materials and Design,2011,32(2):951-956.
    [148]彭晓峰,黄校先,张玉峰.碳化硅晶须补强氧化铝复合材料的制备及其力学性能[J].无机材料学报,1998,13(4):469-476.
    [149]Choi HJ,Lee JG. Stacking Fault in Siliocn Carbide Whisker[J]. CeramicsInternational,2000,26(1):7-12.
    [150]Gerhardt RA,Ruh R. Volume Fraction and Whisker Orientation Dependenceof the Electrical Properties of SiC-whisker Reinforced Mullite Composite[J].Journal of the American Ceramic Society,2001,84(10):2328-2334.
    [151]Fan HB,Li YW,Sang SB. Microstructures and Mechanical Properties ofAl2O3-C Refractories with Silicon Additive Using Different Carbon Sources(SiC Whisker)[J]. Materials Science and Engineering: A,2011,528(7-8):3177-3185.
    [152]Wu HY,Gao MX,Zhu D,Zhang SC,Pan Y,Pan HG,Liu YF,OliveiraFJ,Vieira JM. SiC Whisker Reinforced Multi-Carbides Composites Preparedfrom B4C and Pyrolyzed Rice Husks via Reactive Infiltration[J]. CeramicsInternational,2012,38(5):3519-3527.
    [153]Zberg B,Arata ER,Uggowitzer PJ,Loffler JF. Tensile Properties of GlassyMgZnCa Wires and Reliability Analysis Using Weibull Statistics[J]. ActaMaterialia,2009,57(11):3223-3231.
    [154]Fu QG,Li HJ,Li KZ,Shi XH,Hu ZB,Huang M. SiC Whisker-ToughenedMoSi2-SiC-Si Coating to Protect Carbon/Carbon Composites againstOxidation[J]. Carbon,2006,44(9):1866-1869.
    [155]Hua YF,Zhang LT,Cheng LF,Li ZX,Du JH. Microstructure and MechanicalProperties of SiCP/SiC and SiCW/SiC Composites by CVI[J]. Journal ofMaterials Science,2010,45(2):392-398.
    [156]Hua YF,Zhang LT,Cheng LF,Wang J. Silicon Carbide Whisker ReinforcedSilicon Carbide Composites by Chemical Vapor Infiltration[J]. MaterialsScience and Engineering: A,2006,428(1-2):346-350.
    [157]Choi YY,Kim JG,Lee KM,Sohn HC,Choi DJ. A Study of Surface-CoatedSiC Whiskers on Carbon Fiber Substrates and Their Properties for DieselParticulate Filter Applications[J]. Ceramics International,2011,37(4):1307-1312.
    [158]Hsueh CH,Becher PF,Angelini P. Effects of Interfacial Films on ThermalStresses in Whisker-Reinforced Ceramics[J]. Journal of the American CeramicSociety,1988,71(11):929-933.
    [159]Zhang XH,Xu L,Han WB,Weng L,Han JC,Du SY. Microstructure andProperties of Silicon Carbide Whisker Reinforced Zirconium DiborideUltra-High Temperature Ceramics[J]. Solid State Sciences,2009,11(1):156-161.
    [160]Wilhelm M,Kornfeld M,Wruss W. Development of SiC-Si Composites withFine-Grained SiC Microstructures[J]. Journal of the European Ceramic Society,1999,19(12):2155-2163.
    [161]Kim YW,Chun YS,Nishimura T,Mitomo M,Lee YH. High-TemperatureStrength of Silicon Carbide Ceramics Sintered with Rare-Earth Oxide andAluminum Nitride[J]. Acta Materialia,2007,55(2):727-736.
    [162]Fan ZJ,Song YZ,Li JG,Liu L,Song JR,Chen JL,Zhai GT,Shi JL. OxidationBehavior of Fine-Grained SiC-B4C/C Composites up to1400°C[J]. Carbon,2003,41(3):429-436.
    [163]Sullivan RM. A Model for the Oxidation of Carbon Silicon Carbide CompositeStructures[J]. Carbon,2005,43(2):275-285.
    [164]Christiansen K,Christiansen S,Albrecht M,Strunk HP,Heibig R. AnisotropicOxidation of Silicon Carbide[J]. Diamond and Related Materials,1997,6(10):1467-1471.
    [165]Liu DM. Oxidation of Polycrystalline α-Silicon Carbide Ceramic[J]. CeramicsInternational,1997,23(5):425-436.
    [166]Lingner T,Greulich S,Spaeth JM,Gerstmann U,Rauls E,Overhof H. TheAnnealing Product of the Silicon Vacancy in6H-SiC[J]. Physica B: CondensedMatterial,2001,308–310:625-628.
    [167]Herrmann M,Matthey B,Hohn S,Kinski I,Rafaja D,Michaelis A.Diamond-Ceramics Composites-New Materials for a Wide Range ofChallenging Applications[J]. Journal of the European Ceramic Society,2012,32(9):1915-1923.
    [168]Jacobson NS,Myers DL. Active Oxidation of SiC[J]. Oxidation of Metals,2011,75(1-2):1-25.
    [169]Vaughn WL,Maahs HG. Active-to-Passive Transition in the Oxidation ofSilicon Carbide and Silicon Nitride in Air[J]. Journal of the American CeramicSociety,1990,73(6):1540-1543.
    [170]N ss M,Young D,Zhang JQ,Olsen J,Tranell G. Active Oxidation of LiquidSilicon: Experimental Investigation of Kinetics[J]. Oxidation of Metals,2012,78(5-6):363-376.
    [171]Wang JJ,Zhang LT,Zeng QF,Vignoles GL,Cheng LF,Guette A. TheRate-Limiting Step in the Thermal Oxidation of Silicon Carbide[J]. ScriptaMaterialia,2010,62(9):654-657.
    [172]Maity A,Kalita D,Kayal N,Goswami T,Chakrabarti O,Rao PG. OxidationBehavior of SiC Ceramics Synthesized from Processed CellulosicBio-Precursor[J]. Ceramics International,2012,38(6):4701-4706.
    [173]Rezaie A,Fahrenholtz WG,Hilmas GE. Evolution of Structure during theOxidation of Zirconium Diboride-Silicon Carbide in Air up to1500°C[J].Journal of the European Ceramic Society,2007,27(6):2495-2501.
    [174]Huang QW, Jin ZH. The High Temperature Oxidation Behavior ofReaction-Bonded Silicon Carbide[J]. Journal of Materials ProcessingTechnology,2001,110(2):142-145.
    [175]Wilhelm M,Wruss W. Influence of Annealing on the Mechanical Properties ofSiC-Si Composites with Sub-Micron SiC Microstructures[J]. Journal of theEuropean Ceramic Society,2000,20(8):1205-1213.
    [176]Koh A,Kestle A,Wright C,Wilks SP,Mawby PA,Bowen WR. ComparativeSurface Studies on Wet and Dry Sacrificial Thermal Oxidation on SiliconCarbide[J]. Applied Surface Science,2001,174(3-4):210-216.
    [177]Hanzawa S. Mechanism of Synthesizing Dense Si-SiC Matrix C/CComposites[J]. Journal of Materials Science,2012,47(2):833-844.
    [178]Gulbransen E,Jansson S. The High-Temperature Oxidation, Reduction, andVolatilization Reactions of Silicon and Silicon Carbide[J]. Oxidation of Metals,1972,4(3):181-201.
    [179]Zhou H,Singh RN. Kinetics Model for the Growth of Silicon Carbide by theReaction of Liquid Silicon with Carbon[J]. Journal of the American CeramicSociety,1995,78(9):2456-2462.
    [180]Patel M,Saurabh K,Prasad V,Subrahmanyam J. High Temperature C/C–SiCComposite by Liquid Silicon Infiltration: a Literature Review[J]. Bulletin ofMaterials Science,2012,35(1):63-73.
    [181]Narushima T,Goto T,Hirai T. High-Temperature Passive Oxidation ofChemically Vapor Deposited Silicon Carbide[J]. Journal of the AmericanCeramic Society,1989,72(8):1386-1390.
    [182]Zhang XH,Xu L,Du SY,Han WB,Han JC. Crack-Healing Behavior ofZirconium Diboride Composite Reinforced with Silicon Carbide Whiskers[J].Scripta Materialia,2008,59(11):1222-1225.
    [183]吕振林,李世斌,高积强,金志浩,李贺军.反应烧结碳化硅材料的高温氧化[J].中国有色金属学报,2002,12(S1):58-63.
    [184]Chakrabarti O,Mukerji J. Oxidation Kinetics of Reaction-Sintered SiliconCarbide[J]. Bulletin of Materials Science,1993,16(4):325-329.
    [185]Ghanem H,Alkhateeb E,Gerhard H. N. Popovska, Oxidation Behavior ofSilicon Carbide Based Biomorphic Ceramics Prepared by Chemical VaporInfiltration and Reaction Technique[J]. Ceramics International,2009,35(7):2767-2774.
    [186]Deal BE,Grove AS. General Relationship for the Thermal Oxidation ofSilicon[J]. Journal of Applied Physics,1965,36(12):3770-3778.
    [187]Futakawa M,Steinbrech RW. Viscosity of Amorphous Oxide Scales on SiSiCat Elevated Temperatures[J]. Journal of the American Ceramic Society,1998,81(7):1819-1823.
    [188]Kim YW, Lee SG, Mitomo M. Microstructural Development ofLiquid-Phase-Sintered Silicon Carbide during Annealing with UniaxialPressure[J]. Journal of the European Ceramic Society,2002,22(7):1031-1037.
    [189]Guo WM,Xiao HN,Xie W,Hu JL,Li Q,Gao PZ. A New Design forPreparation of High Performance Recrystallized Silicon Carbide[J]. CeramicsInternational,2012,38(3):2475-2481.
    [190]郑传伟,曹小明,张劲松.反应烧结碳化硅高温氧化过程的表面分析[J].腐蚀科学与防护技术,2010,22(6):479-483.
    [191]Soueidan M,Ferro G,Kim HO,Robaut F,Dezellus O,Dazord J,CauwetF,Viala JC,Nsouli B. Nucleation of3C-SiC on6H-SiC from a Liquid Phase[J].Acta Materialia,2007,55(20):6873-6880.
    [192]N ss M,Tranell G,Olsen J,Kamfjord N,Tang K. Mechanisms and Kineticsof Liquid Silicon Oxidation during Industrial Refining[J]. Oxidation of Metals,2012,78(3-4):239-251.
    [193]Ramberg CE, Cruciani G, Spear KE, Tressler RE, Ramberg CF.Passive-Oxidation Kinetics of High-Purity Silicon Carbide from800°C to1100°C[J]. Journal of the American Ceramic Society,1996,79(11):2897-2911.
    [194]Wang JJ, Zhang LT, Zeng QF, Vignoles GL, Guette A. TheoreticalInvestigation for the Active-to-Passive Transition in the Oxidation of SiliconCarbide[J]. Journal of the American Ceramic Society,2008,91(5):1665-1673.
    [195]Harder B,Jacobson N,Myers D. Oxidation Transitions for SiC Part II.Passive-to-Active Transitions[J]. Journal of the American Ceramic Society,2013,96(2):606-612.
    [196]Jacobson N,Harder B,Myers D. Oxidation Transitions for SiC Part I.Active-to-Passive Transitions[J]. Journal of the American Ceramic Society,2013,96(3):838-844.
    [197]Presser V,Nickel KG. Silica on silicon carbide[J]. Critical Reviews in SolidState and Material Sciences,2008,33(1):1-99.
    [198]Kumar RS,Sivakumar D,Gandhi AS. Effect of Molybdenum DisilicideAdditions on the Oxidation Behaviour of Silicon Carbide[J]. Scripta Materialia,2012,66(7):451-454.
    [199]Guo WM,Xiao HN,Gao PZ,Xie W,Li Q,Hu JL. Investigation of MoSi2Melt Infiltrated RSiC and Its Oxidation Behavior[J]. Ceramics International,2012,38(1):111-117.
    [200]Ando K,Takahashi K,Nakayama S,Saito S. Crack-Healing Behavior ofSi3N4/SiC Ceramics under Cyclic Stress and Resultant Fatigue Strength at theHealing Temperature[J]. Journal of the American Ceramic Society,2002,85(9):2268-2272.
    [201]Voitovich RF. High-Temperature Oxidation of Materials[J]. PowderMetallurgy and Metal Ceramics,1996,34(7-8):441-445.
    [202]Zou LH,Wali N,Yang JM,Bansal NP. Microstructural Development of aCf/ZrC Composite Manufactured by Reactive Melt Infiltration[J]. Journal ofthe European Ceramic Society,2010,30(6):1527-1535.
    [203]Soukiassian P,Amy F. Silicon Carbide Surface Oxidation and SiO2/SiCInterface Formation Investigated by Soft X-Ray Synchrotron Radiation[J].Journal of Electron Spectroscopy and Related Phenomena,2005,144–147:783-788.
    [204]Voytovych R,Israel R,Calderon N,Hodaj F,Eustathopoulos N. Reactivitybetween Liquid Si or Si Alloys and Graphite[J]. Journal of the EuropeanCeramic Society,2012,32(14):3825-3835.
    [205]Lee SK,Ishida W,Lee SY,Nam KW,Ando K. Crack-Healing Behavior andResultant Strength Properties of Silicon Carbide Ceramic[J]. Journal of theEuropean Ceramic Society,2005,25(5):569-576.
    [206]Korous J,Chu MC,Nakatani M,Ando K. Crack Healing Behavior of SiliconCarbide Ceramics[J]. Journal of the American Ceramic Society,2000,8(311):2788-2792.
    [207]Chu MC, Cho SJ, Park HM, Yoon KJ, Ryu H. Crack-Healing inReaction-bonded Silicon Carbide[J]. Materials Letters,2004,58(7-8):1313-1316.
    [208]Jacobson NS. Corrosion of Silicon-Based Ceramics in CombustionEnvironments[J]. Journal of the American Ceramic Society,1993,76(1):3-28.
    [209]Nam KW, Kim JS. Critical Crack Size of Healing Possibility of SiCCeramics[J]. Materials Science and Engineering: A,2010,527(13-14):3236-3239.
    [210]Nam KW,Kim ES. Healing Properties of SiC Ceramics According to SurfaceRoughness[J]. Materials Science and Engineering: A,2012,547:125-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700