用户名: 密码: 验证码:
水体下急倾斜煤层充填开采覆岩稳定性及合理防水煤柱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急倾斜煤层开采上覆岩层破坏和裂隙向上扩展,以及留设的防水煤(岩)柱在水体压力和矿山压力作用下产生塑性破坏和发生抽冒,均是水体下急倾斜煤层开采存在安全隐患的影响因素。充填开采是水体下煤炭资源安全回采的有效措施,因此,研究水体下急倾斜煤层充填开采突水防治的关键技术,对于我国急倾斜煤层的安全高效开采具有重要的现实意义和理论价值。
     采用离散元数值计算和相似材料模拟试验研究表明,当急倾斜煤层上覆岩层无关键层和覆岩结构组合为隔水-结构关键层时,覆岩导水裂隙均呈“耳型”分布;当上覆岩层存在结构关键层和覆岩结构组合为结构-隔水关键层时,导水裂隙以平行于岩层层面的离层裂隙为主,坚硬顶板的初次破断对急倾斜煤层导水裂隙发育演化有较大影响。同时,急倾斜煤层充填开采能有效降低采场顶底板围岩向采空区自由面运动的趋势,并随充填空间和充填体强度的增大,覆岩裂隙分布范围呈减小趋势。
     根据急倾斜煤层充填开采顶板岩梁的受力状态,建立了急倾斜煤层充填开采力学模型,分析得出急倾斜煤层充填开采可以有效降低顶板岩层的弯曲变形挠度,防止顶板岩梁产生受拉破坏、剪切破断和切向滑移整体破坏,减小防水煤柱的应力集中程度和抽冒范围,以及降低急倾斜煤层开采底板岩层的卸载区、支承压力区范围和底板岩层移动,进而提出水体下急倾斜煤层充填开采采场围岩控制机理。
     依据防水煤柱的边界条件和受力特征,考虑原岩水平应力对急倾斜煤层开采的影响,确定了水体下急倾斜煤层防水煤柱尺寸的计算方法。采用流固耦合数值分析表明,随着急倾斜煤层采厚的增大、煤体强度的降低以及覆岩存在结构关键层和顶板岩梁的破断旋转,均导致防水煤柱的抽冒范围增大。同时,切向应力集中形成沿防水煤柱底板层面的剪切滑移裂隙,是上覆水体沿防水煤柱进入工作面作业空间的主要充水通道。此外,急倾斜煤层矸石充填并注浆胶结形成“矸石充填胶结区+防水煤柱”的复合防水隔离带,可以有效阻止大范围开采条件下矿井透水事故的发生。
     基于龙煤集团七台河分公司龙湖煤矿急倾斜煤层的赋存和水文地质条件,现场研究了适合水体下急倾斜煤层开采的采煤方法,设计了急倾斜煤层采空区矸石自溜充填并注浆胶结充填体的顶板控制技术,确保了上部边界赋水条件下急倾斜煤层的安全回采,取得了显著的社会效益和经济效益。
     本文关于水体下急倾斜煤层充填开采的研究成果,为我国水体下急倾斜煤层充填开采奠定了理论基础,提供了安全可靠的保障,丰富了充填开采理论。
The overlying strata are liable to damage and water flowing fractures develop upwardwhen steep seam is mined. Meanwhile, waterproof coal (rock) pillar will fall and produceplastic zone under the water head pressure and ground pressure. Thus, there is safety miningincipient fault under water body in steep seam. Backfilling mining is efficient measure tomine coal resource under the water body. Therefore, the key technology research that waterinrush prevention and control for backfilling mining is of prominent theoretical and practicalmeaning for safety and efficient mining under the water body in steep seam.
     The dispersed element numerical calculation as well as similar simulation experimentwas applied to study the influence of structure key stratum, resisting key stratum and theirstructure combination of overlying strata on breakage characteristic of overlying strata andwater flowing fracture evolution in steep seam. The results show that while there is not keystratum in overlying strata and structure combination of overlying strata is resisting-structurekey stratum, water flowing fracture mainly presents “ear style” distribution; while there is keystratum in overlying strata and structure combination of overlying strata is structure-resistingkey stratum, water flowing fracture mainly produce bed separation fracture parallel to thebedding face; first breakage of hard roof would have great influence on strata pressurebehavior law and water flowing fracture evolution. Meanwhile, backfilling mining in steepseam can effectively reduce the motion trend of stope surrounding rock to free surface andwater flowing fracture distribution decreases with the increment of backfilling range andbackfilling body strength.
     According to stress distribution state of the roof rock beams, roof control mechanicalmodel was built for backfilling mining in steep seam. The results indicate that backfillingmining can effectively prevent tension failure, shear breakage and shear-slip failure as well asdecrease bending flexivity of roof beam in steep seam. At the same time, backfilling miningcan reduce stress concentration degree and falling range of waterproof pillar as well asunloading zone, abutment pressure zone and of floor strata deformation. Hereby, strata controlmechanism around coal face for backfilling mining was put forward in steep seam underwater body.
     Consideration of the influence of original horizontal stress, based on boundaryconditions and stress characteristic of waterproof pillar, reasonable waterproof pillar size wasobtained by theoretical analysis under the water body in steep seam. The results by fluid-solid coupling numerical calculation show that the falling range of waterproof pillar would beincreased in tendency with the coal thickness and reduction of coal body strength; structurekey stratum occurred in overlying strata and breakage revolution of immediate roof wouldlead to the increment of waterproof pillar falling range. Meanwhile, shear-slip fracture causedby tangential stress concentration in the position of waterproof pillar floor is the major waterinrush way into the coal mine. Besides, compound waterproof isolation strip for “ganguebackfilling zone+waterproof pillar” which worked-out section is backfilled by gangue aswell as grouting cementation in steep seam can effectively prevent water inrush accidentunder large mining range condition.
     Based on the occurrence conditions of steep seam and hydrological engineeringgeological conditions in South No.2District of Longhu coal mine, appropriate mining methodis studied and the technology that worked-out section is backfilled by gangue as well asgrouting cementation is designed to control roof stability and ensure the safety mining underwater body in steep seam. The result shows that the backfilling technology has better effectand gains remarkable social and economic benefits.
     The research results in the dissertation not only offer safety and reliability guarantee forbackfilling mining under the water body in steep seam, but enrich backfilling mining theory.
引文
[1]董书宁,虎维岳.中国煤矿水害基本特征及其主要影响因素[J].煤田地质与勘探,2007,35(5):34-38.
    [2]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
    [3]仁仰辉.复杂条件下底板采动效应特征及水害综合防治技术研究[D].山东科技大学,2009.
    [4]王培盛,阎志义,聂秀英.大同矿区采空区积水的预测与防治[J].煤矿安全,2003,34(7):26-28.
    [5]石平五,高召宁.急倾斜特厚煤层开采围岩与覆盖层破坏规律[J].煤炭学报,2003,28(1):13-16.
    [6]张佳凡.碱沟煤矿急倾斜近距煤层联合开采的数值分析[D].西安:西安科技大学,2004.
    [7] Zhang Dingli and Qian Minggao,Strata Control of Fully Mechanized longwall Caving Mining Face,Ground Control in Mining “14th conference”,1995.
    [8]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [9]康健,胡耀青.矿山地下工程施工中水害预测与防治[J].辽宁工程技术大学学报:自然科学版,2001,20(6):758-760.
    [10]贾剑青,王宏图,胡国忠等.急倾斜工作面防水煤柱留设方法及其稳定性分析[J].煤炭学报,2009(3):315-319.
    [11]郭彦华.老空水水害事故原因分析及防治措施研究[J].中国安全科学学报,2006,16(10):141-144.
    [12]赵苏启,武强,尹尚先.广东大兴煤矿特大突水事故机理分析[J].煤炭学报,2006,31(5):618-622.
    [13]邹寅笙.水体下安全开采20年的实践与认识[J].煤炭科学技术,1998,1(l):35-38.
    [14] Yin Zengde, Jiang Fuxing, Yang Gui. The Failure Laws of Overlying Strata for Thick Coal Seams withSpecial Geological Conditions, Science Press Beijing/New York.2002.
    [15] Heilbron,H. C. M. J. Cockram, J.P.A. Roest. Improving Availability of Rock Mechanics Modelling toMines. Proceedings of the Eighth International Congress on Rock Mechanics,1995,(2):579-582.
    [16] Roest, J. P. A.,R. D. Hart and L. J. Lorig. Modelling Fault-Slip in Underground Mining with theDistinct Element Method. Proceedings of the6th International IAEG Congress,1990:105-110.
    [17] Kulatilake, P. H. S. W., H. Uepirti,etal. Radberg and O. Stephansson. Use of the Distinct ElementMethod to Perform Stress Analysis in Rock with Non-Persistent Joints and to Study the Effect of JointGeometry Parameters on the Strength and Deformability of Rock Masses. Rock Mech. Roc. Engng,1992,25(4),253-274.
    [18] SONG Xuan-min, QIAN Ming-gao, JIN Zhong-ming. Study on the fragmental distributions regularityof top-coal fractured experiment for top-coal cavin mining [J]. Journal of China Coal Society,1999,2(3):261-265.
    [19] Yao X L.Modeling for mining subsidence with reference to surface behavior. Phd Thesis. Unversity ofNottingham,1992.
    [20] Murton Brameley;Biggs,Juliet.Numerical modeling of mud vol conoes and their flows usingcongstraints from the Gulf of Cadiz[J].Maring Geology,195(4):223-236.
    [21] E.Nonveiller.Grouting Theory and Practice.Elsevier Science Publisher B.V., The Netherlands,1989.
    [22] G.S.Littlejohn. Chemical Grouting.Ground Engineering, No1-2,1985.
    [23]王永红,沈文.中国煤矿水害预防及治理[M].煤炭工业出版社,1996.
    [24]郭文兵,邵强等.水库下采煤的安全性分析[J].采矿安全与工程学报,2006,3(3):323-327.
    [25]钱鸣高,石平五主编.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [26]杜计平,汪理全.煤矿特殊开采方法[M].中国矿业大学出版社,2005.
    [27] H.Iresbeger and L.Hemnkind. Strata control with longwall mining of thick seams at great depth,Proceedings of international symposium on Fully Mechanized mining technology for high output andhigh efficiency,Luan China,1992.
    [28]涂敏,桂和荣,李明好,李伟,孙家斌.厚松散层及超薄覆岩放顶煤开采冒裂高度模拟研究[J].矿山压力与顶板管理,2002(2):92-96.
    [29]张玉军,康永华.覆岩破坏规律探测技术的发展及评价[M].2005.
    [30]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2004.
    [31] Jiang Fuxing, Jiang Guoan. Theory and technology of hard roof control of longwall face in Chinesecollieries [J]. Journal of Coal Science&Engineering,1998(12).
    [32]钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采及其技术体系[J].采矿与安全工程学报,2006,23(1):1-5.
    [33]张东升,马立强.特厚坚硬岩层组下保水采煤技术[J].采矿与安全工程学报,2006,23(1):62-64.
    [34]缪协兴,陈荣华.采场覆岩厚关键层破断与冒落规律分析[J].岩石力学与工程学报,2005,24(8):1289-1295.
    [35]缪协兴,陈荣华等.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):560-564.
    [36]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,38(1):1-4.
    [37] Li H C. Correlation between ascending mining and stability of the overlying strata. Ground Movementand Control Related to Coal Mining Symposium. Illawarra:232–239.
    [38]桂和荣.防水煤(岩)柱合理留设的应力分析计算法[M].煤炭工业出版社,1997.
    [39] Volkov, Yu.V; Smirnov, A.A.; Sokolov, I.V., etal. Underground geotechnology for exploitation with theascending mining extraction. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal:2003,(3):34-41.
    [40]王连富,李卫东,刘道文等.综放采场覆岩破坏高度的实测方法及应用[J].矿业安全与环保,2005.32(2):70-71.
    [41]蔡东.综放面“两带”高度发育特征[J].矿山压力与顶板管理,2001,(1):68-69.
    [42]杨贵.综放开采导水裂隙带高度及预测方法研究[D].山东科技大学,2004.
    [43]尹增德.采动覆岩破坏特征及其应用研究[D].青岛:山东科技大学,2007.
    [44]秦玉金,马丕梁.上覆岩层破坏高度影响因素的灰关联分析[J].煤矿开采,2006,11(4):1-3.
    [45]康永华等.覆岩破坏规律的综合研究技术体系[J].煤炭科学技术,1997,25(11):40-43.
    [46]杜时贵,翁欣海.煤层倾角与覆岩变形破裂分带[J].工程地质学报,1997(9):211-217.
    [47]煤炭科学研究院北京开采所开采室三下采煤组.煤层覆岩破坏的基本规律[J].煤田地质与勘探,1977,(6):58-66.
    [48]刘天泉等.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [49]建筑物、水体下、铁路及主要井巷煤柱留设与压煤开采规程[M].北京:煤炭工业出版社,2000.
    [50]马庆云,汤建泉.覆岩运动与破坏过程的问题探讨[J].矿山压力与顶板管理,2000(2):32-24.
    [51]赵经彻,陶廷云,刘先贵等.关于综放开采的岩层运动和矿山压力控制问题[J1.岩石力学与工程学报,1997,16(2):132-139.
    [52]崔希民,左红卫,王金安.急倾斜煤层开采地表塌陷坑形成机理与安全矿柱尺寸研究[J].中国地质灾害与防治学报,2000,11(2):67-69.
    [53]姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994,13(3):270-278.
    [54]高延法.岩移“四带”模型与动态位移反分析[J].煤炭学报,1996,21(1):51-56.
    [55]马亚杰,李建民,郭立稳等.基于ANN的煤层顶板导水断裂带高度预测[J].煤炭学报,2007,32(9):926-929.
    [56]康永华.采煤方法变革对导水裂缝带发育规律的影响[J].煤炭学报,1998,23(3):262-266.
    [57] Zhang dingli. Strata control at the face with mechanized sub-level caving. Proceeding of sixinternational symposiums on mine planning and equipment selection,1997, A.A.Balkema. Rotterdam.
    [58]汤建泉等.开采覆岩运动和破坏规律实验研究[J].中国煤炭,1996,(2):14-17.
    [59]黄乐亭.采场覆岩两带高度与覆岩硬度的函数关系[J].矿山测量,1999,(1):20-22.
    [60]陆泓,崔增娣,施龙青等.不同覆岩组合及开采条件导水裂缝带探测研究[J].第二届中日地层环境力学国际学术讨论会会议论文集,煤炭工业出版社,1996.
    [61]王桦,程桦,刘盛东.基于并行电阻率法的导水裂隙带适时探测技术研究[J].煤矿安全,2007,(7):1-9.
    [62]疏开生,倪宏革.煤层覆岩破坏高度的数学分析[J].淮南矿业学院学报,1992,12(3-4):3-43.
    [63]程学丰,刘盛东.煤层采后围岩破坏规律的声波CT探测[J].煤炭学报,2001,26(2):153-155.
    [64]冯锐,林宣明等.煤层开采覆岩破坏的层析成像研究[J].地球物理学报,1996,39(1):114-124.
    [65]高召宁.急倾斜特厚煤层开采围岩与覆盖层破坏规律研究[D].西安,西安科技学院,2002.
    [66]程金泉.导水裂隙带发育高度研究[J].煤炭科技,2002,(3):5-6.
    [67]文学宽. CT探测覆岩破坏高度的试验研究[J].煤炭学报1998,23(3):300-303.
    [68]熊晓英,杜广森等.导水裂隙带高度探测新方法综述[J].煤炭技术,2004,23(2):77-79.
    [69]汪华君,姜福兴,成云海,等.覆岩导水裂隙带高度的微地震(MS)监测研究[J].煤炭工程,2006,(3):74-76.
    [70]高品红,杨思舜,成春奇.煤层覆岩裂隙带高度预测的数值模拟-安全系数法[J].江西煤炭科技,2007,(01):68-70.
    [71]汤建泉.开采覆岩运动和破坏规律的实验室研究[D].北京:中国矿业大学北京研究生部,1995.
    [72]钟道昌等.采场覆岩破坏和运动规律的实验研究[J].矿山压力与顶板管理,1996,3:61-64.
    [73]宣以琼,杨本水,孔一繁.任楼煤矿覆岩破坏移动规律的试验研究[J].矿山压力与顶板管理,2003,(3):77-80.
    [74]刘增辉,杨本水.利用数值模拟方法确定导水裂隙带发育高度[J].矿业安全与环保,2006,33(5):16-19.
    [75]任强,刘伟韬.覆岩采动裂隙带发育规律的数值模拟研究[J].安全与环境学报,2006,(6):75-79.
    [76]杨贵.综放开采导水裂隙带高度及预测方法研究[D].青岛:山东科技大学,2004.
    [77]唐春安,于广元,刘红元,等.采动岩体破裂与沿层移动数值试验[M].长春:吉林大学出版社,2003.
    [78]邹海,桂和荣.导水裂隙带高度预测途径探讨[J].江苏地质,1997,21(2):98-102.
    [79]许家林,钱鸣高,高红新.采动裂隙实验结果的量化方法[J].辽宁工程技术大学学报,1998,17(6):586-589.
    [80]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [81] Chen,Pei-Pei,Liu,Hong-Quan,Zhang,Gang-Yan. Determination of waterproof rock pillar height withthe top coal caving under sea[J]. Meitan Xuebao/Journal of the China Coal Society,v34,n7,p875-880,July2009.
    [82] Peng,Wen-Qing,Wang, Wei-Jun,Li, Qing-Feng. Reasonable width of waterproof coal pillar under thecondition of different fault dip angles [J].Caikuang yu Anquan Gongcheng Xuebao/Journal of Miningand Safety Engineering,v26,n2,p179-182+186,June2009.
    [83] T Rangasamy.A R Leach.JJ van Vuuren.Current practice and guidelines for the safe design of waterbarrier pillars[M].Safe in Mines Research Advisory.Committee COL702,August2001.
    [84]王旭春,黄福昌,张怀新. A·H·威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608.
    [85]张磊鑫.矿井边界防水煤柱管理技术研究[D].山东科技大学,2006.
    [86]涂敏,桂和荣,李明好等.厚松散层及超薄覆岩厚煤层防水煤柱开采试验研究[J].岩石力学与工程学报,2004,23(20):2394-2397.
    [87]杨本水,王广军,梁广玲等.综放工作面缩小防水煤柱的可行性研究[J].煤田地质与勘探,2002.2
    [88]刘效云,杨白水.基岩风化带的地质特性与缩小防护煤柱机理的研究[J].山东科技大学学报,2001,20(3):34-37.
    [89]彭文庆,王卫军,李青锋.不同断层倾角条件下防水煤柱合理宽度的研究[J].采矿与安全工程学报,2009(2):179-182.
    [90]胡宝玉.冲积层下缓倾斜煤层防水煤柱尺寸数值试验研究[D].北京,煤炭科学研究总院,2007.
    [91]谭静,张普田,洪益清等.开滦赵各庄矿2137西下工作面防水煤柱留设研究[J].中国煤炭地质,2009(4):35-37.
    [92]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].中国矿业大学出版社,2003.
    [93] Liu Changyou, Liu Yuejun, Yang Zhen, Huang Bingxiang. Caving thickness effects on stability ofcoal-rock pillar against water on steep coal seam mining under water。2010international conferenceon mine hazards prevention and control.2011,11:356~359.
    [94]张吉雄,缪协兴.煤矿矸石井下处理的研究[J].中国矿业大学学报,2006,35(2):197~200.
    [95]张吉雄、缪协兴、茅献彪等.建筑物下条带开采煤柱矸石置换开采的研究[J].岩石力学与工程报,2007,26:2687-2693.
    [96]路世豹.充填采矿地表裂缝产生机制及岩层移动变形规律研究[D].中国矿业大学(北京校区):2004.
    [97]刘长友,杨培举,侯朝炯.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [98]李永明,刘长友,杨伟,王晓.急倾斜煤层开采控顶方式对采场围岩稳定性的影响[J].煤炭科学技术,2011,39(1):20-24.
    [99]于学馥.信息时代岩土力学与采矿计算初步[M].科学出版社,1991.
    [100]邵小平.急倾斜煤层大段高安全开采围岩控制基础研究[D].西安:西安科技大学,2008.
    [101]许家林,钱鸣高.岩层控制关键层理论的应用研究与实践[M].中国矿业出版社,2001.
    [102]缪协兴,浦海.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿大学报,2008,37(1):1~4.
    [103]侯忠杰.地表厚松散层浅埋煤层组合关键层稳定性分析[J].煤炭学报,2000,25(25):127-131.
    [104]缪协兴.采动岩体地关键层理论研究新进展[J].中国矿业大学学报,2001.01
    [105]许家林,钱呜高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,200524(5):787-791.
    [106]汪成兵,张盛,勾攀峰,张义顺等.急倾斜煤层开采上覆岩层运动规律模拟研究[J].焦作工学院学报,自然科学版,2001,22(3):165-167.
    [107]贾剑青,王宏图,胡国忠,李晓红等.急倾斜工作面防水煤柱留设方法及其稳定性分析[J].煤炭学报,2009,34(3):315-320.
    [108]高明中.急倾斜煤层开采岩移基本规律的模型试验[J].岩石力学与工程学报,2005,23(3):441-445.
    [109]冯锦艳,王金安,朱建明,焦申华.急倾斜长壁工作面开采老顶平衡结构阻水性能[J].煤炭学报,2009,34(2):156-159.
    [110]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1987.
    [111] P A Cundall.Distinct Element methods of rock and soil Structure [J].E T Browned. Analytical&Computational Methods in Engineering Rock Mechanics,129-163,1987.
    [112] S L Crouch,A M Sterfield.Boundary element methods in solid mechanics[M].George Allen andUlnwin1983.
    [113]许家林,尤琪,朱卫兵.条带充填控制开采沉陷的理论研究[J].煤炭学报,2007,32(2):120-122.
    [114]刘长友,刘跃俊,黄炳香,李永明.急斜煤层防水煤岩柱的失稳和留设[J].采矿与安全工程学报,2010,27(3):330-334.
    [115]张明立.急倾斜煤层开采岩层破坏机理及地表移动理论研究[D].北京,煤炭科学研究总院,2008.
    [116] T.R.Tauehert,李世昌译,结构力学能量原理[M].北京:人民交通出版社,1984.
    [117]李廉馄.结构力学[M].人民教育出版社,1979.
    [118]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,1981.
    [119]朱仁诒,李风明,容灵慧.应用矸石自溜充填法开采村庄下压煤[J].煤炭科学技术,1989,10(3):2-6.
    [120]李永明,刘长友,李西蒙,张宁波.水体下急倾斜煤层采空区矸石充填顶板控制研究[J].煤炭学报,2010,35(9):1419-1424.
    [121]许世华.仰斜条带充填采煤法在急倾斜“三软”煤层中的应用[J].矿业安全与环保,2002(1):40-41.
    [122]李永明,刘长友,黄炳香.急倾斜煤层覆岩关键层对防水煤柱稳定性的影响,采矿与安全工程学报,2012,29(2):226-231.
    [123]翟新献,钱鸣高,李化敏,李永明.小煤矿复采煤柱塑性区特征及采准巷道支护技术[J].岩石力学与工程学报,2004,23(22):3799-3802.
    [124]马念杰,侯朝炯.采准巷道矿压理论及应用[M].北京:煤炭工业出版社,1995.
    [125]刘长武,洪允和.矿间防水煤柱合理尺寸的理论分析[J].中国矿业大学学报,1995,24(1):52-55.
    [126]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994,133-141.
    [127] Murton Brameley;Biggs,Juliet Numerical modeling of mud vol conoes and their flows usingcongstraints from the Gulf of Cadiz[J].Maring Geology,195(4):223-236.
    [128]谢文兵,陈晓详,郑百生.采矿工程问题数值模拟研究与分析[M].北京:中国矿业大学出版社,2005.
    [129]王守安,温旭友.急倾斜薄煤层走向长壁分带仰斜采煤法采空区矸石充填[J].黑龙江科技信息,2009,30(3):78.
    [130]谢建华,夏斌,徐振华,张宴华.数值模拟软件FLAC及其在地学应用简介[J].地质与勘探,2005.
    [131]朱仁诒,李风明,容灵慧.应用矸石自溜充填法开采村庄下压煤[J].煤炭科学技术,1989,10(3):2-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700