用户名: 密码: 验证码:
大断面黄土隧道初支作用机理及变形控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路的飞速发展,相应的基础建设经验、理论也随之迅速发展。已修建并投入运营的郑西高速铁路包含有总计38座隧道、总长77km,隧道开挖断面达170m2左右。虽然此前我国有较为丰富的黄土铁路隧道修建经验,但是尚未有隧道单洞开挖面积达170m2的先例。对于这种环境下的隧道工程,如果采用之前的隧道设计理念,以经验设计为主,将很难保证能根据不同围岩地质条件,选择合理的开挖方法、超前支护、初期支护、以及有效地控制地层移动和地表沉降的技术。现有的黄土隧道设计理念将严重制约隧道建设的科学化、规范化,会直接影响隧道工程及既有地面构筑物的安全性、经济性。本文以郑西线黄土隧道洞群为依托工程,对大断面黄土隧道的支护作用机理及变形特征进行系统深入的研究,得到以下主要研究成果:
     (1)分别在深埋、浅埋大断面黄土隧道开展隧道变形特征研究。分别在深、浅埋大断面黄土隧道设置地表与洞内位移现场监测试验段,通过分析现场监测数据发现,浅埋段黄土隧道施工引起的地表沉降量大,而且难以控制,地表易出现裂缝,无论深浅埋隧道拱部初期支护都呈现整体下沉的趋势,且拱脚不够稳定等。
     (2)分别在深埋、浅埋大断面黄土隧道开展系统锚杆作用机理研究。分别在深、浅埋黄土隧道设置有、无系统锚杆对比试验段,通过分析现场监测数据发现,对于浅埋大断面黄土隧道,拱部取消系统锚杆后,能缩短各工序的施工时间,相比设置锚杆情况下反而有利于控制围岩变形;对于深埋大断面黄土隧道,设置或不设置系统锚杆下围岩变形量相当。采用理论分析手段,基于围岩变形理论及锚杆中性点理论研究黄土隧道锚杆—围岩的相互作用机制,发现黄土隧道拱部与边墙位移分布模式存在显著的不同,从而导致了锚杆在隧道不同位置处,作用不同。基于锚杆—围岩相互作用机制及离心加载有限元分析,提出了大断面黄土隧道中锚杆设计参数。
     (3)在浅埋大断面黄土隧道开展不同钢架形式作用机理研究。在浅埋黄土隧道分别设置型钢钢架、格栅钢架对比试验段,现场对比试验结果表明,两种钢架初期支护变形相当;两种钢架的应力均在允许值范围之内,但格栅钢架应力较小;格栅钢架围岩—初期支护接触压力分布较均匀;两种钢架组合支护在控制大断面黄土隧道拱顶下沉方面无明显差异,型钢钢架组合支护在控制隧道初期支护水平收敛位移方面具有一定优势。基于混凝土早期强度,建立组合支护与围岩的特征曲线,研究围岩与组合支护的相互作用机制,最终得到在大断面黄土隧道中格栅钢架适用条件,以及在不同围岩条件下钢架的设计参数。
     (4)采用现场监测、理论分析及数值计算等手段研究浅埋大断面黄土隧道地表沉降控制技术。通过理论分析、数值计算等综合手段分析试验段监测数据,揭示了浅埋黄土隧道地层沉降变形规律,并在此基础上分析地层变形的影响因素;得到了浅埋大断面黄土隧道地表沉降控制基准;提出了减小开挖面积、侧导多台阶开挖、预留核心土、快速封闭及加强超前支护、初期支护、大拱脚等一系列沉降控制关键技术,最终保障了阌乡隧道顺利下穿连霍高速公路。
With the rapid growth of high speed railway construction in China, the corresponding basic construction experiences and theory are also developing greatly. Along the Zheng-Xi High Speed Railway,38tunnels with total77km length has been constructed. The tunnel sections have significant large excavation section as170m2. Although China has many construction experiences in loess area, but no tunnel section as Zheng Xi's has reached such big. So, if continuely follow the old design method, such as empirical design, it's hard to choose the suitable method for construction, advanced and primary supportting, and controlling the ground settlement and deformation. Undoubtedly, the existing design theory in loess area will restrict seriously the scientificity and standardlization of loess tunnel construction, and further have direct influence on the tunnel and the ground structures'security and economical efficiency. Based on the loess tunnel construction in Zheng-Xi High Speed Railway, systematic deep research on the deformation features of tunnel and tunnel supporting mechanism, has been done; and the most important conclusions are summarized as follow:
     (1) The deformation feature research on deep buried and shallow large section loess tunnel:According to field monitoring data, it is found that the ground settlement caused by the construction exceeds the allowable design value a lot; the settlement is hard to control but will easy cause ground crack; the support of tunnel has integral sinking both in deep buried and shallow tunnel, and also the arch springing isn't steady, etc.
     (2) The system bolts mechanism research deep buried and shallow large section loess tunnel:According to field monitoring data, it is found that cancelling the system bolts is more propitious than with system bolts to control the deformation of soil because of curtailing the construction time of different process in shallow large section loess tunnel; But for deep buried large section loess tunnel, with or without system bolts doesn't has influence on section deformation. Based on the theory of soil deformation and neutral point theory of bolt, the study indicates that the different distribution model of displacement lead to bolts play different role in different position of tunnel. Based on soil mechanism, bolt mechanism and the method of centrifugal loading finite element, designing parameter for system bolt in large section loess tunnel has been presented in dissertation.
     (3) The comparison of grid steel frame and section steel frame in shallow large section loess tunnel:The result indicates that the deformation of the two supports are almost equivalent; both the stresses of the two supporting forms are in the range of allowable value, but the stresses of grid steel frame is lesser than the section steel frame's; the earth pressure distribution in grid steel frame is better than the section steel frame's; there isn't any obvious differences between the two supports to control the vault crown settlement of tunnel, but the section steel frame has some advantages to control the horizontal convergence of tunnel. Based on the early strength of concrete, the support characteristic curves combined both supporting forms and ground response curve have been developed to study the mechanism between soil and support, and finally the applicable condition and design parameters for the different steel frame have been developed.
     (4) Ground surface settlement controlling technology of shallow large section loess: According to the field monitoring data, the law of soil deformation above the shallow large section loess tunnel and the influence factors to the deformation have been presented; also the control criterion for ground surface settlement of shallow Large section loess Tunnel is set up by research; Aseries of key technologies to control the settlement, such as reducing excavation area, increasing excavation steps of pilot tunnel, reserving core soil, quick closure, reinforcing primary support, big arch springing, etc, has been proposed and used successfully in the LianHuo Highway underpass Project.
引文
[1]刘祖典.黄土力学与工程[M].西安.陕西科技出版社,1996:1-15
    [2]乔定平,李增均.黄土地区工程地质[M].北京:水利电力出版社,1990.
    [3]王永焱.中国黄土研究的新进展[M].西安.陕西人民出版社,1985:1-20.
    [4]王永众,林在贯.中国黄土的结构特性及物理力学性质[M].北京:科学出版,1990.
    [5]钟祖良.Q2原状黄土本构模型及其在隧道工程中的应用研究[D].重庆:重庆大学,2008.
    [6]武海光.穿越既有铁路的软弱围岩双线隧道施工技术[D].成都:西南交通大学,2003.
    [7]程刚.大断面黄土隧道施工技术研究[J].铁道标准设计,2005(3):30-31.
    [8]马涛,赵书学,李德武.大跨度黄土隧道钢拱架应力量测与分析[J].公路交通科技,.2008(1):159-163.
    [9]赵占厂.黄土公路隧道结构工程性状研究[D].西安:长安大学,2004.
    [10]轩俊杰.黄土隧道变形规律研究[D].西安:长安大学,2008.
    [11]张红,郑颖人,杨臻.黄土隧洞支护结构设计方法探讨[J].岩土力学,2009,30(增2):473-478.
    [12]刘瑞兴,杨春华.黄延高速公路彦麦沟黄土隧道综合施工技术[J].中国港湾建设,2008,155(6):59-61.
    [13]袁飞.浅埋偏压黄土连拱隧道施工力学效应研究[D].重庆:重庆大学,2009.
    [14]吴沛.双线铁路黄土隧道快速施工技术[J].青海科技.2005(3):47-50.
    [15]《中国铁路隧道史》编纂委员会.中国铁路隧道史[M].北京:中国铁道出版社,2004.
    [16]马涛,赵书学,李德武.大跨度黄土隧道钢拱架应力量测与分析[J].公路交通科技,2008(1):159-162.
    [17]陈建勋,姜久纯,王梦恕.黄土隧道网喷支护结构中锚杆的作用[J].中国公路学报.2007,20(3):71-75.
    [18]姜久纯.黄土隧道施工监控量测及锚杆的支护效果研究[D].西安:长安大学,2007.
    [19]卢锦章,刘武.黄土段大断面公路隧道施工方法[J].煤矿设计,1999(11):44-46.
    [20]杨秀权,倪作霖,张岩.东北虎的西部情结[N].中国铁道建筑报,2002-7-13.
    [21]夏鹏.大跨度黄土隧道洞口浅埋段支护效果研究[D].西安:长安大学,2010.
    [22]孙辉.黄土连拱隧道围岩与支护结构稳定性研究[D].重庆:重庆大学,2005.
    [23]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [24]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [25]崔泰喜.4车道宽副隧道的设计与施工[M].大韩民国建设交通部道路局,2000.
    [26]曲海峰.扁平特大断面隧道修筑及研究概论[J].隧道建设2009,29(2):166-1
    [27]王福柱黄鸿健.在极浅蛙偏压条件下修建车站隧道:襄渝线狗磨湾隧道出口端施工(二)[J].隧道建设,1993(1):29-33.
    [28]章振华.新建狗磨湾隧道施工超前地质预报[J].西北水力发电,2002,18(2):27-30.
    [29]张金钰.建设中的大秦线[M].北京:中国统计局,1987:275-276.
    [30]詹天佑土木工程大奖第5届获奖工程专栏——内昆铁路曾家坪1号隧道[J].土木工程学报,2006,39(9):2.
    [31]王梦恕,等.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [32]Oreste P P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports[J].Tunnelling and Underground Space Technology.2007,22(2):185-205.
    [33]Wittke W. Analysis for under ground openings in jointed rock[z].McGraw-Hill Book ComPany, 1977.
    [34]张厚美,吕国梁.圆形隧道衬砌结构计算模型综述[J].世界隧道,2000(2):1-6.
    [35]刘国伟.水电站调压井围岩参数反分析及开挖稳定性仿真分析[D].成都:四川大学,2005.
    [36]Zienkiewicz O C, ValliaPPanS, King I P. Stress analysis of rock as a "no tension" material[J].Geotechnique.1968,18(1):56-66.
    [37]Duddeck H, Erdlnann J. Structural design models for tunnels[C].Brighton:Elsevier,1983.
    [38]Schmidt B. Tunnel Lining Design-Do the Theories work?[C].Perth:Elsevier,1984.
    [39]王梦恕,谭忠盛.中国隧道及地下工程修建技术[J].中国工程科学,2010,12(12):4-10.
    [40]房倩.高速铁路隧道支护与围岩作用关系研究[D].北京:北京交通大学,2010.
    [41]贺少辉,等.地下工程[M].北京:北京交通大学出版社,2006.
    [42]中华人民共和国铁道部.《铁路隧道设计规范》(TB10003-2005)[s].北京:中国铁道出版社,2001.
    [43]中华人民共和国行业标准编写组..《公路隧道设计规范》(JTG D70--2004)[s].北京:人民交通出版社,2004.
    [44]王晓州,等.大断面黄土隧道建设技术[M].北京:中国铁道出版社,2009.
    [45]姚海波.大断面隧道浅埋暗挖法下穿既有地铁构筑物施工技术研究[D].北京:北京交通大学,2005.
    [46]仇文革.地下工程近接施工力学原理与对策的研究[D]成都:西南交通大学,2003.
    [47]郭子红.地下立交近接隧道稳定性的理论分析与模拟研究[D].重庆:重庆大学,2010.
    [48]易小明,张顶立,李鹏飞.隧道下穿时地表房屋变形开裂的定量评估[J].岩石力学与工程学报,2008,27(11):2288-2294.
    [49]易小明,张顶立,陈卫忠.基于DSC模型的房屋开裂评估与监测分析[J].岩土力学,.2010,31(3):832-838.
    [50]郑学贵,郭军,吴胜忠.连拱隧道下穿高层建筑安全性分析[J].地下空间与工程学报,2010.6(4):867-872.
    [51]施烨辉,何平,卞晓琳.拟建隧道下穿热力顶管的现状评估[J].北京交通大学学报,2010,34(4):27-30.
    [52]白伟,梁新权,张学民,等.杂环境条件下地铁隧道下穿燃气管线加固技术[J].交通科学与工程,2010,26(4):30-34.
    [53]韦凯,雷震宇,周顺华.盾构隧道下穿地下管线的变形控制因素分析[J].地下空间与工程学报,.2008,4(2):325-330.
    [54]李义军.地铁区间隧道下穿污水管线施工技术[J].铁道标准设计.2009(7):87-90.
    [55]王力勇,陈建华,彭峰.软塑地层中浅埋暗挖法穿越道路与管线施工技术[J].市政技术,2008,26(5):432-435.
    [56]刘海江.北京地铁10号线学院路站下穿污水管施工技术[J].四川建筑,2009,29(2):219-220.
    [57]贾英凯.观音堂隧道下穿连霍高速公路施工技术[J].铁道标准设计,2009(11):105-107.
    [58]王鸣晓.暗穿隧道下穿铁路专运线沉降分析[J].大连大学学报,2010(5):68-71.
    [59]许有俊,陶连金,李文博.地铁双线盾构隧道下穿高速铁路路基沉降分析[J].北京工业大学学报,2010,36(12):1618-1617.
    [60]姚德友.盾构隧道下穿铁路公路的施工技术[J].市政技术,2010,28(增2):287-289.
    [61]田海波,宋天田.轨道交通9号线下穿铁路工程风险及对策研究[J].地下空间与工程学报,2007,3(1):147-150.
    [62]郑向红.盾构隧道下穿既有城市铁路施工技术[J].铁道标准设计,2008(12):105-107.
    [63]白海卫.新建隧道下穿施工对既有隧道纵向变形的影响和工程措施研究[D].北京:北京交通大学,2007.
    [64]梁韵,谭忠盛,李健.地铁下穿既有线和扩大基础桥梁施工方案研究[J].现代隧道技术,2011,48(1):117-122.
    [65]魏家君.隧道下穿暗河施工技术[J].铁道工程学报,2007(7):71-75.
    [66]崔光耀,王明年,路军富,等.客运专线机场路隧道下穿高架桥近接桩基施工位移控制技术[J]中国铁道科学,2011,32(3):68-73.
    [67]叶飞,丁文其,熊冬才,等.公路隧道下穿已运营铁路隧道施工及安全监控[J].现代隧道技术,2006,43(3):31-34.
    [68]张晓丽.浅埋暗挖下穿既有地铁构筑物关键技术研究与实践[D].北京:北京交通大学,2007.
    [69]Ibrahim Ocak. Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro[J]Tunnelling and Underground Space Technology,2008,23(6): 674-681
    [70]A.M. Hefny, W.L. Tan, P. Ranjith,. Numerical analysis for umbrella arch method in shallow large scale excavation in weak rock[J]Tunnelling and Underground Space Technology, 2004,19(4):500.
    [71]Y. Tsuchiya, S. Kenmochi, T. hara &K, et al.New tunneling technique, pass method[J]International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(3):140.
    [72]坂卷清,纵穿运营线下方超浅埋深盾构隧道的掘进实例—筑波、三之轮隧道[J1.中日铁路技术交流年会论文集,2004年.
    [73]魏健鹏,杜学政,朱伟.下穿京津高速路暗挖隧道全断面注浆工艺[J].市政技术,2010,28(11):280-283.
    [74]彭正勇.注浆抬升在隧道穿越既有建筑物中的研究及应用[J].岩石力学与工程学报,2011,30(增1):2963-2969.
    [75]周文清.城市浅埋暗挖隧道施工沉降控制技术[J].国防交通工程与技术,2009(3):58-60.
    [76]郑骐.盾构隧道下穿既有桥梁施工技术[J]市政技术,2008,26(4):320-322.
    [77]徐干成,李成学,王后裕,等.地铁盾构隧道下穿京津城际高速铁路影响分析[J].岩土力学,2009,30(增2):269-276.
    [78]赵勇,李国良,喻渝.黄土隧道工程[M].北京:中国铁道出版社,2011.
    [79]铁道第二勘察设计院.铁路工程设计技术手册隧道[M].北京:中国铁道出版社,1999.
    [80]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003.
    [81]罗禄森.郑西客运专线大断面黄土隧道二次衬砌设计方法研究[D].程度:西南交通大学,2008.
    [82]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [83]赵德安,蔡小林,Swoboda.锚杆单元及其在黄土隧道计算中的若干问题[J].岩石力学与工程学报,2004,23(24):4183-4189.
    [84]谭忠盛,喻渝,王明年,等.大断面浅埋黄土隧道锚杆作用效果的试验研究[J].岩土力学,2008,29(2):491-496.
    [85]张永兴.岩石力学[M].北京:中国建筑工业出版社,2008.
    [86]Freeman. T.J. The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel[J].Tunnels and Tunnelling,1978(7):37-40.
    [87]P.Oreste. Distinct analysis of fully grouted bolts around a circular tunnel considering the congruence of displacements between the bar and the rock[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1052-1067
    [88]Yue Cai a, Tetsuro Esaki, Yujing Jiang. An analytical model to predict axial load in grouted rock bolt for soft rock tunneling[J] Tunnelling and Underground Space Technology,2004, 19(6):607-618.
    [89]熊良宵,杨林德.隧道开挖面接近地质界面时围岩位移特征及其影响因素分析[J].中国铁道科学,2009,30(1):61-68.
    [90]朱焕春,荣冠,肖明,等.张拉荷载下全长粘结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
    [91]陈超.压力型锚杆现场试验及剪力分布计算[D].重庆:重庆大学,2003.
    [92]赵德安,蔡小林,Swoboda G,等.锚杆单元及其在黄土隧道计算中的若干问题[J].岩石力学与工程学报,2004,23(24):4183-4189.
    [93]陈广峰,米海珍.黄土地层中锚杆受力性能试验分析[J].甘肃工业大学学报,2003,29(1):116-119.
    [94]郭军.客运专线大断面黄土隧道施工力学支护设计理论研究[D].成都:西南交通大学,2009.
    [95]郑甲佳.浅埋暗挖地铁黄土隧道系统锚杆作用机理研究[D].西安:长安大学,2009.
    [96]钟新谷,徐虎.全长锚固锚杆的横向作用研究[J].岩土工程学报,1997,19(1):94-98.
    [97]李东.基于可靠性的锚杆支护设计理论与应用研究[D]阜新:辽宁工程技术大学,2004.
    [98]徐波.粘结型锚杆锚固理论与实验研究[D].大连:大连理工大学,2006.
    [99]陈建功.低应变动力响应理论与应用研究[D]重庆:重庆大学,2006.
    [100]胡贺松.深基坑桩锚支护结构稳定性及受力变形特性研究[D]长沙:中南大学,2009.
    [101]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报.2000,19(3):339-341.
    [102]C. Li, B. Stillborg. Analytical models for rock bolts[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1013-1029
    [103]姚显春,李宁,陈蕴生.隧洞中全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2005,24(13):2272-2276.
    [104]曹建建,邓安.离心加载有限元方法在边坡稳定分析中的应用[J]岩土工程学报,2006,28(增):1336-1339.
    [105]陈建勋,罗彦斌.喷射混凝土强度概率统计规律及其可靠度分析[J].公路隧道,2006(1):19-21.
    [106]史世雍,马金荣.隧道钢纤维喷射混凝土强度试验研究[J].山西建筑,2004,30(2):55-56.
    [107]林银飞,郑颖人.弹塑性有限厚条法及工程应用[J].工程力学,1997,14(2): 108-112
    [108]Ahmad Fahimifar, Masoud Ranjbarnia. Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method[J]. Tunnelling and Underground Space Technology,2009,24(4):363-375.
    [109]Gunter G. Gschwandtner, Robert Galler. Input to the application of the convergence confinement method with time-dependent material behaviour of the support[J]. Tunnelling and Underground Space Technology,2011,13(7).
    [110]Kumar P. Infinite elements for numerical analysis of under-ground excavations [J]. Tunneling and Underground Tech-nology,2000,15(1):117-124.
    [111]Shou K J. A three-dimensional hybrid boundary element method for non-linear analysis of a weak plane near an underground excavation [J]. Tunneling and UndergroundSpace Technology,2000,15(2):215-226.
    [112]陈峰宾,张顶立,扈世民.基于收敛约束原理的大断面黄土隧道围岩与初支稳定性分析[J].北京交通大学学报,2011,35(4):28-32.
    [113]C. Carranza-Torres, C. Fairhurst. Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses That Satisfy the Hoek-Brown Failure Criterion[J]. Tunnelling and Underground Space Technology,2000,15(2):187-213.
    [114]Daniel Dias. Convergence-confinement approach for designing tunnel face reinforcement by horizontal bolting[J]. Tunnelling and Underground Space Technology,2011,26(4):517-523.
    [115]C. Gonza'lez-Nicieza, A.E. A'lvarez-Vigil, A. Mene'ndez-Dl'az, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008,23(1):25-37.
    [116]Oreste.P.P. Analysis of structural interaction in tunnels using the covergence-confinement approach[J].Tunnellingand Underground SPaee Technology.2003,18(4):347-63.
    [117]金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(4):344-353.
    [118]张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J].岩土力学.2004,25(3):455-458.
    [119]马显春,石碧波,李军伟.赤平极射投影在隧道围岩稳定性评价中的应用[J].山西建筑,2009,35(4):340-341.
    [120]Arild Palmstrom. Characterizing rock mass by the RMI for use in practical rock engineering [J].Tunneling and Underground Space Technology,1996,11(2):175-188.
    [121]刘宝许,乔兰,李长洪.基于动态围岩分类的高速公路隧道围岩稳定性评价方法[J].北京科技大学学报,2005,27(2):146-149.
    [122]关宝树.隧道力学概论[M].成都:西南交通大学,1993.
    [123]徐干成,白洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2002.
    [124]王秀英,谭忠盛,王梦恕,等.山岭隧道堵水限排围岩力学特性分析[J].岩土力学.2008,29(1):75-80.
    [125]Christian Pichler, Roman Lackner, Herbert A. Mang. A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials[J].Engineering Fracture Mechanics,2007,74(1-2):34-58.
    [126]Masayasu Hisatake. Effects of steel fiber reinforced high-strength shotcrete in a squeezing tunnel[J].Tunnelling and Underground Space Technology,2003,18(2-3):197-204.
    [127]Anders Ansell. Investigation of shrinkage cracking in shotcrete on tunnel drains[J].Tunnelling and Underground Space Technology,2010,25(5):607-613.
    [128]C. Carranza-Torres a, M. Diederichs. Mechanical analysis of circular liners with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets[J].Tunnelling and Underground Space Technology,2009,24(5):506-532.
    [129]Vojkan Jovicic', Jakob Sustersic, Zeljko Vukelic. The application of fibre reinforced shotcrete as primary support for a tunnel in flysch[J].Tunnelling and Underground Space Technology,2009,24(6):723-730.
    [130]田长勋,汪建立,郭金敏.喷射纤维混凝土性能研究[J].煤炭工程.2006(8):87-89.
    [131]洪泉,杨成永,徐明,等.新隧道格栅钢架喷混凝土支护安全性评价[J].岩石力学与工程学报,2009,28(增2):3903-3908.
    [132]Olivier Bernard, Franz-Josef Ulm , Eric Lemarchand. A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials[J]. Cement and Concrete Research,2003,33(9):1293-1309.
    [133]M. Mazloom, A.A. Ramezanianpour, J.J. Brooks. Effect of silica fume on mechanical properties of high-strength concrete[J].Cement and Concrete Composites,2004,26(4): 347-357.
    [134]A. Sawa, P. Manita, K.K, Sideris. Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates[J]. Cement and Concrete Composites,2005,27(2):239-248.
    [135]Miguel Azenha, Filipe Magalhaes, Rui Faria a, et, al. Measurement of concrete E-modulus evolution since casting:A novel method based on ambient vibration[J].Cement and Concrete Research,2010,40(7):1096-1105.
    [136]Jane Proszek Gorninskia, Denise C. Dal Molin, Claudio S. Kazmierczak. Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete[J].Cement and Concrete Research,2004,34(11):2091-2095.
    [137]祝云华.钢纤维喷射混凝土力学特性及其在隧道单层衬砌中的应用研究[D].重庆:重庆大学,2009.
    [138]马智英.钢纤维混凝土早期力学性能发展规律的试验研究[D].北京:北京工业大学,2003.
    [139]李华明.聚丙烯纤维混凝土性能研究及其在隧道工程中的应用[D].成都:西南交通大学,2005.
    [140]常燕庭.喷射混凝土早期材料性质对支护效果的影响[J].长江科学院院报.1992,9(3):8-16.
    [141]中华人民共和国建设部.《锚杆喷射混凝土支护技术规范》(GB50086-2001)[s].北京:中国计划出版社,2001.
    [142]DaemenJ.J..K.Thnnel Supportl oading Caused by Roek Failure[D]. MnineaPolis:University of Minnesota,1975
    [143]Howells M. Analysis of Thnnel Stability by the Convegrenee-Confinement Mehtod[J].Under ground SPaee,1980,4(6):368-369.
    [144]Eiosetin Z., Henzi H., Negro A. On Three-Dimensinoal Ground Respones to Tunnelling [J].ASCE.Geotech Ⅲ.Tunnelling in Soils andRoeks,1984,107-127
    [145]Gesta p, Kerisel J, Londe P, et al. Tunnel Stability by Convegernec-Confine-ment Method [J].Undegrround SPaee,1980,4(4):225-232.
    [146]Borwn E.T, Bary J.w., Ladnayi B., et al. Gorund Response Cuvers for Rock Tunnels[J].Journal of Geotechnical Engnieering,1983,109(1):15-39.
    [147]Duddeek H. On the Basie Requierments for Applying the Convergence- Confinement Method [J].Underground SPaee,1980,4(4):241-247.
    [148]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2006.
    [149]Chem, J.C., F.Y.Shiao, C.W.Yu. An empirical safety criterion for tunnel construction[C].In:Regional Symposium on Sedimentary Rock Engineering. Taipei, Taiwan.1998.222-227.
    [150]李健,谭忠盛,喻渝,.浅埋大跨下穿高速公路黄土隧道施工措施研究[J].岩土力学,2011,32(9):2803-2809.
    [151]倪鲁肃.浅埋黄土隧道下穿高速公路沉降控制研究[D].北京:北京交通大学,2010.
    [152]唐培连.大断面深埋黄土隧道锚杆支护作用研究[D].北京:北京交通大学,2008.
    [153]阳军生,刘宝琛.城市隧道施工引起的地表移动与变形[M].北京:中国铁道出版社,2002.
    [154]施成华.城市隧道施工地层变形时空统一预测理论及应用研究[D].长沙:中南大学,2007.
    [155]黄俊,张顶立.重叠隧道上覆地层变形规律分析[J].岩土力学,2007,28(12):2634-2638.
    [156]张建国,王明年,刘大刚,等.海底隧道浅埋暗挖段CRD法不同施工工序比较[J].岩土力学与工程学报,2007,26(2):3639-3645.
    [157]刘传利,漆泰岳,谭代明,等.近接隧道施工工序的数值模拟研究[J].隧道建设,2009,29(1):50-53.
    [158]Li Jian, Ni Lusu, Tan Zhongsheng, Liang Yun, Tang Peiliang. Analysis of Deformation Regularity of Soil in LargeSection Shallow Loess Tunnel[J].2010 International Conference on Mechanic Automation and Control Engineering,2010.
    [159]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].成都:西南交通大学,2003.
    [160]Peck R.B, Deep excavation and tunneling in soft ground, State of the Art Report. Proc.7Int.Conf.On Soil Mechanics and Foundation Engineering, Mexico City,1969:225~ 290
    [161]中华人民共和国交通部.《公路工程质量检验评定标准》(JTGF80/1-2004)[S]北京:人民交通出版社,2004
    [162]张志强,何川.偏压连拱隧道优化施工的研究[J].岩土力学,2007,28(4):723-727.
    [163]杨小礼,眭志荣.浅埋小净距偏压隧道施工工序的数值分析[J].中南大学学报(自然科学版),2007,38(4):764-770.
    [164]李健,谭忠盛,喻渝,倪鲁肃.浅埋下穿高速公路黄土隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2011,30(增1):3002-3008.
    [165]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005:1-181
    [166]苟德明,阳军生,张戈,等.浅埋暗挖隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2007,26(6):1258-1264.
    [167]Li Jian, Tan Zhongsheng, Ni Lusu. Optimum Design of The Big Pipe-roof in Large-span Shallow Loess Tunnel[J].The 1st International Conference on Railway Engineering,2010,8: 830-835.
    [168]李健,谭忠盛,喻渝,倪鲁肃.浅埋大跨黄土隧道管棚受力机制分析[J]中国工程科学,2011,13(9):92-96.
    [169]张志强,何川.偏压连拱隧道优化施工的研究[J].岩土力学,2007,28(4):723-727.
    [170]杨小礼,眭志荣.浅埋小净距偏压隧道施工工序的数值分析[J].中南大学学报(自然科学版),2007,38(4):764-770.
    [171]李术才,朱维申.弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用[J].岩石力学与工程学报,2002,21(4):466-470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700