用户名: 密码: 验证码:
掺Yb~(3+)氟化物晶体激光冷却理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体材料激光冷却有许多有趣的物理现象,同时在航空航天、遥感遥测、光电探测、高功率激光器等领域有着广泛而重要的应用。因此,固体材料激光冷却的研究不仅有着重要的科学意义,而且有着强烈的应用背景。本文以掺杂Yb3+的氟化物晶体作为激光冷却的研究对象展开深入系统的理论和实验研究。
     我们采用四能级模型描述掺杂稀土离子激光冷却的物理过程,得出固体材料激光冷却的制冷效率与外部量子效率、吸收效率、平均荧光波长和泵浦激光波长的关系。样品的热负载主要有三部分组成:黑体辐射热负载、空气对流热负载和支撑物传导热负载,我们详细分析了这三种不同热负载对固体材料激光制冷的影响,并给出减小这些热负载的解决方案。
     微纳探测器的全固态冷却对科研工作者提出了新的挑战。本文提出了两个微纳米尺度范围探测器的全固态冷却新设想。这两个新设想是采用表面等离子体共振增强激光冷却方案和相长干涉增强激光冷却方案来实现微纳米探测器的有效冷却。我们首先推导了增强因子在薄膜中的空间分布,得到平均增强因子表达式。然后,以10wt%Yb3+:YLiF4薄膜为例,计算了不同薄膜厚度时,泵浦激光增强因子在薄膜内的空间分布。最后,计算了10wt%Yb3+:YLiF4薄膜能被激光冷却的最终温度和泵浦功率的关系。在计算时我们考虑了样品对激光的饱和吸收效应。
     本文采用共振腔增强吸收激光技术实验研究掺杂2wt%Yb3+:YLiF4晶体的激光冷却。首先,我们测量该晶体的平均荧光波长和温度的变化关系;接着,用DLT测温法对该晶体进行温度定标。然后,我们利用电子伺服系统,把谐振腔锁定在半导体激光上。谐振腔与入射激光共振约一小时后,我们同样采用DLT测温法测量样品光谱信号,并与原先的温度定标曲线作比较得到样品的实际温度。接下来,利用四能级模型分析实验结果,得到样品的制冷功率、制冷效率和背景吸收系数。并根据理论分析得到的实验结果,我们做出了能全面而准确反映该2wt%Yb3+:YLiF4晶体的激光制冷属性的“窗口”。最后,把我们实验结果与阿拉莫斯实验室和新墨西哥大学的实验结果做简单直接的比较。
     本文采用共振腔增强吸收激光技术实验探索研究掺杂2wt%Yb3+:LuLiF4晶体的激光冷却。首先,我们在理论上分析了掺杂Yb3+氟化物材料能被激光冷却至低温学温度的要求,并得出能被激光冷却到低温学温度的几种可能氟化物晶体材料。然后,我们测量该晶体的平均荧光波长和温度的变化关系;接着,用DLT测温法对该晶体进行温度定标。然后,我们利用电子伺服系统,把谐振腔锁定在半导体激光上。谐振腔与入射激光共振约一小时后,我们采用DLT测温法测量样品光谱信号,并与原先的温度定标曲线作比较得到样品的实际温度。接下来,利用四能级模型分析实验结果,得到该晶体的制冷功率、制冷效率和背景吸收系数。根据理论分析并结合实验结果,我们做出了能全面而准确反映该2wt%Yb3+:LuLiF4晶体的激光制冷属性的“窗口”。最后,我们比较了Yb3+:LuLiF4晶体和Yb3+:YLiF4晶体两者之间的制冷潜力,以及在晶体生长和实际应用方面的优缺点,并发现Yb3+:LuLiF4晶体与Yb3+:YLiF4晶体有着同样迷人的制冷前景。
Laser cooling of solids is becoming more attractive for both fundamental physical scientists and applied physical scientists due to it has tremendous charming physical phenomenon and extremely important application in the area of aerospace, remote sensing and telemetry, photoelectric detection, high power laser and so on. This dissertation main study laser cooling of Yb3+-doped fluoride crystal in theory and in experiment.
     We adopted four energy level model describe the process of laser cooling of the rare earth doped system. According to this model, we obtained the relationship the cooling efficiency with external quantum efficiency, absorption efficiency, mean fluorescence wavelength, and pump wavelength. The heat loads of the sample come from three parts:blackbody radiative load, air convective heat load, supporting conductive heat load. We analyzed the effect of heat load from these three different sources and give the solution to reduce the heat load correspondingly.
     Cooling micron or nano scale detector is the new challenge for us. We propose two new conceptions which are Surface Plasmon Resonant enhancement laser cooling of solids (SPRELCS) and resonant waveguide structure coherent enhancement laser cooling of solids (RWCELCS) for cooling the micro or nano scale detectors. Firstly, we deduced the relationship the enhancement factor with the position of film and obtained the express of the mean enhancement factor. Secondly, we adopted the10wt%Yb3+:YLiF4film as our model in the theory, and calculated the enhancement factor function in the film with the different thickness of the film. Finally, we calculate relationship the final temperature of10wt%Yb3+:YLiF4film with the power of the pumping laser. While the process of the calculation, we taken account of the saturate power intensity.
     We adopt the resonant external cavity enhancement absorption experiment study the laser cooling of2wt%Yb3+:YLiF4crystal. Firstly, we measured the relationship the mean fluorescence wavelength with temperature. And then, we obtained the temperature calibration curve of the sample with DLT method. After that, we lock the length of the cavity on the wavelength of the pump laser. On hour later, the sample reached the state of thermal balance with environment, and then we recorded the DLT single of sample. Compared with the temperature calibration curve in early, we can deduce the final temperature of the sample. Utilizing the four energy level model, we can obtain the cooling power, cooling efficiency and background absorption. According to these results, we can draw the cooling window of2wt%Yb3+:YLiF4crystal by which we can comprehensive understanding of the properties of laser cooling of this crystal. Finally, we compared our experiment results with the results of LANL and University of New Mexico research group directly.
     We adopt the resonant external cavity enhancement absorption experiment study the laser cooling of2wt%Yb3+:LuLiF4crystal. Firstly, we analyzed the demands for Yb3+-doped fluoride materials cooled down to cryogenics temperature by laser in theory. And obtained some Yb3+-doped fluoride crystal as potential candidates who can be cooled down to cryogenics temperature by laser. And then, we measured the relationship the mean fluorescence wavelength with temperature. We also obtained the temperature calibration curve of the sample with DLT method. After that, we lock the length of the cavity on the wavelength of the pump laser. On hour later, the sample reached the state of thermal balance with environment, and then we recorded the DLT single of sample. Compared with the temperature calibration curve in early, we can deduce the final temperature of the sample. Utilizing the four energy level model, we can obtain the cooling power, cooling efficiency and background absorption. According to these results, we can draw the cooling window of2wt%Yb3+:LuLiF4crystal by which we can comprehensive understanding of the properties of laser cooling of this crystal. Finally, we compared the potential of cooling ability of both the Yb3+:LuLiF4crystal and the Yb3+:YLiF4crystal and the advantages for the crystal growth and the practical application between them. And we found out both of them there is the same promising potential for laser cooling to cryogenics temperature.
引文
[1]T. H. Maiman "Stimulated Optical Radiation in Ruby", Nature, Vol.187, 493-494,1960.
    [2]S. Chu, "The manipulation of neutral particles", Reviews of Modern Physics, Vol.70,685-706,1998.
    [3]W. Phillips, "Laser cooling and trapping of neutral atoms", Reviews of Morden Physics, Vol.70,721-741,1998.
    [4]E. Cornell, C. Wieman, "Nobel lecture:Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments", Reviews of Morden Physics, Vol.74,875-893,2002.
    [5]W. Ketterle, "Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser", Reviews of Morden Physics, Vol.74, 1131-1151,2002.
    [6]P. Pringsheim, "Zwei bemerkungen uber den unterschied von lumineszenz und temperaturstrahlung", Z. phys, Vol.57,739-746,1929.
    [7]R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. Gosnell, C. Mungan, "Observation of laser-induced fluorescent cooling of a solid", Nature, Vol.377, 500-503,1995.
    [8]S. D. Melgaard, D. V. Seletskiy, A. D.Lieto, M. Tonelli, M. Sheik-Bahae, "Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature", Opt. Lett, Vol.38,1588,2013.
    [9]Jun. Zhang, Dehui. Li, Renjie Chen Qihua. Xiong, "Laser cooling of a semiconductor by 40 kelvin", Nature. Vol.493,504,2013.
    [10]D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, M. Sheik-Bahae, "Cryogenic optical refrigeration", Advances in Optics and Photonics. Vol.4,78-107,2012.
    [11]Erin N. Pettyjohn, "USAF Space Sensing Cryogenic Considerations", Proc. of SPIE, Vol.7951,795102-1-795102-10,2011.
    [12]秦伟平,“反斯托克斯荧光制冷的研究进展与综述”,物理学进展,Vo1.20,93-167.2000.
    [13]C. V. Raman, "A new radiation", India Journal of Physics, Vol.2,387-398, 1928.
    [14]S. Vavilov, "Some remarks on the stokes law", J. Phys. (Moscow), Vol.9, 68-72,1945.
    [15]S. Vavilov, "Photoluminescence and thermodynamics", J. Phys. (Moscow), Vol.10,499-502,1946.
    [16]L. Landau, "On the thermodynamics of photoluminescence", J. Phys. (Moscow), Vol.10,503-506,1946.
    [17]A.Kastler, "Quelques suggestions concernant la production optique et la detection optique d'une inegalite de population des niveaux de quantification spatiale des atomes application a l'experience de Stern et Gerlach et a la resonance magnetique", J. Phys. Radium, Vol.11,255-265,1950.
    [18]C. E. Mungan, T. R. Gosnell, "Laser cooling of solids", Advances in atomic molecular and optical physics, Vol.40,161-268,1999.
    [19]S. Yatsiv, "Anti-Stokes fluorescence as a cooling process", Advances in Quantum Electronics, (ed J.R. Singer), New York, Columbia Univ. 200-213,1961.
    [20]T. Kushida, J. E. Geusic, "Optical refrigeration in Nd-doped yttrium aluminum garnet", Phys. Rev. Lett, Vol.21,1172-1175,1968.
    [21]N. Djeu, W. T. Whitney, "Laser cooling by spontaneous anti-Stokes scattering", Phys. Rev. Lett. Vol.46,236,1981.
    [22]G. Nemova, R. Kashyap, "Laser cooling of solids", Rep. Prog. Phys. Vol.73, 086501,1-20,2010.
    [23]J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, J. L. Adam, "Laser-induced internal cooling of Yb3+-doped fluoride-based glasses", J. Alloys. Compounds, Vol.323-324,239-244,2001.
    [24]R. Frey, F. Micheron, J. P. Pocholle, "Comparison of Peltier and anti-Stokes optical coolings", J. Appl. Phys, Vol.87,4489-4498,2000.
    [25]Bradley C. Edwards Melvin I. Buchwald Richard I. Epstein REVIEW OF SCIENTIFIC INSTRUMENTS Vol.69(5),2050-2055,1998.
    [26]M. Sheik-Bahae, R. I. Epstein, "Laser cooling of solids," Laser Photonics Rev. Vol.3(1-2),67-84,2009.
    [27]W. M. Patterson, P. C. Stark, T. M. Yoshida, M. Sheik-Bahae, M. P. Hehlen, "Preparation and characterization of high-purity metal fluorides for photonic applications", J. Am. Ceram. Soc, Vol.94,2896-2901,2011.
    [28]B. Heeg, G. Rumbles, A. Khizhnyak, P. A. DeBarber, "Comparative intra-versus extra-cavity laser cooling efficiencies", J. Appl. Phys. Vol.91 (5), 3356-3362,2002.
    [29]C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, J. Valencia, "Advances in laser cooling of thulium-doped glass" J. Opt. Soc. Am. B, Vol.20(5),1066-1074,2003,
    [30]X. L. Ruan, M. Kaviany, "Enhanced laser cooling of rare-earth-ion-doped nanocrystalline powders", Phys. Rev. B, Vol.73,155422,2006.
    [31]G. Z. Dong, X. L. Zhang, and L. Li, "Energy transfer enhanced laser cooling in Ho3+ and Tm3+ -doped lithium yttrium fluoride" J. Opt. Soc. Am. B. Vol.30, 939-944.2013.
    [32]B. G. Wybourne, Spectroscopic properties of rare earths, John Wiley & Sons, Inc., New York,1965.
    [33]M. Fox, "Optical properties of solids", Oxford University Press,2009.
    [34]M. P. Hehlen "Crystal-field effects in fluoride crystals for optical refrigeration" SPIE, Vol.7614,761404,2010.
    [35]A. Joullie, Christol, P., Baranov, A. N.,Vicet, A.Mid-infrared 2-5 μm heterojunction laser diodes, Topics Appl. Phys. Vol.89,1,2003.
    [36]Ebrahimzadeh, M. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, Topics Appl. Phys, Vol.89,179,2003.
    [37]D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, M. Sheik-Bahae, "Laser cooling of solids to cryogenic temperatures" Nature Photon, Vol.4,161-4,2010.
    [38]L.A. Riseberg, H.W. Moos. "Multiphonon orbit-latice relaxation of excited states of rare-earth ions in crystals". Phys. Rev., Vol.174,429,1968.
    [39]M. P. Hehlen, "Design and fabrication of rare-earth-doped laser cooling materials", in Optical Refrigeration:Science and Applications of Laser Cooling of Solids, R. Epstein and M. Sheik-Bahae, ed. (Wiley-VCH Verlag GmbH & Co, KGaA), page 33-74,2009.
    [40]Shurcliff, W.A. The trapping of fluorescent light produced within objects of high geometrical symmetry, J.Opt. Soc. Am., Vol.39,912,1949.
    [41]Imbusch, G.F. Luminescence spectroscopy, (ed M.D. Lumb), Academic, London, Vol.27,1978.
    [42]J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, "Cooling to 208 K by optical refrigeration", Appl. Phys. Lett, Vol.86,154107,2005.
    [43]T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature", Opt. Lett. Vol.24,1041-1043,1999.
    [44]X. Luo, M. D. Eisaman, T. R. Gosnell, "Laser cooling of a solid by 21 K starting from room temperature", Opt. Lett, Vol.23,639-641,1998.
    [45]C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, T. R. Gosnell, "Laser cooling of a solid by 16 K starting from room temperature", Phys. Rev. Lett, Vol.78,1030-1033,1997.
    [46]Mungan, C.E., Buchwald, M.I., Edwards, B.C., Epstein, R.I., Gosnell, T.R. "Internal laser cooling of Yb3+ -doped glass measured between 100 and 300 K", Appl. Phys. Lett., Vol.71,1458,1997.
    [47]Edwards, B.C., Anderson, J.E., Ep-stein, R.I., Mills, G.L., Mord, A.J. "Demonstration of a solid-stateoptical cooler:An approach to cryogenic refrigeration", J. Appl. Phys., Vol.86,6489,1999.
    [48]A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Laser cooling of a solid from ambient temperature", J. Mod. Opt, Vol.48,103-114,2001.
    [49]B. Heeg, M. D. Stone, A. Khizhnyak, G Rumbles, G. Mills, P. A. DeBarber, "Experimental demonstration of intracavity solid-state laser cooling of Yb3+:ZrF4-BaF2-LaF3-AlF3-NaF glass," Phys. Rev. A, Vol.70,021401,2004.
    [50]Good, W.S., Mills, G.L. Testing of samples for optical refrigeration, Proc.SPIE, Vol.5554,153,2004.
    [51]A. Rayner, M. Hirsch, N. R. Hecken-berg, H. Rubinsztein-Dunlop, "Distributed laser refrigeration" Appl. Opt., Vol.40,5427,2001.
    [51]A. Rayner, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Condensed-phase optical refrigeration", J. Opt. Soc. Am. B, Vol.20,1037-1053,2003.
    [52]D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, "Laser cooling using cavity enhanced pump absorption", Proc. SPIE, Vol.6461,46104,2007.
    [53]M. T. Murtagh, G. H. Sigel Jr., J. C. Fajardo, B. C. Edwards, and R. I. Epstein, "Laser-induced fluorescent cooling of rare-earth-doped fluoride glasses", J. Non-Cryst. Solids, Vol.253,50-57,1999.
    [54]J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, J. L. Adam, "Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses",Phys. Rev. B, Vol.62, 3213-3217,2000.
    [55]J. R. Fernandez, "Origin of laser-induced internal cooling of Yb", Proc. SPIE, Vol.4645,135-147,2002.
    [56]J. V Guiheen, C.D.Haines, GH.Sigel, R.I. Epstein, J. Thiede, W. M. Patterson, "Yb3+and Tm3+-doped fluoroaluminate glasses for anti-Stokes cooling", Phys. Chem. Glasses, Vol.47,167,2006.
    [57]J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-stokes laser cooling in bulk erbium-doped materials", Phys. Rev. Lett. Vol.97,033001,2006.
    [58]J. R. Fernandez, "Origin of laser-induced internal cooling of Yb", Proc. SPIE, Vol.4645,135-147,2002.
    [59]R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. Vol.90(9), 4815,2001.
    [60]S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, A. D. Lieto, M. Tonelli,"Laser cooling of Yb3+-doped BaY2F8 single crystal", Opt. Mater, Vol.28, 1321-1324,2006.
    [61]S. Bigotta, A. D. Lieto, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, "Single fluoride crystals as materials for laser cooling application" Proc. SPIE, Vol.6461,64610E-646110E,2007.
    [62]S. Bigotta, D. Parisi, L. Bonelli, A. Toncelli, M. Tonelli, A. Di Lieto,"Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal," J. Appl. Phys, Vol.100,013109,2006.
    [63]Melgaard "Cryogenic optical refrigeration:Laser cooling of solids below 123K" PhD Dissertation, University of New Mexico,2013.
    [64]Biao Zhong, Jigang Yin, Youhua Jia, Lin Chen, Yin Hang, and Jianping Yin "Laser cooling of Yb3+-doped LuLiF4 crystal", Opt. Lett, Vol.39(9), 2747-2750.2014.
    [65]A. R. Albrecht, D. V. Seletskiya, J. G. Cederberge, A. D. Lietoc, M. Tonellic, J. V. Moloneyf, G Balakrishnanb, M. Sheik-Bahaea"Progress towards cryogenic temperatures in intra-cavity optical refrigeration using a VECSEL" Proc. of SPIE, Vol.8638,863805-1,2013.
    [66]D. V. Seletskiy, S. D. Melgaard, S. Bigotta, D. A. Lieto, M. Tonelli, R. I. Epstein, M. Sheik-Bahae "Demonstration of an optical cryocooler" CLEO/IQEC 2009 Postdeadline submission,2009.
    [67]D. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, M. Tonelli, "Cooling of Yb:YLiF using cavity enhanced resonant absorption", Proc. SPIE, Vol.6907,69070B,2008.
    [68]S. R. Bowman and C. E. Mungan, "New materials for optical cooling", Appl. Phys. B, Vol.71,807-811,2000.
    [69]C. E. Mungan, S. R. Bowman, T. R. Gosnell. "Solid-state laser cooling of ytterbium-doped tungstate crystals" Int. Conf. on Lasers (Albuquerque, NM) 2000.
    [70]A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, A. J. Garcia-Adeva, "Anti-Stokes laser cooling in Yb3+ -doped KPb2Cl5 crystal", Opt. Lett, Vol.27,1525-1527,2002.
    [71]C. W. Hoyt, "Laser cooling in thulium-doped solids", PhD Dissertation, University of New Mexico,2003.
    [72]C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass", Phys. Rev. Lett, Vol.85,3600-3603,2000.
    [73]W. Patterson, M. P. Hasselbeck, M. Sheik-Bahae, S. Bigotta, D. Parisi, J. Toncelli, M. Tonelli, R. I. Epstein J. Thiede "Observation of optical refrigeration in Tm3+:BaY2F8 Lasers and Electro-Optics" (CLEO) (San Francisco CA),2004.
    [74]W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, R. Epstein, "Anti-Stokes luminescence cooling of Tni3+ doped BaY2F8", Opt. Express, Vol.16,1704-1710,2008.
    [75]D. T. Nguyen, R. Thapa, D. Rhonehouse, J. Zonga, A. Miller, Garrett Hardestyb, N. H. Kwongc, R. Binder, A. Chavez-Pirsona "Towards all-fiber optical coolers using Tm-doped glass fibers" Proc. of SPIE, Vol.8638, 86380G-1,2013.
    [76]Zameer Hasan, Zhengle Qiu and Jonathan Lynch "Laser Cooling in Materials with High Concentration of Erbium" Proc. of SPIE, Vol.7951,79510E-1, 2011.
    [77]N. J. Condon, S. R. Bowman, S. P. O'Connor, R. S. Quimby, C. E. Mungan, "Optical cooling in Er 3+:KPb2Cl5", Opt. Express, Vol.17,5466-5472,2009.
    [78]M. P. Hehlen, W. L. Boncher, S. D. Melgaard, M. W. Blair, R. A. Jackson, T. E. Littleford, S. P. Love, "Preparation of high-purity LiF, YF3, and YbF3 for laser refrigeration", Proc. of SPIE, Vol.9000,900004-1,2014.
    [79]赵呈春“稀土离子掺杂的LuLiF4与BaMgF4晶体生长及性能研究”,博士论文,上海光机所,2012.
    [80]A. N. Oraevsky, "Cooling of semiconductors by laser radiation", J. Russ. Laser Res. Vol.17,471-479,1996.
    [81]G Rupper, N. H. Kwong, R. Binder, "Large excitonic enhancement of optical refrigeration in semiconductors", Phys. Rev. Lett, Vol.97,117401,2006.
    [82]Jacob B. Khurgin "Band gap engineering for laser cooling of semiconductors" Joun. App. Phy. Vol.100,113116,2006.
    [83]J. Tauc, "The share of thermal energy taken from the surroundings in the electro-luminescent energy radiated from a p-n junction", Czech. J. Phys, Vol.7,275-276,1957.
    [84]H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, "External radiative quantum efficiency of 96% from a GaAs/GaInP hetero structure", Appl. Phys, A Mater. Sci. Process. Vol.64,143-147,1997.
    [85]T. H. Gfroerer, E. A. Cornell, M. W. Wanlass, "Efficient directional spontaneous emission from an InGaAs/InP heterostructure with an integral parabolic reflector", J. Appl. Phys. Vol.84,5360,1998.
    [86]E. FinkeiBen, M. Potemski, P. Wyder, L. Vina, G. Weimann, "Cooling of a semiconductor by luminescence up-conversion", Appl. Phys. Lett. Vol.75, 1258,1999.
    [87]A. Rogalski, "Infrared Detectors", CRC Press, Boca Raton,2011.
    [88]G F. Knoll, "adiation Detection and Measurement", John Wiley & Sons Inc., New York,3rd ed,2000.
    [89]A. Rogalski, "HgCdTe infrared detector material:history, status and outlook" Rep. Prog. Phys., Vol.68,2267-2336,2005.
    [90]Markus P. Hehlen, Mansoor Sheik-Bahae, R. I. Epstein, beSeth D. Melgaardbcand Denis V. Seletskiy "materials for optical cryocoolers" Journal of Materials Chemistry C, DOI:10.1039/c3tc31681e,2013.
    [91]F. Roush "USAF SPACE SENSING CRYOGENIC CONSIDERATIONS"AIP Conference Proceedings,1218,355, doi:10.1063/1.3422374,2010.
    [92]F. Roush, "CRYOGENIC CONSIDER RATIONS FOR USAF SPACE SENSING", CEC-ICMC,2009.
    [93]Erin N. Pettyjohn "USAF Space Sensing Cryogenic Considerations" Proc. Of SPIE, Vol.7951,795102-1,2011.
    [94]NASA JSC's Orbital Debris Quarterly, Jan'09
    [95]S. R. Bowman, N. W. Jerkins, B. Feldman, S. P. O'Connor, "Demonstration of a radiativelv cooled laser" CLEO 2002.
    [96]王晓峰,“固体荧光制冷效应及掺Yb激光介质辐射冷却研究”博士论文,国防科技大学,2008.
    [97]汪志诚,热力学与统计物理,高等教育出版社。
    [98]E. M. Purcell, R. V. Pound, "A nuclear spin system at negative emperature" Phys. Rev. Vol.81,279-80,1951.
    [99]J. P. Gordon, H. J. Zeiger. C. H. "Townes Molecular microwave scillator and new hyperfine structure in the microwave spectrum of NH3" Phys. Rev. Vol.95, 282-4,1954.
    [100]Xiulin Ruan "Fundamentals of Laser cooling of rare-earth-ion doped solids and its enhancement using nanopowders", PhD Dissertation, University of Michigan,2007.
    [101]Merzbacher, E.1998. Quantum Mechanics third ed. John Wiley, New York.
    [102]J. M. F. van Dijk, "On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions", J. Chem. Phys, Vol.78,5317,1983.
    [103]M. Sheik-Bahae and R. I. Epstein, "Can laser light cool semiconductors," Phys. Rev. Lett, Vol.92,247403,2004.
    [104]O. Madelung, "Semiconductors, basic data" (2nd edn). Springer-Verlag, Berlin. 1996.
    [105]A. E. Siegman, Lasers (University Science Books),1986.
    [106]M. P. Hehlen, R. I. Epstein, H. Inoue, "Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN," Phys. Rev. B, Vol.75,144302, 2007.
    [107]N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, P. Laporta, "Diode-pumped passively mode-locked Yb:YLiF laser", Opt. Express, Vol.16, 2922-2927.2008.
    [108]M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, "Effect of high carrier density on luminescence thermometry in semiconductors," Proc. SPIE, Vol.6461,646107,2007.
    [109]贾佑华“掺杂Yb3+:ZBLAN玻璃材料的激光冷却”,博士论文,华东师范大学,2009.
    [110]D. V. Seletskiy, S. Melgaard, M. Sheik-Bahae, S. Bigotta, A. Dilieto, and M. Tonelli. "Laser cooling of a semiconductor load using a YbrYLF optical refrigerator". In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 7614 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, February 2010.
    [111]http://www.acktar.com/category/NanoBlack
    [112]General Electric. Section 410.2. In Fluid Flow Data Book. Genium Publishing, 1982.
    [113]R. W. Wood, "On a remarkable case of uneven distribution of flight in a diffraction grating spectrum", Phil. Mag. Vol.4,396,1902.
    [114]J. C. Maxwell Garnett, "Colours in metal glasses and in metallic films", Philos. Trans. R. Soc. London, Vol.203,385,1904.
    [115]G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen", Ann. Phys, Vol.25,377,1908.
    [116]D. Pines, "Collective energy losses in solids", Rev, Mod. Phys, Vol.28, 184-198,1956.
    [117]R. H. Ritchie, "Plasma losses by fast electrons in thin films",106,874,1957.
    [118]E. A. Stern, R. A. Ferrell, "Surface Plasma Oscillations of a Degenerate Electron Gas", Phys. Rev. Vol.120,130-136,1960.
    [119]R. H. Ritchie, E. T. A rakama, J. J. Cowan, R. N. Hamm, "Surface-plasmon resonance effect in grating diffraction", Phys. Rev. Lett, Vol.21,1530-1532, 1968.
    [120]A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection" Z. Phys, Vol.216,398,1968.
    [121]H. Kretschmann, H. Raether, "Radiative decay of non-radiative surface plasmons excited by light", Z. Naturf, Vol.23 A,2135,1968.
    [122]黄昆著韩汝琦改编,固体物理,高等教育出版社,1988。
    [123]H. Raether, "Surface Plasmons on smooth and rough surfaces and on gratings", Springer-Verlag Berlin Heidelberg New York London Paris Tokyo,1986.
    [124]马克思.波恩,埃米尔.沃耳夫,“光学原理”,第七版,2006。
    [125]Jigang Yin, Yin Hang, Lianhan Zhang, Chengchun Zhao, Jing Xiong and Pengchao Hu, "Origin of the 330 nm absorption band and effect of doping Yb3+ in LiYF4 crystals", Journal of Luminescence, Vol.130,1338-1342,2010.
    [126]A. Bensalah, Y. Guyot, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, "Spectroscopic properties of Yb3+:LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes:a comparison with Yb3+:YLiF4", J. Alloys Compd., Vol.380,15-26,2004.
    [127]R. J. Cook, R. K. Hill, "An electromagnetic mirror for neutral atoms", Opt. Commun, Vol.43,258-260,1982.
    [128]V. I. Balykin, V. S. Letokhov, Y. B. Ovchinnickov, "Quantum-state-selective mirror reflection of atoms by laser light, Phy. Rev. Lett, Vol.60,2137-2140, 1988.
    [129]W. Seifert, C. S. Adams, V. I. Balykin, "Reflection of metastable argon atoms from an evanescent wave", Phys. Rev. A, Vol.49,3814-3823,1994.
    [130]W. Seifert, R. Kaiser,A. Aspect, "Reflection of atoms from a dielectric wave guide", Opt. Commun, Vol.111,566-576,1994.
    [131]G Labeyrie, A. Landragin, J. V. Zanthier, "Detailed study of a high ginesse planar waveguide for evanescent wave atomic mirrors", Quantum Semiclass, Opt, Vol.8,603-627,1996.
    [132]D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, "Resonant cavity-enhanced absorption for optical refrigeration", Appl. Phys. Lett, Vol.96, 181106,2010.
    [133]http://www.nist.gov/
    [134]D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, M. Sheik-Bahae, "Laser cooling of a semiconductor load to 165 K", Opt. Express, Vol.18, 18061-18066,2010.
    [135]S. N. Andrianov, V. V. Samartsev, "Optical Superradiation and Laser Cooling", Laser Phys, Vol.7,314,1997.
    [136]G Nemova and R. Kashyap, "Alternative technique for laser cooling with superradiance," Phys. Rev. A, Vol.83,013404,2011.
    [137]S. V. Petrushkin, V. V. Samartsev, "Superradiance regime of laser cooling of crystals and glasses doped with rare-earth ion", Laser Phys, Vol.11,948-956, 2001.
    [138]S. C. Rand, "Raman laser cooling of solids"Journal of Luminescence Vol.133, 10-14,2013.
    [139]杜宝勋,“半导体激光器理论基础”科学出版社,2011.
    [140]http://www.toptica.com/products/research_grade_diode_lasers/tunable_diode_la sers/tunable diode lasers 370 nm 1770 nm dl 100.html
    [141]E. S. de. L. Filho, G. Nemova, S. Loranger, and R. Kashyap, "Laser-induced cooling of a Yb.YAG crystal in air at atmospheric pressure" Opt. Express, Vol. 21(21),24711,2013.
    [142]C. Farley III and B. R. Reddy, "Mach-Zehnder interferometric measurement of laser heating/cooling in Yb3+:YAG", Proc. of SPIE Vol.7951795101-1.2011.
    [143]M. Ghasemkhanil, D. Seletskiy, and M. Sheik-Bahae "Sensitive thermal reflectance measurement for laser cooling applications" Proc. of SPIE, Vol.7951, 79510J-1-6,2011.
    [144]M. Ghasemkhani, D. V. Seletskiy, M. Sheik-Bahae, "Polarization-Resolved Optical Metrology for Noncontact Thermometry" Proc. of SPIE, Vol.8275, 82750J-1-5,2012.
    [145]W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, "Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry," J. Opt. Soc. Am. B, Vol.27,611-618, 2010.
    [146]A. R. Albrecht, D. V. Seletskiy, J. G. Cederberg, A. Di Lieto, M. Tonelli, J. Moloney, G. Balakrishnan, M. Sheik-Bahae, "Intracavity laser cooling using a VECSEL," Proc. SPIE, Vol.8275,827505.2012.
    [147]李传亮,邓伦华,杨晓华,陈扬駸,“激光锁定F-P腔频率的有差锁定研究”,光学学报,Vo1.29,2822,2009.
    [148]A. Bensalah, Y. Guyot, M. Ito, A.Bre-nier, H. Sato, T. Fukuda, G Boulon, Opt. Mater, Vol.26,375,2004.
    [149]Y. V. Orlovskii, T. T. Basiev, I. N. Vorob'ev, E. O. Orlovskaya, N. P. Barnes, S. B. Mirov, Opt. Mater, Vol.18,355,2002.
    [150]N. Coluccelli, G Galzerano, L. Bonelli, A. Toncelli, A. Di Lieto, M. Tonelli, and P. Laporta, Room-temperature diode-pumped Yb3+ -doped LiYF4 and KYF4 lasers, Appl. Phys.B, Vol.92(4),519-523,2008.
    [151]Stefano Bigotta, Mauro Tonelli, "Laser Cooling in Fluoride Single Crystals", in Optical Refrigeration:Science and Applications of Laser Cooling of Solids, R. Epstein and M. Sheik-Bahae, ed. (Wiley-VCH Verlag GmbH & Co, KGaA), 75-96,2009.
    [152]Jia Youhua, Zhong Biao, Yin Jianping, "Research on intracavity laser cooling of solid", Chin.Phys.Lett, Vol.25(1),85-88,2008.
    [153]Jia Youhua, Zhong Biao, Yin Jianping, "Cavity enhanced laser cooling of solid-state materials in a standing-wave cavity", Chin. Opt. Lett, Vol.6(11), 848-851,2008.
    [154]J. V. Guiheen, C. D. Haines, G H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, "Yb3+ and Tm3+ -doped fluoroaluminate classes for anti-Stokes cooling", Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B, Vol.47, 167-176,2006.
    [155]B. M. Walsh, N. P. Barnes, M. Petros, J. R. Yu, U. N. Singh, "Spectroscopy nd modeling of solid state lanthanide lasers:Application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4", J. Appl. Phys, Vol.95(7),3255-3271,2004.
    [156]A. Rayner, "Laser cooling of solids" dissertation PhD Univ. of Queensland 2002.
    [157]Markus P. Hehlen, "Crystal-field effects in fluoride crystals for optical refrigeration", Proc of SPIE, Vol.7614,761404-1,2010.
    [158]M. Ito, G. Boulon, A. Bensalah, Y. Guyot, C. Goutaudier, Hato, "Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of Yb3+-doped KY3F10 cubic crystal", J. Opt. Soc. Am. B, Vol.24,3023-3033,2007.
    [159]G. Boulon, Y. Guyot, M. Ito, A. Bensalah, C. Goutaudier, G. Panczer, J. C. acon, "From optical spectroscopy to a concentration quenching model and a theoretical approach to laser optimization for Yb3+-doped YLiF4 crystals", Molecular Spectroscopy, Vol.102,1119-1132,2004.
    [160]X. Zhou, M.F. Reid, M.D. Faucher, P.A. Tanner, "Electronic spectra of Cs2NaYbF6 and crystal field analyses of YbX63- (X=F, Cl, Br)", J. Phys. Chem. B, Vol.110,14939-14942,2006.
    [161 J. G. Yin, Y. Hang, X.M. He, L.H. Zhang, C.C. Zhao, J. Gong, P.X. Zhang, "Direct comparison of Yb3+-doped LiYF4 and LuLiF4 as laser media at room-temperature", Laser Physics Letters, Vol.9,126-130,2012.
    [162]H. Sato, A. Bensalah, H. Machida, M. Nikl, T. Fukuda, "Growth and characterization of 3-in size Tm, Ho-codoped LiYF4 and LuLiF4 single crystals by the Czochralski method", J. Cryst. Growth, Vol.253, 221-229,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700