用户名: 密码: 验证码:
油套管水压试验系统控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油套管水压试验系统包括主体系统、液压系统、气动系统、水压系统以及数据采集与控制系统。主体系统是油套管水压试验系统的机械主体,主要包括承载机架、密封装置、传动装置、夹紧装置等。液压系统包括液压源和液压控制回路,一方面是控制密封压力卸荷阀和管内压力卸荷阀的开启和关闭,另一方面是驱动夹紧装置的打开和夹紧。气动系统提供压缩空气动力源,控制注水阀和排气阀的开启和关闭。水压系统由低压泵和高压泵组成,低压泵对油套管内进行注水,高压泵驱动密封件工作并实现液体增压。数据采集与控制系统是油套管水压试验系统的指挥中心,用于控制油套管压力检测过程中的密封、注水、加压、保压以及卸压等一系列过程的准确实现。
     油套管水压试验系统的密封装置采用钢骨架大间隙径向外抱式强制密封方式,该密封方式是通过在密封圈外环注入高压水,并由高压水产生压力迫使密封圈弹性收缩抱住油套管外圆,以达到预密封的目的。高压水经过进、出口存在压力差的阻尼阀向油套管内加压,当压力大于阻尼阀弹簧压力时,油套管内压力跟随密封压力同步升高,并且密封圈内、外压力差保持恒定。建立了密封控制模型,并通过MATLAB软件进行了仿真分析。
     油套管水压试验控制系统主要包括控制和数据采集两方面内容。控制系统采用“工控机+组态软件+PLC(多台)+传感器”控制模式,并将整个系统分成三大模块分别进行控制,各个模块之间通过PPI通信协议进行集中。根据水压试验系统特点,并借助MCGS组态软件开发平台开发监控软件,实现实时监视、远程控制以及数据显示和存储等功能。密封控制部分采用PID控制算法和电液比例阀的闭环控制方式。数据采集是通过传感器采集试验信号,经由EM 231CN模拟量输入扩展模块,传递到组态软件进行处理和显示。在通讯设计上,采用主-从站的通讯方式、三芯电缆和RS485接口的传输路径以及终端匹配的总线型拓扑结构。
     建立水压试验系统控制试验台,验证其控制系统的可靠性、稳定性以及控制的准确性。
The hydrostatic test system for tubing and casing includes main body system, hydraulic system, hydraulic pressure system, pneumatic system and data acquisition and control system. Main body system is the main mechanical unit in the test system. It includes mechanical shelf, sealing equipment, drive equipment, clamp equipment etc. Hydraulic system includes hydraulic source and hydraulic control loop. Its’function is controlling the pressure discharging valve opened or closed, tubing and casing clamped or unclamped. Pneumatic system is used to be driving source and used to control injecting valve and exhaust valve. Hydraulic pressure system is composed of pressure pump and injecting pump. Pressure pump can drive sealing parts and provide system press. The injecting pump injects water into tubing and casing. Data acquisition and control system is command center of the test system. Its’function is to control a series of process, such as sealing - water injecting - pressure increasing - pressure holding - pressure unloading , and so on.
     The large gap outside radial-compressing sealing with steel skeleton is used in the experiment equipment. In order to realize advance sealing, the sealing part can be compressed in the radial direction and contracted towards the inside to hold tightly the tubing and casing pipe (coupling) wall by high pressure water outside sealing ring. High pressure pipeline have a damp valve which have pressure difference, when hydraulic pressure is higher than the elasticity of spring, the two pressures in sealing part and tubing or casing are upgraded together, and pressure difference is constant. Sealing control model is built, and analyzed based on MATLAB software.
     The control system includes control and data acquisition. The control model of“sensor+PLC+computer+configuration software”is adopted. The test system is divided into three parts which can be controlled respectively, and concentrated in virtue of PPI protocol. According to the working characteristic of the test system, based on the MCGS 6.2 configuration software, the monitor and control software is developed. Real time monitoring, remote control, data display and storage functions are realized. The closed loop control mode which includes PID control arithmetic and electro-hydraulic proportional valves is used in sealing control parts. Test signal is acquired in virtue of sensor, and transmitted to configuration software by dint of EM 231CN module. Test signal is disposed and displayed in the software. Communication mode of the principal- subordinate stations, transfers path of the three cores cable and RS485 interface, and bus topolopy of the terminal matching are applied.
     The hydrostatic test-bed for tubing and casing is built. Reliability, stability and veracity of the control system are validated in virtue of the test-bed.
引文
[1]刘继高.国产首台全自动高压水压试验机[J].重型机械,2001,(1):7~9.
    [2]李伟,张利国,牛文录等.全自动石油油管(套管)静水压试验装置的改进[J].石油矿场机械,2001, 30 (1):16~18.
    [3]邓东生,李伟,苏爱明等.油套管静水压试验机的形式与结构[J].石油矿场机械,2004,33(3):72~75.
    [4]李伟,张弘等.70MPa油套管静水压试验机的研制[J].石油矿场机械,1999,28(5):12~14.
    [5]李文亭.新型油管试压小车及应用[J].设备管理与维修,2004,(12):27.
    [6]于涛,高国良等.油管试压工艺的改造与应用[J].油气储运,2005,24(6):57~58.
    [7]郑永生,韩学良,施斌等.油管试压机的技术改造[J].石油机械,2007,35(12):54~55.
    [8]李秀全,张利国等.油井管静水压试验系统的噪声控制[J].石油矿场机械,2005,34(1):101~102.
    [9]卫凌云,杜学斌,刘继高.高压钢管水压试验机技术特点[J].焊管,2006,29(3):59~62.
    [10]康景峰,王波,杜琳.全自动上扣式油管水试压系统[J].中国设备工程,2004,(11):20~21.
    [11]黄明凤,李秀全,赵伟.石油套管静水压试验装置中泵流量的合理配置[J].石油矿场机械,2005,34(4):98~100.
    [12]苏亚,杜晨红等.智能压力传感器无线数据采集系统[J].电子测量技术,2007,30(7):54~57.
    [13]胡迎春,苏燕辰等.超低功耗数据采集系统的设计[J].中国测试技术,2007,33(5):121~123.
    [14] F.burger,P.A.Besse, R. S. Popovic. New single chip Hall sensor for three phases brushless motor control[J].Automatic Control, 2002.8,Vol.15(2):35~36.
    [15]李绍卓,赵敬民等.关于位置控制技术的研究[J].机械工程师,2006,(9):80~81.
    [16]陈宗云,南余荣.基于重复控制的位置伺服系统[J].控制工程,2006,13:208~211.
    [17]于洪国,王平.组态软件在油管静水压试验装置中的应用[J].控制工程,2007,14(6):650~652.
    [18]程国强,王娟.组态软件在油套管静水压试验自动监控系统中的应用[J].石油仪器,2006,20(3):12~13.
    [19]陈忠强.国外液压技术现状及发展趋势[J].MC现在零部件,2004,(5):54~56.
    [20] Gao Junli, Li Di, Zheng Shixiong, etc. Building Open Architecture Numerical Controller[J].Journal of Information and Computation Science.2004, 1(3): 55~ 60.
    [21] Krzysztof Pietrusewicz.开放式计算机数控系统[J].软件,2008,(5):52~53.
    [22]伍道明.基于单片机的数据采集与控制系统[J].化工职业技术教育,2006,(3): 26~29.
    [23] Gary Marsh.PIC?单片机的历史[J].电子与电脑,2005,(5).
    [24]魏小龙.MSP430系列单片机接口技术及系统设计实例[M].北京:北京航空航天大学出版社,2002:15~18.
    [25]邱公伟.可编程控制器网络通信及应用[M].北京:清华大学出版社,2000:10~15.
    [26]罗斌,王孟效,周红等.先进控制算法在废水厌氧处理过程中的应用[J].化工自动化及仪表,2008,35(2):63~68.
    [27]丁锋.钢管静水压试验机拉力梁的对比研究[J].焊管,2007,30(3):46~48.
    [28]李传瑞,丁丽.密封圈的失效分析[J].理化检验-物理分册,2007,43(2):94~96.
    [29]王兰英,张世平,王爱如等.钢管静水压试验机移动端驱动方式的探讨[J].焊管,2005,28(3):44~45.
    [30] Saha,S.K. Hydraulic system in longwall mining [J]. Journal of Mines,Metals & Fuels,1996,44(8):236~244,246.
    [31]王海红,刘继高,王钊等.双管全自动水压试压机组的开发[J].钢管,2007,36(5):22~26.
    [32] Yang Yang . High-voltage motor test system based on PLC and MCGS configuration software [J]. Electric Power Automation Equipment,2008,28(8):90~92.
    [33]吴文秀,邹必昌,唐桃波等.油套管试压自动监控系统设计[J].石油机械,2007,35(8):32~33.
    [34]黄磊,胡慧慧.基于组态王6.5的油井管静水压试验控制系统[J].石油矿场机械,2005,34(3):82~83.
    [35]陈先锋,舒志兵,赵英凯等.数据采集系统在压力容器试验中的应用[J].南京工业大学学报,2005,27(1):41~44.
    [36]Y. Lan,X.Lin,M.F. Kocher,W.C.Hoffmann. Development of a PC-based Data Acquisition and Control System [J]. Agricultural Engineering International. 2007,7:30~34.
    [37]刘亚东,李从心,汪德才等.用PLC实现位置控制的方法[J].上海交通大学学报,2002,36(4):491~493.
    [38]赵云丰,刘万军.组态软件在油田生产监控管理信息系统中的应用[J].微计算机信息.2005,21(10):60~63.
    [39]杨书仪,赵继云,胡燕平.基于PLC和力控组态软件的液压试验台控制系统[J].工矿自动化,2006,(6):87~89.
    [40]沙振舜.电工实用技术手册[M].江苏科学技术出版社,2002:387~437.
    [41]齐占庆,王振臣.电气控制技术[M].机械工业出版社,2007:51~52.
    [42]刘钟宇,王雪峰,栾兰.RS485/232电平转换器电路研制[J].微处理机.2008,(3):45~50.
    [43]崔巍.对RS232/RS485转换器设计的一种改进[J].长江大学学报.2003,3(1):69~70.
    [44]庄致,郭胜.基于RS485总线的串口令牌环通信的研究[J].微计算机信息.2007,23(4):225~227.
    [45]陈亚娜,石磊.PID控制算法在加热炉温度控制中的应用研究[J].机电产品开发与创新.2007,20(5):169~170.
    [46] Meng Jianjun,Yang Chenghui,Qi Wenzhe. Servicing work safety supervision system for electric locomotive based on configuration software [J ].Proceedings of the International Symposium on Electronic Commerce and Security,2008,3(5):467~470.
    [47] Yu Jie, Sun Yingzhu. The General Step of Developing Systematic Engineering Using Configuration Software [J]. Programmable Controller & Factory Automation,2008, (10): 89~91.
    [48]刘振宇.基于MCGS组态软件开发水位控制系统的研究[J].陕西农业大学学报.2006,(1):25~27.
    [49]叶爱华,叶文华,赵明镜.控制系统中建立数学模型的方法探讨.2004,(8):66~67.
    [50]贾光政,王宣银.液压防喷系统PLC控制设计[J].机床与液压,2002,(3):53~54.
    [51] Zhang Xin-wen, Chen Song-qing, R.Sandhu. Enhancing data authenticity and integrity in P2P systems[J].IEEE Internet Computing, 2005,9(6):42~49.
    [52]杨咸启,常宗瑜.机电工程控制基础[M].北京:国防工业出版社,2005:49~57.
    [53]黄忠霖,周向明.控制系统MATLAB计算及仿真实训[M].北京:国防工业出版社,2006:70~100.
    [54] J.Park, R.Sandhu.ACM The UCONABC usage control model[J]. ACM Transactions on Information and Systems Security, 2004, 7(1):128~174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700