用户名: 密码: 验证码:
基于分布式水文模型的历史暴雨洪水重现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松花江流域水土资源相对较丰富,是我国重要的粮食主产区之一。流域属寒温带大陆季风气候区,降雨量年内分布极不均匀,汛期降雨量约占年降雨量70%以上。该流域洪水峰高量大、历时长,保障防洪安全是该流域的首要任务。近年来国民经济发展、人口增多、生活水平提高,对防洪安全提出了更高要求。而随着经济社会发展,松花江流域的土地利用等下垫面覆被及河道状况发生了一定变化,同时流域内修建了大量水利工程,对洪水特性产生了重要影响。本文以第二松花江丰满以上流域作为研究区域,以包括土地利用变化和水利工程兴建在内的人类活动对洪水过程的影响研究为基础,以历史暴雨在现状下垫面下产生的洪水过程变化特性研究为重点,主要内容和成果如下:
     (1)流域径流变化规律及其影响因素分析
     研究了第二松花江丰满以上流域内径流量的年内分配、汛期径流量的年代际和年际变化特点。其中,年际变化规律中总结了汛期径流量和最大洪峰的多年变化趋势、突变变化以及丰枯周期性变换规律。分析了影响径流变化的自然因素和人类活动干扰。统计分析了气候因素、厄尔尼诺和拉尼娜现象以及太阳黑子等自然因素对径流的影响。统计了土地利用和水利工程等人类活动干扰因素的发展变化情况,为开展土地利用变化和水利工程兴建对径流影响分析提供了数据支撑。
     (2)考虑土地利用空间异质性的分布式水文模型研发
     对分布式水文模型EasyDHM进行了改进,提出了按土地利用类型进行空间离散的方法。将原EasyDHM内等高带(子流域内计算单元)单元,按土地利用类型细化为若干土地利用单元。每个等高带内有至多六个土地利用单元,分别为耕地、林地、草地、水域、居民地及未利用土地单元。每个土地利用单元的下垫面覆被特征采用独立的土地利用参数表征。土地利用参数具有明确的物理意义,在下垫面覆被方式改变后,可仅改变土地利用单元面积、直接移用参数值的方式。通过该模型分析了流域土地利用变化对产流的影响和各土地利用类型的产流贡献率。通过1980年和2000年下垫面覆被下的产流分析,耕地、林地、草地、水域、居民地和未利用土地的产流变化率分别为9.18%,0.64%,-1.63%,-5.03%,-3.08%和24.59%。各类土地利用类型的产流单位面积贡献率,由大到小依次为水域、居民地、未利用土地、耕地、林地、草地。基本呈现植被较好的土地利用类型比植被较差的土地利用类型产流少的趋势。
     (3)分布式水文模型水利工程群调蓄模块研发
     建立了能够描述不同规模缺资料水库群间主要水力联系的模块。该水利工程调蓄模块中,能够准确定位的大中型水库单独划分水库分区,只能大概定位的小型水库按其所在子流域打包为虚拟水库。不同规模水库间自小型至大型水库按上游到下游位置呈串联关系;同规模小型水库间假定调蓄能力相当,呈并联关系。无实测实时运行资料的水库均按调度图的方式进行蓄泄模拟,相同规模水库采用相同的通用调度图。包括调度图及虚拟水库位置参数在内的水利工程参数采用优化算法率定得到。采用嵌有水利工程群调蓄模块的分布式水文模型,分析水利工程对洪水的影响和进行现状下垫面下的历史暴雨洪水的重现。结果表明,考虑水利工程影响后的模拟精度有所提高:水库在大型洪水和小洪水都起到了很明显的削峰拦洪的作用,并且水库库容变化率对小洪水更加敏感。
     (4)参数敏感性信息引导搜索方向的优化技术研究
     受水文模型参数的敏感度不同启发,提出了一种以参数敏感性信息引导搜索方向的动态维度搜索算法,MDDS算法,即为解决高维参数优化问题而提出的DDS算法改进版本。该算法中敏感性分析独立且先于DDS算法运行。搜索策略是设置参数变异概率与参数敏度度呈正相关,模型输出响应较明显的敏感参数相比较敏感度弱的参数具有更多的变异机会,同时敏感度弱的参数仍有一定的变异机会;这种策略结合了敏感参数的变异倾向性和动态选择参数的随机性,在较低计算量下具有较高的搜索效率。测试结果表明,MDDS算法更适合具有高参数维度空间的分布式水文模型。在模型评价次数有限时,MDDS算法相对于DDS算法有更高的搜索效率和更好的稳定性。在与SCE算法和仅识别15个敏感参数DDS算法的性能比较中,MDDS算法均表现除了较高的搜索效率。
     (5)历史暴雨洪水重现系统研发
     系统采用Microsoft Visual Studio. NET为集成开发系统环境,以图形用户界面友好的C#语言和计算效率较高的Fortran语言分别作为系统集成和水文模型组件的开发语言。以Fortran语言编写动态链接库(DLL),在DLL中提供计算函数接口:在C#中调用该DLL中的计算函数,实现系统的运行计算。该系统采用混合编程技术、以Map Window和SQL Server作为可视化G1S软件平台和数据库管理系统,建立了一个集GIS技术、计算机技术、数据库技术和考虑人类活动的分布式水文模型等多项技术为一体的综合历史暴雨洪水重现系统。该系统应具有水文分析、水雨工情查询与分析、历史暴雨洪水重现功能及结果的展示与分析的功能。
     (6)流域内历史暴雨洪水重现规律研究
     将集成了考虑人类活动影响的洪水重现模型及高维参数识别技术的应用系统,应用到第二松花江丰满以上流域,重现历史洪水在现状下垫面下的演进过程,总结人类活动对洪水过程的影响规律。根据流域出口断面历史大洪水在现状下垫面条件下的重现结果,若历史暴雨在下垫面变化后的现状条件下发生,洪水的洪峰和洪量均有减小的现象;20世纪80年代前的洪水重现时,洪现时间有延迟现象。
Songhua river basin, which is rich in water and soil resources, is one of the major grain-producing regions in China. This basin is located in cold temperate continental monsoon climatic zone. The precipitation concentrates in summer, holding70percents of the annual rainfall. The floods in this basin have the features of high peak, large volume and long lasting time, which make the flood control very important for the area safety. With the rapid development of national economy, the increasing population and improvement of the people's living standard, higher requirement are proposed for flood control safety. With the economy development, the underling surface of the basin and the river condition has changed, and a large number of water conservancy project have been built, which both have important influence on the flood characteristic. The upstream part to Fengman reservoir in Second Songhua river catchment was selected in this paper as the study area to analyze the impacts of such human activities as the changes of land use/land cover and the construcion of water conservancy project on flood process and simulate the historical flood process on current underlying surface. The study is organized as the followings:
     (1) Temporal variation of observed runoff in flood season and its influencing factors
     Annual distribution, inter-decadal and inter-annual variations of the flood process were analyzed in this section. Among those, inter-annual variation were analyzed from three aspects, i.e. long-term variety of flood season runoff and maximum peak, abrupt change and periodic variations of high flow and low flow. The effects of natural factor and interferences of human activities on runoff were also analyzed. Runoff responses to natural factors, i.e. climatic factor, El Nino and LaNina, solar spot, were discussed firstly. And the changes of land cover and the development of water conservancy projects over the past dozens of years were described, which could provide data support for the following study about the impact of human activities on flood process.
     (2) The distributed hydrological model (DHM) considering the spatial variability of land use
     In this section, the distributed hydrological model EasyDHM was modified, and a space discrete method to divide the study area according to the land use variation was proposed. Equal elevation bands in original EasyDHM were further divided into several land use units according to their land use types. There were at most six land use units in each equal elevation band, i.e. cultivated land, forestland, grassland, paddy field, residential area and unused land units. The underlying surface features of each land use type were characterized by a set of land use related parameters. As those land use related parameters have definite physical meaning, the parameter values could be directly adopted by only adjusting area value of corresponding land use unit if the land use patterns changed. The modified EasyDHM was employed in this study to analyze the impacts of land use changes on runoff generation and the runoff contribution per unit area for each land-use type. The study area showed9.18%,0.64%,-1.63%,-5.03%,-3.08%, and24.59%variations in runoff with changes in the areas of cultivated land, forest land, grassland, water surface, residential area, and unused land, respectively, during the20-year study period. The magnitude of the runoff per unit area for each land-use type was in the order water surface> residential area> unused land> cultivated land> woodland> grassland. Thus, well-vegetated areas (i.e., grassland and woodland areas) were likely to generate less runoff than areas with less vegetation cover (i.e., unused land and cultivated land) under the same rainfall conditions.
     (3) Development of cascading reservoirs operation module into the DHM
     A module for describing the most important aspects of reservoir dynamics with scare data availability was developed. Large and medium-sized reservoirs, which can be located accurately, were used to mark off their reservoir divisions. Small reservoirs, which cannot be located exactly, were packed as a virtual reservoir according to sub-catchments. In each sub-catchment, smaller reservoirs were located at the upstream of larger reservoirs. The method assumed that small reservoirs in each sub-catchment have similar storages capacity and they are shunt connected. The operation of all reservoirs without observation data was control by operation rule. The operation rule curces and other reservoir parameters could be identified by using optimization algorithms. The distributed hydrological model with reservoirs operation module was applied to analyze the influence of reservoirs on flood processes and simulate the historical flood occurrence on current underlying surface. The simulation results were improved after considering reservoirs'influences. Reservoirs played prominent parts by clipping peak, alternating peak and storing flood water in flood-control of rivers. Small floods were more sensitive to change of storage capacity than heavy floods. Historical floods before1990were simulated on current underlying surface, and the simulated flood peak and volume were less than that on historical underlying surface. In addition, occurrence of the flood peak delayed.
     (4) An optimization technology with parameter sensitivity guiding search direction
     Motivated by different sensitivity of hydrological model parameters, a modified dynamically dimensioned search (MDDS) algorithm with parameter sensitivity guiding search direction was proposed. The MDDS algorithm was developed in the context of solving the problem of high-dimensional parameter optimization. The sensitivity analysis preceded and was separated from DDS in the MDDS algorithm. In the modified MDDS algorithms, parameter mutation probability showed positive correlation with parameter's sensitivity. The sensitive parameters that produced more obvious responses in the output model were given greater opportunities to mutate; however, the MDDS algorithm also allowed the insensitive parameters to participate in mutation. The MDDS strategy combined a preference for sensitive parameters with a use of random perturbations, as this yielded a higher probability of finding an improved solution. This evolution strategy enabled the high search efficiency of MDDS algorithm under a low amount of calculation. Test results showed that the MDDS algorithm is better suited to a distributed hydrological model that includes many parameters. When the computational budget is limited, the superiority of the MDDS consists in the greater average best function value and the greater stability of the algorithm; and the MDDS algorithm is more computationally efficient and robust than SCE and DDS identifying only the15most sensitive parameters in the context of distributed hydrological model calibration.
     (5) Application system for historical flood simulation on current underlying surface
     The system was developed on the basis of the Microsoft Visual Studio.NET environment. C Sharp language, which was characterized by a friendly graphical interface, was used as system integration language. And Fortran language, which was characterized by the powerful ability of scientific computing, was used as development language of hydrological model component. The dynamic-link library (DLL) in which function interface was supported was coded in Fortran language, and was then called by C#language to realize the operation of system. Mixed programming technique, MapWindow platform and SQL Server were used in this system. So this system was a comprehensive simulation system based on a distributed hydrological model considering human activity disturbance, GIS platform, computer technology and database management system. This system integrates hydrologic analysis, water and rainfall information and engineering conditions query and analysis, historical flood simulation on current underlying surface, and simulation result display functions.
     (6) Study on historical flood simulation on current underlying surface
     The application system integrated the distributed hydrological model considering influence of human activities and high dimension parameter identification technology were used to simulate the historical flood on current underlying surface and summarize the influence law of human activities on floods. According to the historical flood simulation result in the outlet section of the basin, the simulation flood peak and volume show a decreasing trend, if they reoccurred on current underlying surface today. The simulation peak time are delayed for floods before1980.
引文
[1]吴龙华.透空四面体(群)尾流水力特性及应用研究[D].南京:河海大学,2006.
    [2]孙振宇.多元回归分析与Logistic回归分析的应用研究[D].南京:南京信息工程大学,2008.
    [3]宋绪美.考虑人类活动影响及河道过流能力不确定性的洪水预报及调度研究[D].大连:大连理工大学,2008.
    [4]史培军,宫鹏,李小兵,等.土地利用/覆被变化研究的方法与实践[M].北京:科学出版社,2000.1-30.
    [5]Kalnay E., Cai M.. Impact of urbanization and land-use change on climate [J]. Nature,2003, 423:528-531.
    [6]Lambin E. F., Baulies X., Bochstatel N. E., et al. Land-use and Land-cover Change Implementation Strategy [R]. Stockholm:IGBP Report No.48 and IHDP Report No.10.2002, 21-66.
    [7]Vorosmarty C. J., Green P., Salisbury J., et al. Global Water Resources:Vulnerability from climate change and population growth Science [J].Science,2000,289(5477):284-288.
    [8]姚允龙,吕宪国,王蕾.流域土地利用/覆被变化水文效应研究的方法评述[J].湿地科学,2009,7(1):83-88.
    [9]Ojima D., Lavorel S., Graumich L., et al. Terrestrial Human-environment Systems:the Future of Land Research in IGBP Ⅱ [N]. Global Change Newsletter,2002, issue No.50.
    [10]Moran E. F.. News on the Land Project [N]. Global Change Newsletter,2003, issue No.54.
    [11]Potter K. W.. Hydrological impacts of changing land management practices in a moderate-sized agricultural catchment [J]. Water Resources Research,1991,27(5):845-855.
    [12]曹明亮.基于多源信息分析人类活动对径流及洪水预报的影响[D].大连,大连理工大学,2011.
    [13]王晓云.流域土地利用变化对径流影响问题的研究[D].天津:天津大学,2009.
    [14]陈军锋,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474-480.
    [15]Chen J. F., Li X. B.. The impact of forest changes on watershed hydrology-discussing some controversies on forest hydrology [J]. Journal of Nature Resource.2001,16(5):474-480.
    [16]Bosch J., Hewlett M.. A review of catchments experiments to determine the effects of vegetation changes on water yields and evapotranspiration [J]. Journal of hydrology,1982, 55(1-4):3-23.
    [17]Johnson R. C. Effects of Upland A Forestation on Water Resourse, the Balquhidder Experiments 1981-1991 [R]. Institute of Hydrology, Wallingford, Report,1991,116-121
    [18]王听皓.非点源污染负荷计算的单元坡面模型法[J].中国环境科学,1985,15(5):62-67.
    [19]刘卉芳,朱清科,孙中峰,等.黄土坡面不同土地利用覆被方式的产流产沙效应[J].干早地区农业研究,2005,23(2):137-141.
    [20]Harrold L. L., Brakenslek D. L., McGuinness J. L. et al.. Influence of Land Use and Treatment on the Hydrology of Small Watersheds at Coshocton, Ohio,1938-1957 [M]. Technical bulletin: United States Department of Agriculture,1962,1256,194.
    [21]Harrlod L. L.. Watershed test of no tillage corn [J]. Journal of Soil and Water Conservation, 1960,22(3):98-100.
    [22]Ricca V., Taiganides E., Research 0.0. W. R., et al.. Influence of land use on runoff from agricultural watershed [J]. Transaction of the American Society of Civil Engineers,1970,13(2): 187-190.
    [23]Conway D.,2001. Understanding the hydrological impacts of land-cover and land-use change. IHDP Update,2001, (1):5-6.
    [24]张蕾娜,李秀彬.用水文特征参数变化表征人类活动的水文效应初探——以云州水库流域为例[J].资源科学,2004,26(2):62-67.
    [25]王礼先,张志强.干旱地区森林队流域径流的影响[J].自然资源学报,2001,16(5):439-444.
    [26]邓绶林.普通水文学(第二版)[M].北京:高等教育出版社,1985.
    [27]黄锡荃.水文学[M].北京:高等教育出版社,1993.
    [28]Onstad C. A., Jamieson D. G.. Modeling the effects of land use modification on runoff [J]. Water Resource Research,1970,6(5):1287-1295.
    [29]Karvonen T, Koivusalo H., Jauhiainen M., Palko J., Weppling K.. A hydrological model for predicting runoff from different land use areas [J]. Journal of Hydrology,1999,217(3-4):253-265.
    [30]Lorup J. K., Refsgaard J. C., Mazvimavi D.. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modeling:case studies from Zimbabwe [J]. Journal of Hydrology,1998,205(3-4):147-163.
    [31]万荣荣,杨佳山.流域土地利用\覆被变化的水文效应及洪水响应[J].湖泊科学,2004,16(9):258-264.
    [32]Niehoff D., Fritsch U., Bronstert A.. Land-use impacts on storm-runoff generation:scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany [J]. Journal of Hydrology,2002,267(1-2):80-93.
    [33]Ali M., Khan S. J., Aslam I., et al.. Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan [J]. Landscape and Urban Planning,2011,102(4): 271-279.
    [34]Shi P. J., Yuan Y., Zheng J., et al.. The effect of land use/cove change on surface runoff in Shenzhen, China [J]. Catena,2007,69(1):31-35.
    [35]Hernandez-Guzman R., Ruiz-Luna A., Berlanga-Robles C. A.. Assessment of runoff response to landscape changes in the San Pedro subbasin (Nayarit, Mexico) using remote sensing data and GIS [J]. Journal of Environmental Science and Health Part A,2008,43(12):1471-1482.
    [36]Yuan F.. Land-cover change and environmental impact analysis in the Greater Mankato area of Minnesota using remote sensing and GIS modeling [J]. International Journal of Remote Sensing, 2008,29(4):1169-1184.
    [37]Chandramouli V.,Raman H.. Multireservoir modeling with dynamic programming and neural networks [J]. Journal of Water Resources Planning and Management,2001,127(2):89-98.
    [38]Kumar D. N., Reddy M. J.. Ant Colony Optimization for Multi-Purpose Reservoir Operation [J]. Water Resources Management,2006,20(6):879-898.
    [39]Young G. K.. Finding reservoir operating rules [J]. Journal of the Hydraulics Division,1967, 93(6):297-322.
    [40]Kim T, Heo J. H., Bae D. H., et al. Single-reservoir operating rules for a year using multiobjective genetic algorithm [J]. Journal of Hydroinformaties,2008,10(2):163-179.
    [41]张铭,王丽萍,安有贵,等.水库调度图优化研究[J].武汉大学学报,2004,37(3):5-7.
    [42]尹正杰,胡铁松,吴运卿.基于多目标遗传算法的综合利用水库优化调度图求解[J].武汉大学学报,2005,38(6):40-44.
    [43]邵琳,王丽萍,黄海涛,等.梯级水电站调度图优化的混合模拟退火遗传算法[J].人民长江,2010,41(3):34-37.
    [44]初京刚.基于多源信息的分布式水文模拟及优化算法应用研究[D].大连:大连理工大学,2012.
    [45]Wang G, Xia J. Improvement of SWAT2000 modelling to access the impact of dams and sluices on streamflow in the Huai River basin of China [J]. Hydrological Processes,2010,24(11): 1455-1471.
    [46]Guntner A., Krol S. M., De Araujo J. C., et al. Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region [J]. Hydrological Science Journal,2004, 49(5):901-918.
    [47]Apostolopoulos T. K., Georgakakos K. P.. Parallel computation for streamflow prediction with distributed hydrologic models [J]. Journal of Hydrology,1997,197(1-4):1-24.
    [48]van Griensven A., Meixner T., Grunwald S., et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models [J]. Journal of Hydrology,2006,324(1-4):10-23.
    [49]Beven K.. Changing ideas in hydrology-The case of physicallybased models [J]. Journal of Hydrology,1989,105(1-2):157-172.
    [50]Carpenter T. M., Georgakakos K. P., Sperfslagea J. A.. On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use [J]. Journal of Hydrology,2001,253(1-4):169-193.
    [51]张超.非点源污染模型研究及其在香溪河流域的应用[D].北京:清华大学,2009.
    [52]Homberger G. M., Spear R. C.. An approach to the preliminary analysis of environmental systems [J]. Journal of Environmental Management,1981,12(1):7-18.
    [53]Tolson B. A., Shoemaker C. A.. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration [J]. Water Resources Research,2007,43(1): W01413.
    [54]Tolson, B.A., Shoemaker, C.A.. Efficient prediction uncertainty approximation in the calibration of environmental simulation models [J]. Water Resources Research,2008,44(4): W04411.
    [55]Tolson B.A., Asadzadeh M., Maier H.R., et al.. Hybrid discrete dynamically dimensioned search (HD-DDS) algorithm for water distribution system design optimization [J]. Water Resources Research,2009,45(12):W12416.
    [56]Duan Q., Sorooshian S., Gupta V.K.. Effective and efficient global optimization for conceptual rainfall-runoff models [J]. Water Resources Research,1992,28(4):1015-1031.
    [57]Duan Q, Sorooshian S, Gupta V K. Optimal use of the SCE-UA optimization method for calibrating watershed models[J]. Journal of Hydrology,1994,158(3-4):265-284.
    [58]Eckhardt K., Arnold J. G.. Automatic calibration of a distributed catchment model [J]. Journal of Hydrology,2001,251(1-2):203-209.
    [59]Newsha K. A., Gupta H., Wagener T., et al.. Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system [J]. Journal of Hydrology,2004,298(1-4):112-135.
    [60]李致家,周轶,哈布·哈其.新安江模型参数全局优化研究[J].河海大学学报:自然科学版,2004,32(4):376-379.
    [61]Vrugt J.A., Gupta H.V., Bouten W., et al.. A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters [J]. Water Resources Research,2003,39(8):1201-1216.
    [62]龚哲君.SCEM-UA算法在混合Weibull分布参数估计中的应用[J].中国管理科学,2006,14(6):66-70.
    [63]曹飞凤,张世强,许月萍,等.基于SCEM-UA算法和全局敏感性分析的水文模型参数优选不确定性研究[J].中山大学学报(自然科学版),2011,50(2):120-126.
    [64]郝振纯,朱乾,王加虎,等.基于SCEM-UA算法的新安江模型在梅山水库流域上的应用[J].三峡大学学报(自然科学版),2013,35(1):17-21.
    [65]Gilks W., Roberts G., and Sahu S.. Adaptive Markov Chain Monte Carlo through regeneration [J]. Journal of the American Statistical Association,1998,443(93):1045-1054.
    [66]Metropolis N., Rosenbluth A.W., Rosenbluth M.N. et al.. Equations of state calculations by fast computing machines [J]. Journal of Chemical Physics,1953,21:1087-1091.
    [67]Hastings W.K.. Monte-Carlo sampling methods using Markov Chains and their applications [J]. Biometrika,1970,57:97-109.
    [68]Horn J., Nafpliotis N., Goldberg D. E.. A niched pareto genetic algorithm for multiobjective optimization [C]. In Proceedings of 1st IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation Intelligence, Piscataway, NJ, June 27-29,1994,1:82-87.
    [69]Harik G. R., Lobo F. G., Goldberg D. E.. The compact genetic algorithm [C]. In Proceedings of the International Conference on Evolutionary Computation (ICEC'98), Piscataway, NJ,1998,3(4): 287-297.
    [70]Schlabach J. L., Hayes C. C., Goldberg D. E.. FOX-GA:A Genetic Algorithm for Generating and Analyzing Battlefield Courses of Action [J]. Evolutionary Computation,2007,7(1):45-68.
    [71]黄晓敏,雷晓辉,王宇晖,等.基于MOPSO算法的HYMOD模型参数优化研究[J].Proceedings of 2010, the 3rd International Conference on Computational Intelligence and Industrial Application, Wuhan, HuBei, October 14-15,2010(6):333-336.
    [72]Eberhart R., Kennedy J.,1995. A new optimizer using particle swarm theory. Proceedings of the sixth International Symposium on Micro Machine and Human Science. Nagoya,1995, Oct.4-6, 39-43.
    [73]邹鹰,金管生.长江防洪决策支持系统.防洪知识库系统[J].水科学进展,1996,7(4):327-330
    [74]胡四一,宋德敦.长江防洪决策支持系统总体设计[J].水科学进展,1996,7(4):283-294.
    [75]沈福新,黄振平.长江防洪决策支持系统[J].水科学进展,1996,7(4):295-304.
    [76]刘兵.B/S模式奎屯水库洪水预报调度系统研究[D].新疆,石河子大学,2008.
    [77]黄委会科技外事局,黄委会信息中心.国际典型河流(流域)管理现状及发展分析(一国际典型“数字流域”调研报告)http://www.yrec.cn/HotSubj/shzhh/dynamic-01.htm
    [78]葛守西.现代洪水预报技术[M].北东:中国水利水电出版社,1999.
    [79]邱瑞田,王本德,郭生练,等.全国水库防洪调度决策支持系统工程[J].中国水利,2004(22):58-60.
    [80]房国忠,王永峰,范水思,等.丰满水库汛限水位的变迁及思考[J].大坝与安全,2009(4), 31-34.
    [81]于得万.第二松花江暴雨洪水特性及防洪对策[J].吉林水利,1998(11):5-9.
    [82]于德万,谢洪伟,李萍.吉林省第二松花江暴雨洪水特性及防洪对策[J].水利规划与设计,2008(5):16-18.
    [83]潘漱方.松花江流域暴雨洪水特性[J].水文,1985,3:50-55.
    [84]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [85]Kendall M. G.. A new measure of rank correlation [M]. Biometrika,1938,30(1-2):81-93.
    [86]Pettitt A. N.. A Non-parametric Approach to the Change-point Problem [J]. Applied Statistic, 1979,28(2):126-135.
    [87]王宇晖.基于分布式水文模型的流域水循环及面源伴生过程模拟研究与应用[D].上海,东华大学,2012.
    [88]郭军,任国玉.黄淮海流域蒸发量的变化及其原因分析[J].水科学进展,2005,16(5):666-672.
    [89]曾燕,邱新发,刘昌明,等.1960-2000年中国蒸发皿蒸发量的气候变化特征[J].水科学进展,2007,18(3):311-318.
    [90]张月丛,孟宪锋.厄尔尼诺和拉尼娜的成因及其对中国气候的影响[J].承德民族师专学报,2005,25(2):59-60.
    [91]Rasmusson E. M., Wallace J. M.. meteorological aspects of the El Nino/southern oscillation [J]. Science,1983,222(4629):1195-1202.
    [92]李崇银,穆穆,周广庆,等.ENSO机理及其预测研究[J].大气科学,2008,32(4):761-781.
    [93]许武成,王文,马劲松,等.1951-2007年的ENSO事件及其特征值[J].自然灾害学报,2009,18(4):18-24.
    [94]张雪刚,毛媛媛.厄尔尼诺现象对我国夏季降水的影响[J].水资源保护,2004(1):28-30.
    [95]毛祖松,金德山.太阳黑子、厄尔尼诺及西北太平洋热带气旋的活动[J].海洋预报,1996(4):56-60.
    [96]张峰.西江流域分布式水文模拟及其应用研究[D].上海,东华大学,2012.
    [97]李昌峰,高俊峰,曹慧.土地利用变化对水资源影响研究的现状和趋势[J].土壤,2002(4):191-2051
    [98]刘纪远.中国资源环境遥感宏观调查与动态研究[R].北京:中国科学技术出版社,1996.
    [99]修竹奇.吉林省调查丰满水库水土流失[J].水土保持,1981(5):55-55.
    [100]罗翔宇,贾仰文,王建华,等.基于DEM与实测河网的流域编码方法[J].水科学进展,2006,17(2):259-264.
    [101]雷晓辉,刘青娥,白薇,等.基于DEM的子流域划分方法改进与应用[J].人民黄河,2011,33(2):32-36.
    [102]雷晓辉,廖卫红,蒋云忠,等.分布式水文模型EasyDHM(1):理论方法[J].水利学报,2010,41(7):786-794.
    [103]田雨.南水北调中线分布式水文模型构建[D].天津:天津大学,2009.
    [104]陈阳.分布式水文模型EasyDHM在南水北调中线受水区的应用研究[D].天津:天津大学,2010.
    [105]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践[M].北京:中国水利水 电出版社.2005.
    [106]雷晓辉,蒋云钟,王浩,等.分布式水文模型EasyDHM[M].北京:中国水利水电出版社,2010,61-63.
    [107]Clapp R. B.. Hornberger G B. Empirical equations for some soil hydraulic properties [J]. Water Resources Research,1978,14(4):602-604.
    [108]黄冠华,詹卫华.土壤水分特性曲线的分形模拟[J].水科学进展,2002,13(1):55-60.
    [109]Cosby B., Hornberger G. B., Clapp R. B., et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils [J]. Water Resources Research, 1984,20(6):682-690.
    [110]夏积德.区域水土流失模型的不确定性分析[D].陕西:西北农林科技大学,2008.
    [111]Hydrolk, http://edcdaac.usgs.gov/gtopo30/hydro/.
    [112]孙甲岚,张峰,廖卫红,等.分布式水文模型EasyDHM在北江流域的应用[J].南水北调与水利科技,2012,10(5):32-36.
    [113]中国土壤数据库.http://www.csdb.cn/viewdb.jsp?uri=cn.csdb.soil
    [114]Moriasi D. N., Arnold J. G., Van Liew M. W.. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers,2007,50(3):885-900.
    [115]骆红旭.水库防洪预报与调度模型研究及系统实现[D].成都:电子科技大学,2010.
    [116]Duan Q., Gupta V. K., Sorooshian S.. Shuffled complex evolution approach for effective and efficient global minimization [J]. Journal of Optimization Theory and Applications,1993,76(3):501-521.
    [117]Duan Q., Sorooshian S., Gupta V. K.. Optimal use of the SCE-UA global optimization method for calibrating watershed models [J]. Journal of Hydrology,1994, 158(3-4):265-284.
    [118]Saltelli A., Chan K., Scott E. M. (Eds.). Sensitivity Analysis [M]. Wiley, Chichester, UK.2004.
    [119]Makler-Pick V., Gal G., Gorfine M., et al.. Sensitivity analysis for complex ecological models-A new approach [J]. Environmental Modelling & Software,2011, 26(2):124-134.
    [120]Ratto ML, Castelletti A., Pagano A.. Emulation techniques for the reduction and sensitivity analysis of complex environmental models [J]. Environmental "Modelling & Software,2012(34):1-4.
    [121]Plischke E.. How to compute variance-based sensitivity indicators with your spreadsheet software [J]. Environmental Modelling & Software,2012(35):188-191.
    [122]Castaings W., Borgonovo E., Morris M. D., et al. Sampling strategies in density-based sensitivity analysis [J]. Environmental Modelling & Software,2012(38): 13-26.
    [123]Sun X. Y., Newham L. T. H., Croke B. F. W., et al.. Three complementary methods for sensitivity analysis of a water quality model [J]. Environmental Modelling & Software,2012(37):19-29.
    [124]van Griensven A., Meixner T., Grunwald S., et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models [J]. Journal of Hydrology, 2006(324):10-23.
    [125]Sobol I. M.. Sensitivity analysis for nonlinear mathematical models:numerical experience [J]. Matematical models and computer experiment,1993,7(11):16-28.
    [126]Cea L., Bermudez M., Puertas J.. Uncertainty and sensitivity analysis of a depth-averaged water quality model for evaluation of Escherichia Coli concentration in shallow estuaries [J]. Environmental Modelling & Software,2011,26(12): 1526-1539.
    [127]Yen B. C. Criteria for evaluation of watershed models [J]. Journal of Irrigation and Drainage Engineering,1993,121(1):130-132.
    [128]Rosolem R., Gupta H. V., Shuffleworth W. J.. A fully multiple-criteria implementation of the Sobol method for parameter sensitivity analysis [J]. Journal of Geophysical Research:Atmospheres (1984-2012),2012(117), D07103.
    [129]Yang J.. Convergence and uncertainty analyses in Monte-Carlo based sensitivity analysis [J]. Environmental Modelling & Software,2011,26(4):444-457.
    [130]Nossent J., Elsen P., Bauwens W.. Sobol' sensitivity analysis of a complex environmental model [J]. Environmental Modelling & Software,2011,26(12): 1515-1525.
    [131]Morris M. D.. Factorial sampling plans for preliminary computational experiments [J]. Technometrics,1991,33(2):161-174.
    [132]董磊华,熊立华.水文模型中不同目标函数的影响分析比较[J].水文,2009,29(3):24-27.
    [133]Behrangi A., Khakbaz B., Vrugt J. A., et al.. Comment on "Dynamically dimensioned search algorithm for computationally efficient watershed model calibration" by Bryan A. Tolson and Christine A. Shoemaker [J]. Environmental Modelling & Software,2008(44), W12603.
    [134]Zhao R. J.. The Xinanjiang model applied in China [J]. Journal of Hydrology,1992,135(1-4): 371-381.
    [135]章四龙.洪水预报系统关键技术研究[D].南京:河海大学,2005.
    [136]Moore R. J. The probability disributed principle and runoff production at point and basin scales [J]. Hydrological Sciences Journal,1985,30(2):273-297.
    [137]Yalew S. G., van. Griensven A., Kokoszkiewicz L.. Parallel computing of a large scale spatially distributed model using the Soil and Water Assessment Tool (SWAT)[C].2010 International Congress on Environmental Modelling and Software, Modelling for Environment's Sake, Fifth Biennial Meeting, Ottawa, Canada.
    [138]Kachroo R. K., Natale L.. Non-linear modelling of rainfall-runoff transformation [J]. Journal of Hydrology,1992,135(1-4):341-369.
    [139]Legates D. R., McCabe G. J.. Evaluating the use of " goodness-of-fit" measures in hydrologic and hydroclimatic model validation [J]. Water Resources Research,1999, 35(1):233-241.
    [140]Sevat E., Dezetter A.. Selection of calibration objective functions in the context of rainfall-runoff modeling in a Sudanese savannah area [J]. Hydrological Sciences-Journal-des Sciences Hydrologiques,1991,36(4):307-330.
    [141]Jung Y. W., Oh D. S., Kim M.. Calibration of LEACHN model using LH-OAT sensitivity analysis [J]. Nutrient Cycling in Agroecosystems,2010(87):261-275.
    [142]van Griensven A., Bauwens W.. Multiobjective autocalibration for semidistributed water quality models [J]. Water Resources Research,2003,39(12):1348.
    [143]Sorooshian S., Duan Q., Gupta V.K.. Calibration of rainfall-runoff models -Application of global optimization to the Sacramento Soil-Moisture Accounting Model [J]. Water Resources Research,1993,29(4):1185-1194.
    [144]Green C. H., van Griensven A.. Autocalibration in hydrologic modeling:Using SWAT2005 in small-scale watersheds [J]. Environmental Modelling & Software, 2008,23(4):422-434.
    [145]Kannan N., White S. M., Worrall F.. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000 [J]. Journal of Hydrology,2007,332(3-4):456-466.
    [146]Muleta M. K., Nicklow J. W.. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model [J]. Journal of Hydrology, 2005,306(1-4):127-145.
    [147]Ebel B. A., Loague K.. Physics-based hydrologic-response simulation:Seeing through the fog of equifinality [J]. Hydrological Processes,2006,20(13):2887-2900.
    [148]Beven K... Dalton lecture:How far can we go in distributed hydrological modeling? [J]. Hydrology and Earth System Sciences,2001,5(1):1-12.
    [149]Beven K... Uniqueness of place and process representation in hydrological modeling [J]. Hydrology and Earth System Sciences,2000a,4(2),203-213.
    [150]Bven K.. On the future of distributed modelling in hydrology [J]. Hydrological Processes,2000b,14(16-17):3183-3184.
    [151]Beven K... Towards an alternative blueprint for a physically-based digitally simulated hydrologic response modelling system [J]. Hydrological Processes,2002, 16(2):189-206.
    [152]郭恺强,肖晓朋,刘冬生.B/S和C/S软件体系结构选择[J].井冈山院学报(自然科学),2009,30(4):49-51.
    [153]李云云.浅析B/S和C/S体系结构[J].科学之友,2011,6-7.
    [154]李国忠.基于B/S模式教师信息管理系统的设计与实现[D].长沙:中南大学,2009.
    [155]廖卫红,雷晓辉,蒋云钟,等.分布式水文模型软件系统MWEasyDHM简介[J].中国水利水电科学研究院学报,2013,11(1):1-7.
    [156]George C., Leon L. F.. WaterBase:SWAT in an open source GIS [J]. The Open Hydrology Journal,2008(1):19-24.
    [157]BASINS4[EB/OL]. [2012-06-13]. http://water.epa.gov/scitech/datait/models/basins/
    [158]勒开冠.B/S模式的陆浑水库洪水预报系统研究[D].郑州:郑州大学,2012.
    [159]韩英杰.实现VC++和Fortran混合编程的几个技术[J].安徽电气工程职业技术学院学报,2005,10(1):66-69.
    [160]何敏,吕崇德.C++与Fortran混合语言编程中动态链接库的调用[J].电脑编程技巧与维护,2000(6):23-25.
    [161]蒙颖艳.GC-MS质谱仪测控系统测试软件平台研制[D].长春:吉林大学,2006.
    [162]初莹莹.基于虚拟服务器的SSL VPN改进与实现[D].武汉:华中科技大学,2004.
    [163]王亚锋.机械设备工况监测与故障诊断系统[D].北京:北京化工大学,2005.
    [164]张凯.南京紫金山昆虫区系调查及其信息管理系统开发[D].南京:南京林业大学,2008.
    [165]鲍蓉.基于三层结构的Web课程辅导站的实现和研究[D].南京:南京理工大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700