用户名: 密码: 验证码:
超快激光诱导分子排列及非线性光学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光场作用于气体分子,诱导的旋转拉曼效应促使分子沿主轴平行于激发光场偏振的方向排列。连续激光或纳秒量级光场激发的绝热分子排列与激发光场脉冲同步,激光脉冲结束后,分子重新恢复到原本自由杂乱的随机排列。飞秒激光诱导的非绝热分子排列,激发脉冲结束后,受激的旋转波包在空间自由演化,周期性的呈现出重相与退相,使分子在波包相干性存在的很长一段时间内周期性的排列与反排列。分子排列诱导的时空交叉相位调制,对介质的非线性特性有显著影响,使后续传输的光场频谱及脉宽等特性发生变化。分子排列被广泛的应用于诸如分子轨道成像,高次谐波产生,M-XFROG脉冲检测及超快光学存储与成像等方面,而且对超快化学反应,介质非线性过程等方向的研究有极大的推动作用。实际上,分子排列过程中总是不可避免同时存在光克尔效应及等离子体散焦作用,因此,在对分子排列与其应用进行研究时,明确三者在时空调制过程中的作用时间,作用程度及作用方式就极为重要。
     本论文重点研究了分子排列机理,分子排列探测及排列过程中伴随的光克尔效应及等离子体散焦作用,主要内容包括以下几个方面:
     1.论证了分子排列机理。激光电场作用于气体分子,诱导出感生偶极矩,该偶极矩与激光电场作用产生一个方向性扭矩,使分子主轴排列到平行于激发光场偏振方向。根据激发脉冲宽度与分子排列周期的可比拟性,可以分为分子绝热排列及非绝热排列。两种排列方式的区别在于,排列能否周期性再现,无论哪种方式,分子排列程度都可以用《os2θ》的取值表示。依据分子排列机理,给出了多种提高分子排列的方法,并分析了每种方法的适用条件。
     2.证明了当使用空间强度呈高斯分布的激光脉冲激发气体分子时,分子排列诱导的介质折射率变化为阶梯分布,预排列的分子等效于一个周期性变化的气相正/负透镜,使后续传输的探测光束发生显著的空间聚/散焦效应。变化周期与分子排列周期同步。
     3.利用该空间聚散焦效应,发展了一种全新的分子排列探测方法,该方法操作简单,测量精确。采用本探测方法,能区分出分子的平行与垂直排列,同时可以清晰的看出光克尔效应及等离子体散焦效应对分子排列信号的影响。裸眼观察探测光斑形貌,即可对分子排列状态进行准确区分,并能判断出分子排列程度的相对大小。
     4.研究了光克尔效应对分子排列的影响,讨论了两者的合作及竞争关系。指出平行排列情况下,光克尔效应与分子排列为合作关系,使探测信号的峰值强度增加,在时间上使其向零延时时刻前移;垂直排列下,光克尔效应与分子排列为竞争关系,使探测信号在零延时附近出现一个小的信号峰。以分子排列诱导的介质折射率变化为基准,拟合了光克尔效应及等离子体效应诱导介质折射率变化的曲线,计算了介质的非线性系数n2。
     5.探讨了等离子体散焦对分子排列的影响。在时间和强度上还原了等离子体散焦信号。指出了等离子体产生机理的多样性,讨论了等离子体产生速率跟激发光强的指数对应关系。论证了等离子体散焦效应使实验探测到信号峰/信号谷的时刻随光强增加而后移现象,讨论了等离子体散焦与光克尔效应的竞争关系。提供了一种新的等离子体密度测量方法。
The impulsive rotational Raman excitation induced by laser pulse will force gas molecules align parallel with the laser pulse polarization direction. When CW laser pulse or nanosecond laser pulse are used, the induced molecular alignment stars almost at the time that the pulse stars, and become random align as long as the pulse off. While the femtosecond laser induced molecular alignment will repeat itself at a long time, until the rotational wave packet loses coherence. Molecular alignment caused spatiotemporal modulation can greatly change the nonlinear character of the gaseous media, which influences the frequency spectrum and pulse width of subsequent laser pulse. These could be used at molecular-orbital reconstruction, high-order harmonic generation, M-XFROG laser pulse diagnosis, as well as revivable ultrafast optical buffer and imaging with molecular rotational wave-packets. Meanwhile, molecular alignment facilitates the ultra-fast chemical reaction and the nonlinear progress in gaseous media. In fact, there are inevitable Kerr effect and plasma defocusing accompanying with molecular alignment, so when talk about molecular alignment and its applications, it is important to distingue the act time, degree and mode of the three different effects.
     In this paper, we mainly introduce molecular alignment mechanism and the companied Kerr effect and plasma contribution, our main content includes the following parts:
     1. Every non-spherical polarizable molecular placed in a laser electric field will generate an induced dipole moment, which interacts with the laser field to form a torque, which forces the molecular axis to rotate toward parallel with the direction of the field polarization. According to the comparability of impulsive pulse width with alignment period, molecular alignment could be divided into two groups: adiabatic alignment and non-adiabatic alignment. The statistic metric《cos2θ》 could be used to measure the molecular alignment in both of the two generalities.
     2. The pre-aligned molecules exerts orientation-dependent refractive index changes, we proved that a Gaussian-shaped spatial distribution pump pulse induced pre-aligned molecules acted as a newly established gas-phase nonlinear lens, which caused the subsequent pulse experiences spatical (de)focusing. Based on the (de)focusing effect, we developed a direct measurement of molecular alignment, where the parallel and perpendicular alignments were clearly characterized, and the intensity depended Kerr effect and plasma contribution were distinguished from measured signals.
     3. Based on the (de)focusing effect, we illustrated the electronic Kerr effect in measured alignment signal, explained the cooperated or competed relationship of them. When the probe pulse polarization parallel with the pump, Kerr effect could increase the signal peak strength and push the peak forward to zero time delay. At the perpendicular case, Kerr effect caused a small peak near zero time delay. Meanwhile, the nonlinear refractive index was extracted straightforwardly.
     4. Referring to the methods used in researching Kerr effect, we studied plasma influence. Direct retrieved plasma effect based on alignment-induced spatiotemporal modulation. Pointed out the diversity of plasma mechanism, and understood the rate of plasma producing grow exponentially depend on pulse intensity. At this experiment, we offered a reliable measurement of plasma density.
引文
[1]B. Zon, and B. Katsnelson, "Nonresonant scattering of intense light by a molecule", Zh. Eksp. Teor. Fiz.,69,1166 (1975).
    [2]B.Friedrich, and D. R. Herschbach, "Alignment and trapping of molecules in intense laser fields", Phys. Rev. Lett.74,4623 (1995).
    [3]B. Kim, C. P. Schick, and P. M. Weber, "Time-delayed two color photoelectron spectra of aniline,2-Aminopyridine and 3-Aminopyridine: Snapshots of the nonadiabatic curve crossing", J. Chem. Phys.103, 6903-6913 (1995).
    [4]B. Friedrich, and D. R. Herschbach, "Polarization of molecules induced by intense nonresonant laser field", J. Phys. Chem.99,15686-15693 (1995).
    [5]P. B. Corkum, C. Ellert, M. Mehendale, P. Dietrich, S. Hankin, S. Aseyev, D. Rayner, D. Villeneuve, "Molecular Science with Strong Laser Fields". Faraday Discuss.,113,47 (1999).
    [6]T. Seideman, "On the dynamics of rotationally broad, spatially aligned wave packets", J. Chem. Phys.115,5965 (2001).
    [7]H. Stapelfeldt, and T. Seideman, "Colloquium:Aligning molecules with strong laser pulses", Rev. Mod. Phys.75,543 (2003).
    [8]T. Seideman, "Rotational excitation and molecular alignment in intense laser fields", J. Chem. Phys.103,7887 (1995).
    [9]J. J. Larsen, H. Sakai, C. P. Safvan, I. Wendt-Larsen, and H. Stapelfeldt, "Aligning molecules with intense nonresonant laser fields", J. Chem. Phys., 111,7774 (1999).
    [10]J. J. Larsen, I. Wendt-Larsen, and H. Stapelfeldt, "Controlling the branching ratio of photodissociation using aligned molecules", Phys. Rev. Lett.83, 1123(1999).
    [11]J. Ortigoso, M. Rodriguez, M. Gupta, and B. Friedrich, "Time evolution of endular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field", J. Chem. Phys.110,3870 (1999).
    [12]P. W. Dooley, I. V. Litvinyuk, K. F. Lee, D. M. Rayner, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Direct imaging of rotational wave-packet dynamics of diatomic molecules", Phys. Rev. A,68,023406 (2003).
    [13]M. Spanner, and M. Yu. Ivanov, "Optimal generation of single-dispersion precompensated 1-fs pulses by molecular phase modulation", Opt. Lett.28, 576 (2003).
    [14]E. Peronne, M. D. Poulsen, C. Z. Bisgaard, and H. Stapelfeldt, "Nonadiabatic alignment of asymmetric top molecules:Field-free alignment of iodobenzene", Phys. Rev. Lett.91,043003 (2003).
    [15]F. R. Pruna, and M. J. J. Vrakking, "Revival structures in picosecond laser-induced alignment of h molecules. I. Experimental results", J. Chem. Phys.116,6567 (2002).
    [16]T. Seideman, "Revival structure of aligned rotational wave packets", Phys. Rev. Lett.83,4971 (1999).
    [17]V. Kalosha, M. Spanner, J. Herrmann, and M.Yu. Ivanov, "Generation of single dispersion precompensated 1-fs pulses by shaped-pulse optimized high-order stimulated Raman scattering", Phys. Rev. Lett.88,103901 (2002).
    [18]J. G. Underwood, M. Spanner, M. Yu. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, "Switched wave packets:A route to nonperturbative quantum control", Phys. Rev. Lett.90,223001 (2003).
    [19]F. Rosca-Pruna, and M. J. J. Vrakking, "Experimental observation of revival structures in picosecond laser-induced alignment of I2", Phys. Rev. Lett.87, 153902(2001).
    [20]F. Rosca-Pruna, and M. J. J. Vrakking, "Revival structures in picosecond laser-induced alignment of h molecules. II. Numerical modeling", J. Chem. Phys.116,6579 (2002).
    [21]J. J. Larsen, K. Hald, N. Bjerre, and H. Stapelfeldt, T. Seideman, "Three dimensional alignment of molecules using elliptically polarized laser fields", Phys. Rev. Lett.85,2470 (2000).
    [22]J. G. Underwood, B. J. Sussman, and A. Stolow, "Field-free three dimensional molecular axis alignment", Phys. Rev. Lett.,94,143002 (2005).
    [23]K. F. Lee, D. M. Villeneuve, P. B. Corkum, A. Stolow, and J. G. Underwood, "Field-free three-dimensional alignment of polyatomic molecules", Phys. Rev. Lett.,97,173001 (2006)
    [24]E. Hertz, D. Daems, S. Guerin, H. R. Jauslin, B. Lavorel, and O. Faucher, "Field-free molecular alignment induced by elliptically polarized laser pulses: Noninvasive three-dimensional characterization", Phys. Revs. A 76,043423 (2007).
    [25]M. Artamonov, and T. Seideman, "Theory of three-dimensional alignment by intense laser pulse", J. Chem. Phys.128,154313 (2008).
    [26]T. Seideman, "On the dynamics of rotationally-broad, spatially-aligned wavepackets", J. Chem. Phys.,115,5965 (2001).
    [27]H. J. Loesch, and A. Remscheid, "Brute force in molecular reaction dynamics:A novel technique for measuring steric effects", J. Chem. Pyhs.93, 4779 (1990).
    [28]B. Friedrich, and D. R. Herschbach, "On the possibility of orienting rotationally cooled polar molecules in an electric field", Z. Phys. D:At. Mol. Clusters 18,153(1991).
    [29]R. Torres, R. D. Nalda, and J. P. Marangos, "Dynamics of laser-induced molecular alignment in the impulsive and adiabatic regimes:A direct comparison", Phys. Rev. A,72,023420 (2005)
    [30]F. J. McClung, and R. W. Hellwarth, "Giant optical pulsations from ruby", J. Appl. Phys.33,828 (1962).
    [31]H. W. Mocher, and R. J. Collins, "Mode competition and self-locking effects in a Q-switched Ruby Laser", Appl. Phys. Lett.,7,270 (1965).
    [32]J. A. Valdmanis, R. L. Fork, and J. P. Gordon, "Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption and saturable gain", Opt. Lett.10,131-133 (1985).
    [33]D. Strickland, and G. Mourou, "Analysis of a method for the generation of light with sub-poissonian photon statistics", Opt. Commun.,56,219 (1985).
    [34]T. Brabee, Ch. Spielmann, P. F. Curley, and F. Krausz, "Kerr lens mode locking", Opt. Lett.,17,1292 (1992).
    [35]C. P. Huang, M. T. Asaki, S. Baekus, M. M. Murnane, H. C. Kapteyn, and H. Nathel, "17-fs pulses from a self-mode-locked Ti:sapphire laser", Opt. Lett.,17,1289(1992).
    [36]M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, "Generation of 11-fs pulses from a self-mode-locked Ti:Sapphire laser", Opt. Lett.,18,97 (1993).
    [37]J. Zhou, G. Taft, C. P. Huang, M. M. Murnane, and H. C. Kapteyn "Pulse evolution in a broad-band width Ti:sapphire laser", Opt. Lett.19,114 (1994).
    [38]L. Xu, C. Spielmann, F. Krausz, and C R. Szipocs, "Ultrabroadband ring oscillator for sub-10-fs pulse generation", Opt. Lett.,21,125 (1996).
    [39]I. D. Jung, X. Kartner, N. Matusehek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, "Self-starting 6.5-fs pulses from a Ti:sapphire laser", Opt. Lett.,22,1009 (1997).
    [40]M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabee, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology", Nature,414,509-513 (2001).
    [41]D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser", Opt. Lett.16,42 (1991).
    [42]M. Protopapas, C. H. Keitel, and P. L. Knight, "Atomic physics with super-high intensity lasers", Rep. Prog. Phys,60,389 (1997).
    [43]A. Keller, C. M. Dion, and O. Atabek, "Laser-induced molecular rotational dynamics:A high-frequency Floquet approach", Phys. Rev. A 61,023409 (2000).
    [44]C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, "Laser-induced alignment dynamics of HCN:Roles of the permanent dipole moment and the polarizability", Phys. Rev. A 59,1382 (1999).
    [45]Z. C. Yan, and T. Seideman, "Photomanipulation of external molecular modes:A time-dependent self-consistent-field approach", J. Chem. Phys. 111, 4113(1999).
    [46]R. W. Boyd. "Nonlinear Optics". Academic Press, California USA, (1992).
    [47]R. Y. Chiao, E. Garmire, and C. H. Townes, "Self-trapping of optical beams", Phys. Rev. Lett.,13,479-482 (1964).
    [48]P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. Rahman, "Free-free transitions following six-photon ionization of xenon atoms", Phys. Rev. Lett., 42,1127(1979).
    [49]F. Fabre, G. Petite, P. Agostini, and M. Clement, "Multiphoton above-threshold ionisation of xenon at 0.53 and 1.06μm", J. Phys. B,15, 1353 (1982).
    [50]G. Petite, F. Fabre, P. Agostini, M. Crance, and M. Aymar, "Nonresonant multiphoton ionization of cesium in strong fields:Angular distributions and above-threshold ionization", Phys. Rev. A,29,2677 (1984).
    [51]J. D. Jackson, Classical Electrodynamics, Third Edition, John Wiley & Sons (2003).
    [52]A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett.20,73 (1995).
    [53]L. J. Frasinski, K. Codling, P. Hatherly, J. Barr, I. N. Rose, and W. T. Toner, "Femtosecond dynamics of multielectron dissociative ionization by use of a picosecond laser", Phy. Rev Lett.,58,2424 (1987).
    [54]J. H. Posthumus, A. J. Giles, M. R. Thompson, and K. Codling, "Field-ionization, Coulomb explosion of diatomic molecules in intense laser fields", J. Phys. B:At. Mol. Opt. Phys.,29,5811 (1996).
    [55]J. H. Posthumus, A. J. Giles, M. R. Thompson, W. Shaikh, A. J. Langley, L. J. Frasinski, and K. Codling, "The dissociation dynamics of diatomic molecules in intense laser fields", J. Phys. B:At. Mol. Opt. Phys.,29,525 (1996).
    [56]W. C. Wiley, and I. H. McLaren, "Time-of-flight mass spectrometer with improved resolution", Rev. Sci. Instrum.,26,1150 (1955).
    [57]A. Couairon, and A. Mysyrowicz, "Femtosecond filamentation in transparent media," Phys. Rep.441(2-4),47-189 (2007).
    [58]I.A. Bocharova, A. S. Alnaser, U. Thumm, T. Niederhausen, D. Ray, C. L. Cocke, and I. V. Lityinyuk, "Time-resolved Coulomb-explosion imaging of nuclear wave-packet dynamics induced in diatomic molecules by intense few-cycle laser pulses", Phys. Rev. A 83,013417 (2011).
    [59]X. Gong, M. Kunitski, L. Ph. H. Schmidt, T. Jahnke, A. Czasch, R. Dorner, and J. Wu, "Simultaneous probing of geometry and electronic orbital of Ar CO by Coulomb-explosion imaging and angle-dependent tunneling rates", Phys. Rev. A 88,013422 (2013).
    [60]I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, "Alignment-dependent strong field ionization of molecules", Phys. Rev. Lett.90,233003 (2003).
    [61]D. Pavicic, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve, "Direct measurement of the angular dependence of ionization for N2, O2, and CO2", Phys. Rev. Lett.98,243001 (2007).
    [62]M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight, "Role of the intramolecular phase in high-harmonic generation", Phys. Rev. Lett.88, 183903 (2002).
    [63]M. Kaku, K. Masuda, and K. Miyazaki, "Observation of revival structure in femtosecond-laser-induced alignment of N2 with high-order harmonic generation", Jpn. J. Appl. Phys.43, L591 (2004).
    [64]J. Itatani, D. Zeidler, J. Levesque, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Controlling high harmonic generation with molecular wave packets", Phys. Rev. Lett.94,123902 (2005).
    [65]T. Kanai, S. Minemoto, and H. Sakai, "Quantum interference during high-order harmonic generation from aligned molecules", Nature 435,470 (2005).
    [66]N. Zhavoronkov, and G. Korn, "Generation of single intense short optical pulses by ultrafast molecular phase modulation", Phys. Rev. Lett.88,203901 (2002).
    [67]R. A. Bartels, T. C. Weinacht, N. Wagner, M. Baertschy, C. H. Greene, M. M. Murnane, and H. C. Kapteyn, "Phase modulation of ultrashort light pulses using molecular rotational wave packets", Phys. Rev. Lett.88,013903 (2001).
    [68]R. A. Bartels, N. L. Wagner, M. D. Baertschy, J. Wyss, M. M. Murnane, and H. C. Kapteyn, "Phase-matching conditions for nonlinear frequency conversion by use of aligned molecular gases", Opt. Lett.28,346 (2003).
    [69]K. Hartinger, and R. A. Battels, "Modulation of third-harmonic generation conversion in the presence of a rotational wave packet", Opt. Lett.,33,1162 (2008).
    [70]H. Cai, J. Wu, Y. Peng, and H. Zeng, "Comparison study of supercontinuum generation by molecular alignment of N2 and O2", Opt. Express 17,5822 (2009).
    [71]H. Cai, J. Wu, H. Li, X. Bai, and H. Zeng, "Elongation of femtosecond filament by molecular alignment in air", Opt. Express 17,21060 (2009).
    [72]J.Wu, H. Cai, A. Couairon, and H. Zeng, "Wavelength tuning of a few-cycle laser pulse by molecular alignment in femtosecond filamentation wake", Physical Review A 79,063812 (2009).
    [73]H. Cai, J. Wu, P. Lu, X. Bai, L. Ding, and H. Zeng, "Attraction and repulsion of parallel femtosecond filaments in air", Phys. Rev. A 80,051802 (2009).
    [74]J. Wu, Y. Tong, X. Yang, H. Cai, P. Lu, H. Pan, and H. Zeng, "Interaction of two parallel femtosecond filaments at different wavelengths in air", Opt. Lett.34,3211(2009).
    [75]J. Wu, Y. Tong, M. Li, H. Pan, and H. Zeng, "THz generation by a two-color pulse in prealigned molecules", Phys. Rev. A 82,053416 (2010).
    [76]M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic, H. C. Bandulet, H. Pepin, J. C. Kieffer, R. Dorner, D. M. Villeneuve, and P. B. Corkum, "Laser-induced electron tunneling and diffraction", Science 320,1478 (2008).
    [77]D. Daems, S. Guerin, E. Hertz, H. R. Jauslin, B. Lavorel, and O. Faucher, "Field-free two-direction alignment alternation of linear molecules by elliptic laser pulses", Phys. Rev. Lett.95,063005 (2005).
    [78]T. Seideman, and E. Hamilton, "Nonadiabatic Alignment by Intense Pulses. Concepts, theory, and directions", Ad. At. Mol. Opt. Phys.52,289 (2006).
    [79]S. M. Parker, M. A. Ratner, and T. Seidemana, "Coherent control of molecular torsion", J. Chem. Phys.,135,224301 (2011).
    [80]S. M. Parker, M. A. Ratner, and T. Seideman, "Simulating strong field control of axial chirality using optimal control theory", Molecular Phys.,4, 695808 (2012).
    [81]B. A. Ashwell, S. Ramakrishna, and T. Seidemanl, "Laser-driven torsional coherences", J. Chem. Phys.,138,044310 (2013).
    [82]J. Floβ T. Grohmann, M. Leibscher, and T. Seideman, "Nuclear spin selective laser control of rotational and torsional dynamics", J. Chem. Phys. 136,084309 (2012).
    [83]M. Artamonov, and T. Seideman, "Predicted Ordered Assembly of Ethylene Molecules Induced by Polarized Off-Resonance Laser Pulses", Phys. Rev. Lett.109,168302 (2012).
    [84]V. Renard, M. Renard, A. Rouzee, S. Guerm, H. R. Jauslin, B. Lavorel, and O. Faucher, "Nonintrusive monitoring and quantitative analysis of strong laser-field-induced impulsive alignment", Phys. Rev. A,70,033420 (2004).
    [85]B. J. Sussman, J. G. Underwood, R. Lausten, M. Yu. Ivanov, and A. Stolow, "Quantum control via the dynamic stark effect:Application to switched rotational wave packets and molecular axis alignment", Phys. Rev. A,73, 053403 (2006).
    [86]J. H. Posthumus, A. J. Giles, M. R. Thompson, W. Shaikh, A. J. Langley, L. J. Frasinski, and K. Codling, "The dissociation dynamics of diatomic molecules in intense laser fields", J. Phys. B:At. Mol. Opt. Phys.,29,525 (1996).
    [87]Jia Liu, Yahui Feng, Hao Li, Peifen Lu, Haifeng Pan, Jian Wu, and Heping Zeng, "Supercontinuum pulse measurement by molecular alignment based cross-correlation frequency resolved optical gating," Opt. Express 19,40 (2011).
    [88]Peifen Lu, Jia Liu, Hao Li, Haifeng Pan, Jian Wu, and Heping Zeng, "Cross-correlation frequency-resolved optical gating by molecular alignment for ultraviolet femtosecond pulse measurement", Appl. Phys. Lett.97, 061101(2010).
    [89]C. Riehn, V. V. Matylitsky, and M. F. Gelin, "Time domain fingerprints of a 'perpendicular'rotational Raman band:formic acid studied by femtosecond degenerate four-wave mixing ", J. Raman Spectrosc,34,1045 (2003).
    [90]J. C. Spence, K. Schmidt, J. S. Wu, G. Hembree, U. Weierstall, B. Doak, and P. Fromme, "Diffraction and imaging from a beam of laser-aligned proteins:resolution limits", Acta Crystallogr A,61,237 (2005).
    [91]S. Ramakrishna, and T. Seideman, "Rotational wave-packet imaging of molecules", Phys. Rev. A,87,023411 (2013).
    [92]R. Velotta, N. Hay, M. B. Mason, M. Castillejo, and J. P. Marangos, "High-order harmonic generation in aligned molecules", Phys. Rev. Lett.,87,183901 (2001).
    [93]A. D. Bandrauk, and H.Lu, "Harmonic generation by molecules in intense laser and magnetic fields:Orientation effects", Int. J. Quantum Chem.,99, 431 (2004).
    [94]C. Vozzi, F. Calegari, E. Benedetti, J.-P. Caumes, G. Sansone, S. Stagira, M. Nisoli, R. Torres, E. Heesel, N. Kajumba, J. P. Marangos, C. Altucci, and R. Velotta, "Controlling two-center interference in molecular high harmonic generation", Phys. Rev. Lett.95,153902 (2005).
    [95]T. Seideman, "Time-resolved photoelectron angular distributions as a means of studying polyatomic nonadiabatic dynamics", J. Chem. Phys.,113,1677 (2000).
    [96]S. Varma, Y.-H. Chen, and H. M. Milchberg, "Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air", Phys. Rev. Lett.101,205001 (2008).
    [97]J. Wu, P. Lu, J. Liu, H. Li, H. Pan, and H. Zeng, "Ultrafast optical imaging by molecular wakes"Appl. Phys. Lett.97,161106 (2010).
    [98]J. Wu, H. Cai, Y. Peng, and H. Zeng, "Controllable supercontinuum generation by the quantum wake of molecular alignment", Phys. Rev. A 79, 041404 (2009).
    [99]S. L. Chin, T. J. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. P. Chen, J-F Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. P. Zeng, M. Richardson, R. Li, and Z. Z. Xu, "Advances in intense femtosecond laser filamentation in air", Laser Phys.22,1 (2012).
    [100]T. P.Rakitzis, A. J. V. Brom, and M. H. Janssen, "Directional dynamics in the photodissociation of oriented molecules", Science,303,1852 (2004).
    [101]S. Ramakrishna, and T. Seideman, "Intense laser alignment in dissipative media as a route to solvent Dynamics", Phys. Rev. Lett.,95,113001 (2005).
    [102]M. Reuter, M. A. Ratner, and T. Seideman, "Laser alignment as a route to ultrafast control of electron transport through junctions", Phys. Rev. A 86, 013426 (2012).
    [103]M. Sukharev, T. Seideman, R. J. Gordon, A. Salomon, and Y. Prior, "Ultrafast energy transfer between molecular assemblies and surface plasmons in strong coupling regime", Nano.,8,807 (2014).
    [104]S. S. Viftrup, V. Kumarappan, S. Trippel, and H. Stapelfeldt, E. Hamilton and T. Seideman, "Holding and spinning molecules in space", Phys. Rev. Lett.99,143602 (2007).
    [105]M. Artamonov, and T. Seideman, "Three-dimensional laser alignment of polyatomic molecular ensembles", Spec. Issue Molecular Phys.110,885 (2012).
    [106]L. Spector, M. Artamonov, S. Miyabe, T. Martinez, T. Seideman, M. Guehr, and P. H. Bucksbaum, "Axis-dependence of molecular high harmonic emission in three dimensions", Nature Commun.5,3190 (2014).
    [107]C. Z. Bisgaard, M. D. Poulsen, E. Peronne, S. S. Viftrup, and H. Stapelfeldt, "Observation of enhanced field-Free molecular alignment by two laser pulses", Phys. Rev. Lett.,92,173004 (2004).
    [108]S. Zhang, C. Lu, H. Zhang, T. Jia, Z. Wang, and Z. Sun, "Field-free alignment in linear molecules", J. Phys. B:At. Mol. Opt. Phys.,44,055403 (2011).
    [109]S. Zhang, C. Lu, H. Zhang, T. Jia, Z. Sun, and J. Qiu, "Field-free molecular alignment control by phase-shaped femtosecond laser", J. Chem. Phys.,135,224308 (2011).
    [110]M. Spanner, "Field-free alignment and strong field control of molecular rotors" [Doctoral Dissertation], Canada:University of Waterloo,8-10, (2004).
    [111]V. Kumarappan, C. Z. Bisgaard, and S. S. Viftrup, L. Holmegaard and H. Stapelfeldt, "Role of rotational temperature in adiabatic molecular alignment", J.Chem.Phys.,125,194309 (2006).
    [112]U. Even, J. Jortner, D. Noy, N. Lavie, and C. Cossart-Magos, "Cooling of large molecules below 1 K and He clusters formation", J. Chem. Phys.112, 8068 (2000).
    [113]IS. Averbukh, and R. Arvieu, "Angular focusing, squeezing and rainbow formation in a strongly driven quantum rotor", Phys. Rev. Lett.,87,163601 (2001).
    [114]K. F. Lee, I. V. Litvinyuk, P. W. Dooley, M. Spanner, D. M. Villeneuve, and P. B. Corkum, "Two-pulse alignment of molecules", J. Phys. B,37,43 (2004).
    [115]N. Xu, C. Wu, J. Huang, Z. Wu, Q. Liang, H. Yang and Q. Gong, "Field-free alignment of molecules at room temperature", Opt. Express,14, 4992 (2006).
    [116]Y.-H. Chen, S. Varma, and H. M. Milchberg, "Space-and time-resolved measurement of rotational wave packet revivals of linear gas molecules using single-shot supercontinuum spectral interferometry," J. Opt. Soc. Am. B 25(7),122-132 (2008).
    [117]H. Cai, J. Wu, A. Couairon, and H. Zeng, "Spectral modulation of femtosecond laser pulse induced by molecular alignment revivals," Opt. Lett. 34(6),827-829 (2009).
    [118]J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pe"pin,J. Kieffer, P. B. Corkum, and D. Villeneuve,"Tomographic imaging of molecular orbitals", Nature 432,867 (2004).
    [119]V. Renard, M. Renard, S. Guerin, Y. T. Pashayan, B. Lavorel, O. Faucher, and H. R. Jauslin, "Postpulse molecular alignment measured by a weak field polarization technique," Phys. Rev. Lett.90(15),153601 (2003).
    [120]N. Xu, C. Wu, Y. Gao, H. Jiang, H. Yang, and Q. Gong, "Measurement of field-free alignment of diatomic molecules", J. Phys. Chem. A,112,612 (2008).
    [121]M. Centurion, Y. Pu, Z. Liu, D. Psaltis, and T. W. Hansch, "Holographic recording of laser-induced plasma," Opt. Lett.29(7),772-774 (2004).
    [122]V. Renard, O. Faucher, and B. Lavorel, "Measurement of laser-induced alignment of molecules by cross defocusing," Opt. Lett.30(1),70-72 (2005).
    [123]J. Wu, H. Cai, Y. Tong, and H. Zeng, "Measurement of field-free molecular alignment by cross-defocusing assisted polarization spectroscopy," Opt. Express 17(18),16300-16305 (2009).
    [124]Y. Feng, H. Pan, J. Liu, C. Chen, J. Wu, and H. Zeng, "Direct measurement of field-free molecular alignment by spatial (de)focusing effects", Opt. Express 19(4),2852 (2011).
    [125]G. P. Agrawal, "Nonlinear Fiber Optics" (Academic Press, San Diego, 2001).
    [126]V. Loriot, E. Hertz, A. Rouzee, B. Sinardet, B. Lavorel, and O. Faucher, "Strong-field molecular ionization:determination of ionization probabilities calibrated with field-free alignment," Opt. Lett.31(19),2897-2899 (2006).
    [127]A. Becker, A. D. Bandrauk, and S. L. Chin, "S-matrix analysis of non-resonant multiphoton ionization of inner-valence electrons of the nitrogen molecule", Chem. Phys. Lett.343,345 (2001).
    [128]Robert W. Boyd, "Nonlinear Optics, second edition", (Academic Press, New York (2003).
    [129]J. H. Marburger, and E. Dawes, "Dynamical formation of a small-scale filament", Phys. Rev. Lett.21,556 (1968).
    [130]Y. Feng, W. Li, J. Liu, H. Pan, J. Wu, and H. Zeng, "Direct retrieval of Kerr and plasma effects from alignment-induced spatiotemporal modulation", Opt. Lett.37,3846 (2012).
    [131]V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, "Measurement of high order Kerr refractive index of major air components:erratum", Opt. Express, 18,3011(2010).
    [132]H. Zeng, J. Wu, H. Xu, and K. Wu, "Generation and Weak Beam Control of Two-Dimensional Multicolored Arrays in a Quadratic Nonlinear Medium," Phys. Rev. Lett.96,083902 (2006).
    [133]X. Yang, J. Wu, Y. Peng, Y. Tong, S. Yuan, L. Ding, Z. Xu, and H. Zeng, "Noncollinear interaction of femtosecond filaments with enhanced third harmonic generation in air," Appl. Phys. Lett.95,111103 (2009).
    [134]Q. Luo_H. L. Xu, S. A. Hosseini, J-F. Daigle, F. Theberge, M. Sharifi, and S. L. Chin, "Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy," Appl. Phys. B 82,105 (2006).
    [135]D.J. Cook, and R.M. hochstrasser, "Intense terahertz pulses by four-wave rectification in air," Opt. Lett.25,1210 (2000).
    [136]J. Liu, P. Lu, Y. Tong, H. Pan, X. Yang, J. Wu, and H. Zeng, "Two-dimensional plasma grating by noncollinear femtosecond filament interaction in air", Appl. Phys. Lett.99,151105 (2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700