用户名: 密码: 验证码:
非回转非容积型无阀压电泵的动力学分析和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物、医学、保健、化学、化工、安全监测、航空航天等领域的飞速发展,对流控器件的集成度和流体输送的精密度提出了更高的要求,传统的电磁泵由于结构原理的原因已不能满足科学研究和工程实践的特殊需要。结构简单、体积小、重量轻、耗能低、无噪声、无电磁干扰的无阀压电泵就是在这样的背景下应运而生的。由于其广阔的应用前景,自1993年瑞典的E Steme提出并发明第一个无阀压电泵以来,各种新原理、新结构的无阀压电泵不断涌现出来,现已成为世界各国研究的热点问题。但目前的无阀压电泵由于其固有的回流现象严重、流动波动大、流量小、效率低等问题,距离实际需求尚有一定的距离。基于上述研究现状,在国家自然科学基金的资助下,本文开展了具有原始创新和完全自主知识产权新型无阀压电泵的探索性研究,主要研究内容如下:
     1.受到鱼尾摆动的启发,首次提出了在泵的分类学上既不属于容积型又不属于回转型的柔性尾鳍结构压电层合振子无阀压电泵;研制了样机,进行了泵流量测试、振子的仿真与测振、流场模拟等研究工作;实验结果表明,通过在振子的端部构造柔性尾鳍,并做适当的结构优化后,单位面积压电陶瓷片产生的泵流量较无柔性尾鳍时提高了43倍;和传统的容积差型无阀压电泵相比,具有流量大、流动脉动小、无回流现象等优点。
     2.研究了压电振子在水中的绝缘、压电振子的工作空间、柔性尾鳍的结构、压电层合板梁的构成形式、基体和陶瓷片的厚度比和振子-固壁距离等因素对泵性能的影响;建立了外电场激励下压电双晶片的振动方程,分析了模态力的影响因素;基于最小作用原理,利用瑞利-利兹法给出了突变截面压电层合梁模态振型的近似解;通过合理的选择容许函数序列,模态频率近似解逼近实验结果,显示出较好的一致性,二阶谐振频率的相对误差为2.1%。
     3.针对压电层合振子(单晶片和双晶片)浸没在泵腔内容易出现的陶瓷片电极层破坏、流体电离和流体温升等问题,提出并设计了能够实现干湿分离的仿尾鳍变截面摆动振子压电叠堆泵;对振子工作在泵腔内和近似无限水域(水槽)分别进行了泵水能力测试;80V电压激励下,振子工作在水槽中,一、二阶弯振的模态频率分别为680Hz和1370Hz,30mm水柱被压下,泵的最大流量可达560mL/min;振子工作在泵腔中,一、二阶弯振的模态频率分别为617Hz、1356Hz,泵的最大流量为400mL/min;对影响泵性能的关键结构参数——柔性尾长和振臂长度,进行了实验研究;结果表明,谐振频率随柔性尾长的变化规律符合线性振动理论;但端部振幅随柔性尾长和振臂长度的变化却呈现出先增加后减小的趋势;通过建立摆动振子的伪刚体动力学模型,从理论上分析了振臂和柔性尾鳍之间的弱耦合关系。
     4.提出了仿尾鳍泵的工作机理,解释了产生单向流动的主要动力是来源于振子周围流体随振子做圆弧摆动而受到的离心力;从动量的角度分析了摆动振子和流体微团之间的相互作用并给出了泵流量的解析式。
With the development of biologic, medical science, health care, chemical industry, chemical safetymonitoring and aerospace technology, higher requirements are proposed on the micro fluidic deviceintegration and fluid delivery precision. Traditional electromagnetic pumps are increasingly unable tomeet the needs of scientific research and engineering practice due to their structure and workingprinciple. Valveless piezoelectric pump with the characteristic of simple structure, small volume, lightweight, low energy consumption, low noise, no electromagnetic interference emerges as required bythe time. Because of its broad application prospect, since Sweden's E Steme proposed the concept ofvalveless piezoelectric pump in1993, a variety of valveless piezoelectric pumps with new principle,new structure have came into being in large numbers and have become the hot issue of researchworldwide. However, there is still a long way to go before it can meet the actual demands due to theirshortness of reflow phenomenon by nature, the large flow fluctuation, low flow rate, low efficiency,ect.. Supported by the National Natural Science Foundation of China, this paper carried out theexploratory study on valveless piezoelectric pump with original innovation and completelyindependent intellectual property rights based on the current research,. The main research contents areas follows:
     1. Inspired by the fish-tail swing, caudal-fin imitation type valveless piezoelectric pump withlaminated piezoelectric vibrator are presented, which belongs to neither volume type norrotary type taxonomically. A prototype is fabricated, and researches on flow testing, vibrationexperiment, flow simulation have been conducted. The experimental results show that, withconstruction of flexible caudal-fin in the end of the vibrator and appropriate optimization, theflow rate of the pump was increased by43times in per unit volume of piezoelectric ceramicsheet than that of non flexible caudal-fin; the flow rate was266mL/min under the60V voltage.Compared to the traditional volumetric type of valveless piezoelectric pump, valvelesspiezoelectric pump with laminated piezoelectric vibrator in flexible caudal-fin structure hasadvantages of large flow rate, small flow pulsation, non backflow phenomenon, etc..
     2. Some researches about influencing factors of pump performance are conducted, such aspiezoelectric vibrator’s dielectric in water, piezoelectric vibrator’s working space, flexiblecaudal-fin’s structure, piezoelectric laminated beam’s pattern, thickness ratio between matrixand ceramic sheet and the vibrator ‘s distance from solid wall. Vibration equation of the vibrator was derived under the external electric field and modal force factors were analyzed.Based on the principle of least action, modal approximation for the mutant cross-sectionlaminated piezoelectric beam was gained by using Rayleigh-Liz law. Through the reasonableselection of permissible function sequence, the approximate solution of modal frequency andthe experimental results are well consistent and the relative error of the second orderresonance frequency is2.1%.
     3. As result of the PZT electrode layer damage which is easy to happen when the laminatedpiezoelectric vibrator (single chip and double wafer) is immersed in the pump chamber, andthe phenomenon of fluid ionization and fluid heat, a novel piezoelectric stack pump which hasa variable cross-section swinging vibrator imitating caudal fin capable of separation thevibrator from the water has been put forward and designed. Pumping capacity is tested as thevibrator working in pump cavity and in approximate infinite waters (sink), respectively.Under80V voltage, if vibrator works in sink, the first and second order bending modalfrequencies are680Hz and1370Hz respectively. With the backpressure of30mm watercolumn, the maximum flow rate is560mL/min. If vibrator works in pump chamber, the firstand second order bending modal frequencies are617Hz and1356Hz respectively and themaximum flow rate reaches400mL/min. The key structure parameters—flexible tail lengthand arm length, which have important influence on the pump performance, have been studiedin the experiment. The result shows that the resonant frequency changes with flexiblecaudal-fin, whose evolution is consistent with the linear vibration theory. But the amplitude ofthe end part changes with the flexible tail length and arm length tending to increase at first andthen decrease. Pseudo rigid body dynamics model of the swinging vibrator is established,which describes theoretically the weak coupling between vibrator arm and flexible caudal-fin.
     4. The author explained the working principle of this type of bionic pump, and proposed that theunidirectional flow is mainly originated from centrifugal force from the fluid around thevibrator which does arc swing movement accompanying with the vibrator. From the aspect ofmomentum, interactions between swinging vibrator and fluid particles is analyzed, and theformula of flow rate is deduced.
引文
[1]赵淳生.超声电机技术与应用.北京:科学出版社,2007.
    [2] Lee D G, Or S W, Carman G P. Design of a piezoelectric-hydraulic pump with active valves.Journal of Intelligent Material Systems and Structures,2004,15(2):107-116.
    [3]胡雄海.双晶片压电振子式主动阀压电泵的研究,硕士学位论文.长春:吉林大学,2008.
    [4]董景石,程光明,沈传亮,等.压电驱动型胰岛素泵的研究.西安交通大学学报,2007(5):602-605.
    [5] Tay F E H, Xu G L, Choong W O, et al. Low cost metal micro-pump for drug delivery.Proceedingsof SPIE-The International Society for Optical Engineering, Royal Pines Resort,1999:234-240.
    [6] Ma B, Liu S, Gan Z, et al. A PZT insulin pump integrated with a silicon micro needle array fortransdermal drug delivery.Proceedings-Electronic Components and Technology Conference, SanDiego, CA, United states,2006:677-681.
    [7]张建辉,黎毅力,夏齐霄,等.“Y”形流管无阀压电泵振动分析及泵流量计算.光学精密工程,2007(06):922-929.
    [8]张建辉,黎毅力,夏齐霄.“Y”形流管无阀压电泵流量及流管流阻特性分析.机械工程学报,2007(11):136-141.
    [9]张建辉,黎毅力,刘菊银,等.“Y”形流管无阀压电泵流场分析.北京工业大学学报,2008(02):126-132.
    [10] Stemme E, Stemme G. A valveless diffuser/nozzle-based fluid pump. Sensors and Actuators A:Physical,1993,39(2):159-167.
    [11]夏齐霄,张建辉,李洪.非对称坡面腔底无阀压电泵.光学精密工程,2006(04):641-647.
    [12]夏齐霄,张建辉,雷红,等.非对称群峰结构无阀压电泵的理论分析.光学精密工程,2008(12):2391-2397.
    [13] Shoji S, Nakagawa S, Esashi M. Micropump and sample-injector for integrated chemical analyzingsystems. Sensors and Actuators, A: Physical,1990,21(1-3):189-192.
    [14] Garimella S V, Singhal V, Liu D. On-chip thermal management with microchannel heat sinks andintegrated micropumps. Proceedings of the IEEE,2006,94(8):1534-1548.
    [15]卢全国,陈定方,钟毓宁,等.采用压电微泵散热的超磁致精密驱动器.武汉理工大学学报(交通科学与工程版),2007(1):63-65.
    [16] Pires R F, Vatanabe S L, De Oliveira A R, et al. Water cooling system using a piezoelectricallyactuated flow pump for a medical headlight system. Proc. of SPIE,2007,6527:1-11.
    [17] De Lima C R, Vatanabe S L, Choi A, et al. A biomimetic piezoelectric pump: Computational andexperimental characterization. Sensors and Actuators A: Physical,2009,152(1):110-118.
    [18] Yoo J H, Hong J I, Cao W. Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fanfor electronic devices. Sensors and Actuators A: Physical,2000,79(1):8-12.
    [19] Toda M. Theory of air flow generation by a resonant type PVF2bimorph cantilever vibrator.Ferroelectrics,1979,22(1):911-918.
    [20]杨兴,周兆英,叶雄英,等. MEMS微型燃料电池及其基于压电风扇的换气方法.微纳电子技术,2003,40(7):378-381.
    [21]张建辉,王守印.压电锥形流管无阀泵的研究——气穴现象.压电与声光,2001(6):470-472.
    [22] Gray J. Studies in Animal Locomotion: VI. The Propulsive Powers of the Dolphin. Journal ofExperimental Biology,1936,13:192-199.
    [23] Smith L, Hok B. A silicon self-aligned non-reverse valve.Solid-State Sensors and Actuators1991,1991:1049-1051.
    [24] Yang E H, Lee C, Mueller J, et al. Leak-tight piezoelectric microvalve for high-pressure gasmicropropulsion. Journal of Microelectromechanical Systems,2004,13(5):799-807.
    [25] Li B, Chen Q, Lee D, et al. Development of large flow rate, robust, passive micro check valves forcompact piezoelectrically actuated pumps. Sensors and Actuators A: Physical,2005,117(2):325-330.
    [26]曾平,刘国君,杨志刚,等.球阀式压电薄膜泵的初步研究.压电与声光,2005(2):118-120.
    [27]程光明,刘国君,杨志刚,等.基于悬臂梁阀的微型压电泵的实验研究.机械科学与技术,2005(10):1181-1183.
    [28] Feng G H, Kim E S. Piezoelectrically Actuated Dome-Shaped Diaphragm Micropump. Journal ofMicroelectromechanical Systems,2005,14(2):192-199.
    [29]郭宗信.软质锥壳形阀体压电泵的理论和实验研究,硕士学位论文.南京:南京航空航天大学,2011.
    [30] Guo Z, Zhang J, Hu X. Theory and Experiment on the soft texture and conning shaped single valvepiezoelectric pump with different interior and exterior taper.The Second Asian Conference onMechanics of Functional Materials and Structures, Nanjing,2010:79-82.
    [31]张建辉,郭宗信,黄毅,等.内外不等锥度的软质锥壳形单阀体压电泵的原理与试验研究.机械工程学报,2010(24):143-149.
    [32] Lee D G, Or S W, O'Neill C, et al. Piezoelectric hydraulic pump with innovative activevalves.Proceedings of SPIE-The International Society for Optical Engineering, San Diego, CA,United states,2002:530-536.
    [33] Yoshida K, Watanabe K, Yokota S. Development of a piezoelectric micropump usingresonantly-driven active check valve.Proceedings of the SICE Annual Conference, Okayama, Japan,2005:2510-2513.
    [34]程光明,何丽鹏,曾平,等.矩形压电振子式主动阀压电泵的设计及其性能.吉林大学学报(工学版),2010(3):720-724.
    [35]程光明,何丽鹏,曾平,等.圆形双振子式主动阀压电泵设计与性能实验.农业机械学报,2010(5):204-208.
    [36]何丽鹏.微小型主动阀压电泵的结构设计理论及控制系统的研究,博士学位论文.长春:吉林大学,2010.
    [37]李鹏.主动阀压电泵的理论与实验研究,博士学位论文.长春:吉林大学,2007.
    [38] Husband B, Bu M, Evans A G R, et al. Investigation for the operation of an integrated peristalticmicropump. JOURNAL OF MICROMECHANICS AND MICROENGINEERING,2004,14:S64-S69.
    [39] Lee D S, Ko J S, Kim Y T. Bidirectional pumping properties of a peristaltic piezoelectricmicropump with simple design and chemical resistance. Thin Solid Films,2004,468(1-2):285-290.
    [40] Lee D, Yoon H C, Ko J S. Fabrication and characterization of a bidirectional valveless peristalticmicropump and its application to a flow-type immunoanalysis. Sensors and Actuators B: Chemical,2004,103(1):409-415.
    [41] Nguyen N, Huang X. Development of a peristaltic pump in printed circuit boards. Journal ofMicromechatronics,2005,3(1):1-13.
    [42] Teymoori M M, Abbaspour-Sani E. Design and simulation of a novel electrostatic peristalticmicromachined pump for drug delivery applications. Sensors and Actuators A: Physical,2005,117(2):222-229.
    [43] Jang L S, Yu Y C. Peristaltic micropump system with piezoelectric actuators. MicrosystemTechnologies,2008,14(2):241-248.
    [44] Goldschmidtboing F, Doll A, Heinrichs M, et al. A generic analytical model for microdiaphragmpumps with active valves. JOURNAL OF MICROMECHANICS AND MICROENGINEERING,2005,15:673-683.
    [45] Gerlach T, Wurmus H. Working principle and performance of the dynamic micropump.Proceedings IEEE,1995:221-226.
    [46] Olsson A, Enoksson P, Stemme G, et al. Micromachined flat-walled valveless diffuser pumps.Journal of Microelectromechanical Systems,1997,6(2):161-166.
    [47] Accoto D, Nedelcu O T, Carrozza M C, et al. Theoretical analysis and experimental testing of aminiature piezoelectric pump.Proceedings of the International Symposium on Micromechatronicsand Human Science, Nagoya, Japan,1998:261-268.
    [48] Ullmann A, Fono I. The piezoelectric valve-less pump-improved dynamic model. Journal ofMicroelectromechanical Systems,2002,11(6):655-664.
    [49] Zhang Y L, Wu J K. NUMERICAL STUDY OF PERIODICAL FLOWS OF PIEZOELECTRICVALVELESS MICROPUMP FOR BIOCHIPS. Applied M athematics and M echanics (EnglishEdition),2005,26(8):1026-1033.
    [50] Wang B, Chu X, Li E, et al. Simulations and analysis of a piezoelectric micropump.UltrasonicsProceedings of Ultrasonics International (UI'05) and World Congress on Ultrasonics(WCU),2006,44(Supplement1): e643-e646.
    [51] Matsumoto S, Klein A, Maeda R. Bi-directional micropump based on temperature dependence ofliquid viscosity. Journal of Mechanical Engineering Laboratory,1995,53(6):187-193.
    [52] Matsumoto S, Klein A, Maeda R. Development of bi-directional valve-less micropump forliquid.Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Orlando, FL, USA,1999:141-146.
    [53]张建辉.一种新型压电泵,中国,发明专利, ZL98122356.7.
    [54]张建辉,黎毅力,刘菊银,等.“Y”形流管无阀压电泵模拟与试验.2008:669-675.
    [55]张建辉,路计庄,夏齐霄,等.细胞或高分子输送用“Y”形流管无阀压电泵的工作原理及流量特性.机械工程学报,2008(09):92-99.
    [56]叶芳.“Y”形流管无阀压电泵的研究,硕士学位论文.南京:南京航空航天大学,2010.
    [57] Izzo I, Accoto D, Menciassi A, et al. Modeling and experimental validation of a piezoelectricmicropump with novel no-moving-part valves. Sensors and Actuators A: Physical,2007,133(1):128-140.
    [58] Tesla N. Valvular conduit, US Patent,1,329,559,1920.
    [59] Forster F K, Bardell R L. Micropumps with fixed valves, US Patent,5,876,187.
    [60] Forster F K, Williams B E. Parametric Design of Fixed-Geometry Microvalves: The Tesser Valve.ASME Conference Proceedings,2002,2002(36576):431-437.
    [61] Forster F K, Walter T. Design Optimization of Fixed-Valve Micropumps for Miniature CoolingSystems. ASME Conference Proceedings,2007,2007(42770):137-145.
    [62]张建辉,夏齐霄.内置波纹渠道无阀压电泵,中国,发明专利,200520128066.5,2005.
    [63]张建辉,夏齐霄.内置波纹渠道无阀压电泵,中国,发明专利,200510112675.6,2005.
    [64]张建辉,夏齐霄.张建辉,夏齐霄.旋转嵌块无阀压电泵,中国,发明专利,200520129459.8,2005.
    [65]夏齐霄,张建辉.旋转嵌块无阀压电泵,中国,发明专利,200510114209.1,2005.
    [66] Hu X, Zhang J, Xia Q, et al. Research on a novel piezoelectric pump with unsymmetrical slopeselement.IEEE International Symposium on Applications of Ferroelectrics, Xian, China,2009:299-304.
    [67] Rife J C, Bell M I, Horwitz J S, et al. Miniature valveless ultrasonic pumps and mixers. Sensors andActuators, A: Physical,2000,86(1-2):135-140.
    [68] Miyazaki S I, Kawai T, Araragi M. A piezo-electric pump driven by a flexural progressivewave.Proceedings. IEEE Micro Electro Mechanical Systems, Nara, Jpn,1991:283-288.
    [69] Bar Cohen Y, Chang Z. Piezoelectrically actuated miniature peristaltic pump.Proceedings of SPIE-The International Society for Optical Engineering, Newport Beach, CA, USA,2000:669-676.
    [70] Bar Cohen Y, Chang Z. Piezoelectrically actuated miniature peristaltic pump.Proceedings of SPIE-The International Society for Optical Engineering, Newport Beach, CA, United states,2001:425-432.
    [71]姚志远,赵淳生,杨东.可实现正反向流动的驻波压电无阀泵,中国,发明专利, ZL200610097463.X.
    [72]张建辉.螺旋流管无阀压电泵,日本,发明专利, P2001-221166A,2001.
    [73]张建辉,白恒君,夏齐霄.压电式螺杆泵,中国,发明专利,2006100120812.
    [74]张建辉,白恒君,夏齐霄.压电式齿轮泵,中国,发明专利,200620023288.5.
    [75] Lighthill M J. Note on the swimming of slender fish. J.FluidMech,1960,9:305-317.
    [76] Lighthill M J. Hydromechanics of Aquatic Animal Propulsion. Annual Review of Fluid Mechanics,1969,1:413-446.
    [77] Lighthill M J. Aquatic animal propulsion of high hydromechanical efficiency. Journal of FluidMechanics,1970,44:265-301.
    [78] Lighthill M J. Large amplitude elongated body theory of fish locomotion. Proceedings of the RoyalSociety of London. B,1971,179:125-138.
    [79]童秉纲.鱼类波状游动的推进机制.力学与实践,2000,22(3):69-74.
    [80] Wu T Y. Swimming of a waving plate. Fluid Mech,1960,10:321-344.
    [81] Wu T Y. Hydrodynamics of swimming propulsion. Part1. Swimming of a two-dimensional flexibleplate at variable forward speeds in an inviscid fluid. J. Fluid Mech,1970,46:337-355.
    [82] Wu T Y. Hydrodynamics of swimming propulsion. Part2. Some optimum shape problems. J. FluidMech,1970,46:521-544.
    [83] Wu T Y. Hydrodynamics of swimming propulsion.Part3. Swimming and optimum motions ofslender fish with side fins. J. Fluid Mech,1970,46:545-567.
    [84] Weihs D. A hydrodynamical analysis of fish turning maneuvers. Proc. R. Soc,1972,182:59-72.
    [85] Weihs D. Energetic advantages of burst swimming of fish. J. Theor. Biol,1974,48:215-229.
    [86] Weihs D. OPTIMUM SWIMMING SPEED OF FISH BASED ON FEEDING EFFICIENCY.Israel Journal of Technology,1975,13(3):163-167.
    [87] Katz J, Weihs D. HYDRODYNAMIC PROPULSION BY LARGE AMPLITUDE OSCILLATIONOF AN AIRFOIL WITH CHORDWISE FLEXIBILITY. Journal of Fluid Mechanics,1978,88(pt3):485-497.
    [88]童秉纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究.力学与实践,1991(3):17-26.
    [89]程健宇,庄礼贤,童秉纲.新月形尾鳍推进的流体力学分析.力学学报,1992(4):458-465.
    [90]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志,1998(1):1-7.
    [91] Drucker E G, Lauder G V. Wake dynamics and fluid forces of turning maneuvers in sunfish.JOURNAL OF EXPERIMENTAL BIOLOGY,2001,204:431-442.
    [92] Liu H, Kawachi K. A numerical study of undulatory swimming. JOURNAL OFCOMPUTATIONAL PHYSICS,1999,155:223-247.
    [93] Liu H, Wassersug R J, Kawachi K. A computational fluid dynamics study of tadpole swimming. J.Exp. Biol,1996,199:1245-1260.
    [94] Liu H, Wassersug R J, Kawachi K. The three-dimensional hydro-dynamics of tadpole locomotion. J.Exp. Biol,1997,200:2807-2819.
    [95] Barrett D S, Triantafyllou M S, Yue D K P, et al. Drag reduction in fish-like locomotion. Journal ofFluid Mechanics,1999,392:183-212.
    [96] Triantafyllou M S, Triantafyllou G S, Yue D K P. Hydrodynamics of fishlike swimming. AnnualReview of Fluid Mechanics,2000,32:33-53.
    [97] Triantafyllou M S, Hover F S, Techet A H, et al. Review of hydrodynamic scaling laws in aquaticlocomotion and fishlike swimming: Applied Mechanics Reviews.2005226-236.
    [98] Willy A, Low K H. Development and initial experiment of modular undulating fin for untetheredbiorobotic AUVs.Robotics and Biomimetics (ROBIO),2005:45-50.
    [99]杨侠.柔性尾鳍的水动力分析及实验研究,博士学位论文.武汉:华中科技大学,2006.
    [100]渡边让.メカニヵル.アイツシユ,1978.
    [101] Fukuda T, Hosokai H, Kikuchi I. Distribution Type of Actuators of Shape Memory Alloy andIts Application to underwater Mobile Robotic Mechanisms. Proceedings of1990IEEEInternational Conference,1990,2:1316-1321.
    [102] Fukuda T, Kawamoto A, Arai F, et al. Mechanism and swimming experiment of micro mobilerobot in water.Micro Electro Mechanical Systems,1994,1994:273-278.
    [103] Fukuda T, Kawamoto A, Arai F, et al. Steering mechanism of underwater micro mobilerobot.Robotics and Automation,1995,1995:363-368.
    [104] Yamamoto I, Terada Y, Nagamatu T, et al. Propulsion System with Flexible/Rigid Oscillating Fin.IEEE Journal of Ocean Engineering,1995,20(1):23-30.
    [105] Nakashima M, Tokuo K, Aminaga K, et al. Experimental study of a self-propelled two-jointdolphin robot.Proceedings of the9th international offsore and polar engineering conference,1994:419-424.
    [106] Kato N, Furushima M. Pectoral fin model for maneuver of underwater vehicles.AutonomousUnderwater Vehicle Technology,1996,1996:49-56.
    [107]梁建宏,王田苗,魏洪兴,等.水下仿生机器鱼的研究进展II—小型实验机器鱼的研制.机器人,2002,24(3):234-238.
    [108]王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算.机械工程学报,2005(8):18-23.
    [109]刘军考,陈维山,陈在礼.仿生机器鱼的运动学参数及实验研究.中国机械工程,2002(16):10-13.
    [110]成巍,苏玉民,秦再白,等.一种仿生水下机器人的研究进展.船舶工程,2004,26(1):5-8.
    [111]陈宏.仿生机器鱼巡游和机动的运动机理研究,博士学位论文.武汉:中国科学技术大学,2006.
    [112]王光明,胡天江,沈林成.仿鱼柔性长鳍波动运动分析与建模.动力学与控制学报,2006,4(4):348-352.
    [113]李明,史金飞,宋春峰,等.一种摆动式柔性尾部的仿生机器鱼.东南大学学报:自然科学版,2008,38(1):32-36.
    [114] van Lintel H T G, van De Pol F C M, Bouwstra S. A piezoelectric micropump based onmicromachining of silicon. Sensors and Actuators,1988,15(2):153-167.
    [115] Shoji S, Nakagawa S, Esashi M. Micropump and sample-injector for integrated chemical analyzingsystems. Sensors and Actuators A: PhysicalProceedings of the5th International Conference onSolid-State Sensors and Actuators and Eurosensors III,1990,21(1-3):189-192.
    [116] Ederer I, Raetsch P, Schullerus W, et al. Piezoelectrically driven micropump for on-demandfuel-drop generation in an automobile heater with continuously adjustable power output. Sensorsand Actuators, A: Physical,1997,62(1-3pt3):752-755.
    [117]千学著,葛伟,李静.压电陶瓷风扇的研制.电子元件与材料,2004,23(10):38-43.
    [118] Basak S, Raman A. Dynamic Response Optimization of Asymmetrically Configured PiezoelectricFans. ASME Conference Proceedings,2003,2003(37033):1857-1865.
    [119] Zelenka J. Piezoelectric resonators and their applications. Elsevier Science Publishers BVAmsterdam, The Netherlands, The Netherlands,1986.
    [120] van Randeraat J, Setterington R E. Piezoelectric ceramics. Publications Department, ElectronicComponents and Materials Division,1974.
    [121]陈超.旋转型行波超声电机理论模型的研究,博士学位论文.南京:南京航空航天大学,2005.
    [122]张建辉,王守印.压电锥形流管无阀泵的研究——单向流动原理及泵流量.压电与声光,2001(1):23-25.
    [123]王光明.仿鱼柔性长鳍波动推进理论与实验研究,博士学位论文.长沙:国防科学技术大学,2007.
    [124] Lindsey C C. Form, function and locomotory habits in fish[M]. Form, function and locomotoryhabits in fish, Hoar W S, Randall D J, Academic Press,1978,239-313.
    [125] Sfakiotakis M, Lane D M, Davies B C. review of fish swimming modes for aquatic locomotion.IEEE Journal of Oceanic Engineering,1999(2).
    [126]徐新生,孙发明.自然界鱼类游动的力学现象与丰富多彩的仿生鱼设计.力学与实践,2009(3):109-114.
    [127] Triantafyllou M S, Tfiantafyllou G S. An efficient swimming machine. Scientific American,1995,272:64-70.
    [128]张晓丽,梁大开,朱珠,等.压电双晶片两种电气连接方式的实验研究.压电与声光,2009(5):695-698.
    [129] Wang W. Electrode shape optimization of piezoelectric transducers, Doctor. FLORIDA:UNIVERSITY OF FLORIDA,2003.
    [130]黄克智等.板壳理论.北京市:清华大学出版社,1987:407.
    [131]黄玉盈.结构振动分析基础.华中工学院出版社,1988:282.
    [132]周叮.两侧受液时悬臂梁的自由振动分析.工程力学,1991,8(3):107-115.
    [133]居荣初,曾心传.弹性结构与液体的耦联振动理论.北京:地震出版社,1983.
    [134]倪汉根.无限水域中孤立悬臂板的自由振动.水动力学研究与进展(A辑),1994(1).
    [135]朱华.行波型杆式超声电机的关键技术研究,博士学位论文.南京:南京航空航天大学,2006.
    [136]吴丽萍,程光明,杨志刚,等.双作用压电泵绝缘压电振子.光学精密工程,2008(1):103-107.
    [137] Crawley E F, de Luis J. Use of piezoelectric actuators as elements of intelligent structures. AIAAJournal,1986,25(10):1373-1385.
    [138]胡海昌.多自由度结构固有振动理论.北京市:科学出版社,1987:135.
    [139] Naik T, Longmire E K, Mantell S C. Dynamic response of a cantilever in liquid near a solid wall.Sensors and Actuators, A: Physical,2003,102(3):240-254.
    [140] Koplow M A, Bhattacharyya A, Mann B P. Closed form solutions for the dynamic response ofEuler-Bernoulli beams with step changes in cross section. Journal of Sound and Vibration,2006,295(1-2):214-225.
    [141] Sadri A M, Wright J R, Wynne R J. Modelling and optimal placement of piezoelectric actuators inisotropic plates using genetic algorithms. SMART MATERIALS,1999,8:490-498.
    [142] Bashash S, Salehi-Khojin A, Jalili N. Forced Vibration Analysis of Flexible Euler-Bernoulli Beamswith Geometrical Discontinuities.2008American Control Conference, Seattle, Washington, USA,2008.
    [143]任建亭,姜节胜.阶梯压电层合梁的波动动力学特性.力学学报,2004(5):540-548.
    [144] Cho Y S, Pak Y E, Han C S, et al. Five-port equivalent electric circuit of piezoelectric bimorphbeam. Sensors and Actuators A: Physical,2000,84(1-2):140-148.
    [145]黄永强,赵晓云,陈树勋.弹性动力学中的瑞利-里兹法.河北理工学院学报,1996,18(2).
    [146] Paros J M, Weisbord L. How to design flexure hinge. Machine Design,1965,37(27):151-157.
    [147]万德安,刘春节,汲长志.压电驱动微位移放大机构的分析与实验.机床与液压,2005,""(2):12-13,4.
    [148] Biofluiddynamics M. Mathematical biofluiddynamics. Philadelphia: Society for Industrial andApplied Mathematics,1975.
    [149]余跃庆Larry L. Howell原.柔顺机构学中文版.北京市:高等教育出版社,2007:355.
    [150] Howell L L. Compliant Mechanisms. Wiley-Interscience,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700