用户名: 密码: 验证码:
煤层气储层渗透率变化规律理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过实验研究和理论分析相结合,分析了随着煤层气储层内气体压力的降低,渗透率的变化情况,建立了渗透率预测模型。以MATCHSTICK应变为切入点,建立了结合有效应力和煤基质收缩两方面影响因素的渗透率数学分析模型(M&H模型),并通过M&H模型分析了随着孔隙内气体压力的降低,渗透率的变化规律及相应物理参数对渗透率的影响。在实验室环境下模拟Uniaxial-Strain的应力、应变条件,测量在不同孔隙压力下煤样的渗透率,通过实验数据的分析,总结渗透率的变化规律。同时通过对垂直应变的监测,论证体积不变理论的合理性。论文的研究结果对于进一步认识渗透率的变化规律,正确分析预测渗透率的变化提供理论依据,对于井田长期生产能力的评估以及煤层气开发企业做出合理的生产规划提供理论依据和技术手段。
Based on both experimental and theoretical investigations, the permeability of coalbed methane reservoir is studied and analyzed with reservoir depletion. Theoretically, a new analytical permeability model is proposed using MATCHSTICK geometry and constant volume theory. The new model incorporates primarily the changes in grain and cleat volumes and is, therefore, different from the other models that lay heavy on the pore volume and cleat compressibility. The model considers the effective stress and coal matrix shrinkage effect on the permeability changes. Experimentally, the uniaxial strain condition is successfully simulated in the laboratory. The flowrate/permeability is measured by using step-wise fashion for different methane pressures. The permeability trend is analyzed for methane depletion. Moreover, the constant volume theory is valid for the coalbed methane reservoir because the vertical strain does not change in the lab-scale experiment. The study provides the theoretical basis for further analysis and perdition of coalbed methane reservoir dynamical permeability changes. It is significantly important for the coalbed methane development. It also helps CBM production companies to make long-term planning.
引文
1. 周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    2. Puri, R.,Yee, D.. Enhanced coalbed methane recovery[C].SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana.,1990:193-202.
    3. Zuber,M.d., Sawyer, W.K., Schraufnagel, R.A., et al. The Use of Simulation and History Matching to Determine Cricical Coalbed Methand Reservoir Properties[C].Low Permeability Reservoirs Symposium, US,Denver,1987:307-316.
    4. Bustin, R. M., Cui, X., Chikatamarla, L. Impacts of Volumetric Strain on CO2 Sequestration in Coals and Enhanced CH4 Recovery, American Association of Petroleum Geologists (AAPG) Bulletin,2008,92 (1):15-29.
    5. HARPALANI S, CHEN G. Gas slippage and matrix shrinkage effects on coal permeability[C]//Proceedings of the 1993 International Coal bed Methane Symposium. Tuscaloosa, AL, USA:University of Alabama,1993:285-294.
    6. L. Chikatamarla, X. Cui, R.M. Bustin. Implications of volumetric swelling/shrinkage of coal in sequestration of acid gases[A].In:2004 International Coalbed Methane Symposium[C].Tuscaloosa, Alabama,2004.
    7. Clarkson, C. R., Pan, Z., Palmer, I.,et al.. Predicting Sorption-Induced Strain and Permeability Increase with Depletion for CBM Reservoirs[A].In:SPE Annual Technical Conference and Exhibition[C].Denver, Colorado, USA,2008,
    8. Cook, N. G. W..Natural Joints in Rock:Mechanical, Hydraulic and Seismic Behavior and Properties under Normal Stress[J]. International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts,1992,29(3):198-223.
    9. Darcy, H.. Les Fontaines Publique de la Ville de Dijon Dalmante[M].Paris:Dalmont,1856.
    10. Terry Engelder, Christopher H. Scholz. Fluid Flow along Very Smooth Joints at Effective Pressures Up To 200 Megapascals[J].Mechanical behavior of crustal rocks,1981(24):147-152.
    11. Fatt, D. H.Davis,. Reduction in Permeability with Overburden Pressure, AIME Petroleum Transactions, 1952,195:329.
    12. Jeirald Saulsberry, eds. A Guide to Coalbed Methane Reservoir Engineering[M]. Chicago:Gas Research Institute,1996.
    13. Geertsma, J. Problems of Rock Mechanics in Petroleum Production Engineering[A]. In:Proceedings of First Congress of International Society of Rock Mechanics[C].Lisbon,1966, pp.585-594.
    14. Gilman A., Beckie, R.. Flow of Coalbed Methane to a Gallery[J].Transport in Porous Media,2000,41(1): 1-16.
    15. Ian Gray.The Mechanism of and Energy Release Associated with Outbursts[A]. In:Symposium on the Occurrence, Prediction, and Control of Outbursts in Coal Mines[C].Southern Queensland Branch, Brisbane:Australasian Institute of Mining and Metallurgy,1980:111-125.
    16. Jones Jr., Frank O.. A Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rocks[J]. Journal of Petroleum Technology,1975,27 (1):21-27.
    17. Shi, J. Q. and Durucan, S..Drawdown Induced Changes in Permeability of Coalbeds:A New Interpretation of the Reservoir Response to Primary Recovery[J].Transport in Porous Media,2004,56 (1):1-16.
    18. Siriwardane, H. J., Smith, D. H., Gorucu, F.,et al. Influence of Shrinkage and Swelling, of Coal on Production of Coalbed Methane and Sequestration of Carbon Dioxide[A].In:2006 SPE Annual Technical Conference and Exhibition[C]San Antonio,2006.
    19. Walsh, J. B.. The Effect of Pore Pressure and Confining Pressure on Fracture Permeability[J]. International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts,1981,18 (5):429-435.
    20. Somerton, W. H., Soylemezoglu,1. M., Dudley, R. C.. Effect of Stress on Permeability of Coal[J].International Journal of Rock Mechanics Mining Science and Geomechanics Abstracts,1975,12 (5-6):129-145.
    21. Harpalani, S., McPherson, M. J. (). Effect of Stress on Permeability of Coal[A].In:the 26th US Symposium on Rock Mechanics[A] Rapid City, South Dakota:South Dakota School of Mines and Technology,1985.
    22. Harpalani, S. (1985). Gas Flow through Stressed Coal. PhD dissertation, University of California, Berkeley.
    23. Durucan, S., Edwards, J. S.. The Effect of Stress and Fracturing on Permeability of Coal[J].Mining Science and Technology,1986,3:205-216.
    24. Ian Gray. Reservoir Engineering in Coal Seams:Part 1. The Physical Process of Gas Storage and Movement in Coal Seams[J].SPE Reservoir Engineering,1987,2 (1):28-34.
    25. Enever, J.R.E. and Henning, A..The Relationship between Permeability and Effective Stress for Australian Coals and its Implications with Respect to CoalbedMethane Exploration and Reservoir Modelling[A].In: 1997 CoalbedMethane Symposium[C]. USA:University of Alabama,1997:13-22
    26. Seidle, J. P., Jeansonne, M. W., Erickson, D. J..Application of Matchstick Geometry to Stress Dependent Permeability in Coals[A]In:the SPE Rocky Mountain Regional Meeting[C].Casper, Wyoming,1992.
    27. Harpalani, S., Schraufnagel R. A.. Influence of Matrix Shrinkage and Compressibility on Gas Production from Coalbed Methane Reservoirs[A].In:the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers[C].New Orleans, Louisiana.,1990.
    28. Harpalani, S., Schraufnagel, R. A.. Shrinkage of Coal Matrix with Release of Gas and its Impact on Permeability of Coal[J].Fuel,1990,69 (5):551-556.
    29. Harpalani, S., and Chen, G. Influence of Gas Production Induced Volumetric Strain on Permeability of Coal[J].International Journal of Geotechnical and Geological Engineering,1997,15 (4):303-325.
    30. Robertson, E.P. and R.L. Christiansen,2004:"Optically-based Strain Measurement of Coal Swelling and Shrinkage,[A].In:2004 International Coalbed Methane Symposium[A] Tuscaloosa, Alabama,2004.
    31. Sereshki, F., Bruggemann, D., Aziz, N. I.,Porter, I.. Change in Effective Stress Associated with Coal Shrinkage and Gas Sorption[J].Journal of the Mine Ventilation Society of South Africa,2005,58 (1):28-31.
    32. Singh, K.. Establishing Permeability Trends for Illinois Coals[D]. Carbondale:Southern Illinois University, 2008.
    33. Briggs, H.. Shrinkage of Coal and its Relation to Discharge of Gas from Coal Seams [J].Colliery Engineering,1933,10 (113):223-225.
    34. Moffat, D. H.,Weale, K. E.. Sorption by Coal of Methane at High-Pressures[J].Fuel,1955,34(4):449-462.
    35. Seidle, J. P. and Huitt, L. G. Experimental Measurement of Coal Matrix Shrinkage Due to Gas Desorption and Implications for Cleat Permeability Increases[A]ln:international Meeting on Petroleum Engineering[C]. Beijing, China,1995
    36. Pan, Z., Connell, L. W.. A Theoretical Model for Gas Adsorption-Induced Coal Swelling[J].International Journal of Coal Geology,2007,69 (4), pp.243-252.
    37. Zahner, R. Application of Material Balance to Determine Ultimate Recovery of a San Juan Fruitland Coal Well[A].In:SPE Annual Technical Conference and Exhibition[C].San Antonio,1997.
    38. Clarkson, C. R., and McGovern, J. M.. A New Tool for Unconventional Reservoir Exploration and Development Applications[A]In:2003 International Coalbed Methane Symposium[C].Tuscaloosa,2003.
    39. Levine, J. R. (1996). Model Study of the Influence of Matrix Shrinkage on Absolute Permeability of Coal Bed Reservoirs.[A].In:Gayer, R. and Harris, I., Coalbed Methane and Coal Geology[C]. London:Geologic Society Special Publication,1996:197-212.
    40. Palmer, I.. Permeability Changes in Coal:Analytical Modeling[J].International Journal of Coal Geology, 2009,77 (1-2):119-126.
    41. McKee, C. R., Bumb, A. C., Koeing, R. A.. Stress-dependent Permeability and Porosity of Coal[A].In:1987 Coalbed Methane Symposium[C]:Tuscaloosa,1987.
    42. Kamal, M. M., Six, J. L.. Pressure Transient Testing of Methane Producing Coalbeds[A].In:SPE Annual Technical Conference and Exhibition[C].San Antonio,1989.
    43. Palmer, I., and Mansoori, J.. How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model[A]In:SPE 71st Annual Technical Conference[C]. Denver,1996.
    44. Palmer, I. and Mansoori, J.. How Permeability Depends on Stress and Pore Pressure in Coalbeds:A New Model[J].SPE Reservoir Engineering,1998,1(6), pp.539-544.
    45. Palmer, I., Mavor, M., Gunter, B.. Permeability Changes in Coal Seams during Production and Injection[A].In:2007 International Coalbed Methane Symposium[C].Tuscaloosa,2007.
    46. Palmer I.,. Permeability Changes in Coal:Analytical Modeling[J].International Journal of Coal Geology, 2008,77(1-2):119-126..
    47. Shi, J. Q.,Durucan, S.. Changes in Permeability of Coalbeds during Primary Recovery-Part 1:Model Formulation and Analysis[A]In:the2003 International Coalbed Methane Symposium[C].Tuscaloosa,,2003.
    48. Shi, J. Q. and Durucan, S..Changes in Permeability of Coalbeds during Primary Recovery-Part 2:Model Formulation and Analysis[A].In:2003 International Coalbed Methane Symposium[C].Tuscaloosa,2003.
    49. Shi, J.Q. and Durucan, S.. A Model for Changes in Coalbed Permeability during Primary and Enhanced Methane Recovery [J].SPE Reservoir Evaluation and Engineering,2005,8(4):291-299.
    50. Cui, X. and Bustin, R. M.. Volumetric Strain Associated with Methane Desorption and its Impact on Coalbed Gas Production from Deep Coal Seams[J].AAPG Bulletin,2005,89 (9):1181-1202.
    51. Robertson, E.P., Christiansen, R.L.. Modeling permeability in coal using sorptioninduced strain data[A].In: Society of Petroleum Engineers Annual Technical Conference[C]. Dallas:Society of Petroleum Engineers, 2005.
    52. Pekot, L.J., Reeves, S.R.. Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon sequestration[A].In:2003 International Coalbed Methane Symposium.[C].Tuscaloosa,2003.
    53. Scott, A. R., Kaiser, W. R. and Ayers, Jr. W. B.. Thermogenic and Secondary Biogenic Gases, San Juan Basin, Colorado and New Mexico--Implications for Coalbed Gas Producibility[J].AAPG Bulletin,1994,78 (4):1186-1209.
    54. Choi, S. K., Wold, M. B.. A Coupled Geomechanical-Reservoir Model for the Modelling of Coal and Gas Outbursts[J].Coupled thermo-hydro-mechanical-chemical processes in geo-systems:fundamentals, modelling, experiments and applications,2004,2:629-634.
    55. Gu, F. and Chalaturnyk, R. J.. Numerical Simulation of stress and Strain due to Gas Sorption/Desorption and their Effects on In Situ Permeability of Coalbeds[A].In:Petroleum Society's Canadian International Petroleum Conference[C].Calgary,2005.
    56. Gu, F. and Chalaturnyk, R. J. (2005b). Sensitivity Study of Coalbed Methane Production with Reservoir and Geomechanic Coupling Simulation. Journal of Canadian Petroleum Technology,44 (10), pp.23-32.
    57. Gu, F. and Chalaturnyk, R. J.. Analysis of Coalbed Methane Production by Reservoir and Geomechanical Coupling Simulation[J].Journal of Canadian Petroleum Technology,2005,44 (10):33-42.
    58. Gu, F. and Chalaturnyk, R. J.. Numerical Simulation of Stress and Strain due to Gas Sorption/Desorption and Their Effects on In Situ Permeability of Coalbeds[J].Journal of Canadian Petroleum Technology, 2006,45 (10):52-62.
    59. Connell, L. D.. Coupled Flow and Geomechanical Processes during Gas Production from Coal Seams[J]. International Journal of Coal Geology,2009,79 (1-2):18-28.
    60. 俞启香.矿井瓦斯防治技术[M].徐州:中国矿业大学出版社,1990.
    61. 于不凡.王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社.2005.
    62. 郭德勇,韩德馨,冯志亮.围压下构造煤的孔隙度和渗透率特征实验研究[J].煤田地质与勘探.1998,26(4):31-34.
    63. 傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373-377.
    64. 潘哲军,卢克·康奈尔.煤的膨胀和收缩在二氧化碳增产煤层甲烷过程中的影响[J].中国煤层气,2007,4(1):7-10.
    65. 李相臣,康毅力,罗平亚.煤层气储层变形机理及对渗流能力的影响研究[J].中国矿业,2009,18(3):99-102.
    66. 肖晓春,潘一山.考虑滑脱效应和温度场的煤层气渗流数值模拟[J].中国地质灾害‘与防治学报,2006,17(3):91-95.
    67. 唐巨鹏,李成全,潘一山.水力割缝开采低渗透煤层气应力场数值模拟[J].天然气工业,2004,24(10):93-95.
    68. 肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,24(16):2966-2970.
    69. 周军平,鲜学福,姜永东,等.考虑有效应力和煤基质收缩效应的渗透率模型[J].西南石油大学学报(自然科学版),2009,31(1):4-8.
    70. 傅雪海,秦勇,姜波,等.高煤级煤储层煤层气产能“瓶颈”问题研究[J].地质评论,2004,50(5):507-513.
    71. 杨永国,秦勇.煤层气产能预测随机动态模型及应用研究[J].煤炭学报,2001,26(2):122.125.
    72. 付下,郭肖,贾英,严文德.煤基质收缩对裂隙渗透率影响的新数学模型[J].天然气工业,2005,25(2):143-145.
    73. 靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究[J].1991,10(3):271-280.
    74. 林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业大学学报,1986,(3):9-16.
    75. 薄冬梅,赵永军,姜林,等.煤层气储层渗透性研究进展[J].西南石油大学学报(自然科学版),2008,30(6):31-34.
    76. 王晓梅,张群,张培河,等.煤层气储层数值模拟研究的应用[J].天然气地球科学,2004,15(6):664-668.
    77. 司淑平,李文峰,马建民.煤层气井产能影响因素分析及对策[J].断块油气田,2001,8(5):50-53.
    78. 张力,何学秋,李侯全.煤层气渗流方程及数值模拟[J].天然气工业,2002,22(1):23-26.
    79. 李培超,孔祥言,曾清红,等.煤层渗透率影响因素综述与分析[J].天然气工业,2002,22(5):45-49.
    80. 张健,汪志明.煤层应力对裂隙渗透率的影响[J].中国石油大学学报(自然科学版),2008,32(6):92-95.
    81. 陈金刚,张世雄,秦勇,等.煤基质收缩能力内在控制因素的试验研究[J].煤田地质与勘探,2004,32(5):26-28.
    82. 陈江峰,苏现波,高玉明,等.中国煤层气产业化发展的机遇与挑战[J].中国煤田地质,2001,13(3):22-23,80.
    83. 孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报(自然科学版),200 1,20(1):36-39.
    84. 李祥春,郭勇义,吴世跃,等.煤体有效应力与膨胀应力之间关系的分析[J].辽宁工程技术大学学报,2007,26(8):535-537.
    85. 张力,何学秋,王恩元,等.煤吸附特性的研究[J].太原理工大学学报,2001,32(4):449-451.
    86. 隆清明.煤的吸附作用对瓦斯渗透特性的影响[D].煤炭科学研究总院重庆研究院硕士学位论文,2008.
    87. 周世宁,孙辑正.煤层瓦斯流动理论及应用,煤炭学报,1965,2(1):24-37.
    88. 谭学术,鲜学福,张广洋,等.煤的渗透性研究[J].西安矿业学院学报,1994,(1):22-25.
    89. 姜德义,张广洋,胡耀华,等.有效应力对煤层气渗透率影响的研究[J].重庆大学学报(自然科学版),1997,20(5):22-25.
    90.孙可明,梁冰,潘一山.流固耦合作用下注气开采煤层气增产规律研究[J].2006,6(7):802-806.
    91. 卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):686-693.
    92. 傅雪海,李大华,秦勇,等.煤基质收缩对渗透率影响的实验研究[J].中国矿业大学学报,2002,31(2):129-131.
    93. 吴世跃,赵文.含吸附煤层气煤的有效应力分析[J].岩石力学与工程学报,2005,24(10):1674-1678.
    94. 付玉,郭肖,贾英,严文德.煤基质收缩对裂隙渗透率影响的新数学模型[J].天然气工业,2005,25(2):143—145.
    95. 陈金刚,秦勇,傅雪海,等.高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J].中国矿业大学学报,2006,35(1),50-53.
    96. 唐巨鹏,潘一山.有效应力对煤层气解吸渗流的影响的试验研究[J].岩石力学与工程学报,2006,25(8),1546-1568.
    97. 李祥春,郭勇义,吴世跃,等.煤体有效应力与膨胀应力之问关系的分析[J].辽宁工程技术大学学报,2007,26(8):535-537.
    98. 张先敏,同登科.考虑基质收缩影响的煤层气流动模型及应用[J].中国科学E辑:技术科学,2008,38(5):790-796.
    99. 聂百胜,何学秋,李祥春,张翔.真三轴应力作用下煤体瓦斯渗流规律实验研究[J].第四届深部岩体力学与工程灾害控制学术研讨会论文集[A],2009,345-347.
    100.李相臣,康毅力,罗平亚.应力对煤岩裂缝宽度及渗透率的影响[J].煤田地质与勘探,2009,37(1):29-32.
    101.周军平,鲜学福,姜水东,等.考虑有效应力和煤基质收缩效应的渗透率模型[J].西南石油大学学报(自然科学版),2009,31(1):4-8.
    102. R. W. Zimmerman. Compressibility of sandstones [M].New York:Elsevier science publishing company INC.,1991:23-25.
    103.李培超,孔祥言,曾清红.煤层渗透率影响因素综述‘与分析[J].天然气工业,2002:22(5):45-49
    104张广洋,胡耀牛,姜德义.煤的瓦斯渗透性影响因素的影响因素[J].重庆大学学报(自然科学版),1995,18(3):27-30.
    105.叶建平,史保生,张春才.中国煤储层渗透性及其主要影响因素[J].煤炭学报,1999,24(2):118-122
    106. Massarotto, P., Golding, S. D., Rudolph. Constant Volume CBM Reservoirs:An Important Principle[A].In:2009 International Coalbed Methane Symposium[C].Tuscaloosa,1999.
    107. Dudley D. Rice. (1992). Composition and Origins of Coalbed Gas[A].In:Hydrocarbons from Coal, eds. Law, B. E. and Rice, D. D. AAPG Studies in Geology #38, The American Association of Petroleum Geologists, Tulsa, Oklahoma.159-184
    108. Van Krevelin, D. W.. Coal:Typology-Physics-Chemistry-Constitution. Elsevier[M]. New York: Elsevier Science,1993.
    109. Yves Gueguen, Luc Dormieux,,Maurice Bouteca. Fundamentals of Poromechanics[A]. RocksGueguen, Y., Bouteca, M..Mechanics of Fluid Saturated, International Geophysical Series. [C]. New York:Elsevier Academic Press,2004:1-41.
    110. Hargraves, A. J.. Instantaneous Outbursts of Coal and Gas[D]. Sydney:University of Sydney,1963.
    111. Robertson, E. P. and Christiansen, R. L.. A Permeability Model for Coal and Other Fractured, Sorptive-Elastic Media[A].2006 SPE Eastern Regional Meeting[C]. Canton,2006.
    112. Shi, J. Q. and Durucan, S.. Exponential Growth in San Juan Basin Fruitland Coalbed Permeability with Reservoir Drawdown-Model Match and New Insights[A].2009 SPE Rocky Mountain Petroleum Technology Conference[C].Denver,2009.
    113. Shi, J. Q. and Durucan, S.. Drawdown Induced Changes in Permeability of Coalbeds:A New Interpretation of the Reservoir Response to Primary Recovery [J].Transport in Porous Media,2004,56 (1):1-16.
    114. Siriwardane, H. J., Smith, D. H., Gorucu, F. and Ertekin, T.. Influence of Shrinkage and Swelling, of Coal on Production of Coalbed Methane and Sequestration of Carbon Dioxide[A].2006 SPE Annual Technical Conference and Exhibition[C].San Antonio,2006.
    115. Zhang, H., Liu, J., Elsworth, D.. How Sorption-induced Matrix Deformation Affects Gas Flow in Coal Seams:A New FE Model[J]International Journal of Rock Mechanics and Mining Sciences,2007,45 (8):1226-1236.
    116. Zulkarnian, I.. Simulation Study of the Effect of Well Spacing, Effect of Permeability Anisotropy, and Effect of Palmer and Mansoori Model on Coalbed Methane Production. [D]. Texas:Texas A & M University,2005.
    117. Van Krevelen, D. W. Coal[M]. Amsterdam:Elsevier,1961.
    118. Van Kreveln. D.W..1981 Coal Elsev~erS cie~t i f icP ublishing Company. Amsterdarrl.
    119. Scott, J. Scott. Accurate recognition of source rock character in the Jurassic of the North West Shelf, Western Australia[J].Australian Petroleum Exploration Association Journal,1992,32(1):.289-299.
    120. Jeffrey R. Levine. Coalification:the evaluation of coal as source rock and reservoir rock for oil and gas: [J]. Hydrocarbons from Coal,1993,38:39-77
    121. C. Ozgen Karacan, Gareth D. Mitchell. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams[J]. International Journal of Coal Geology,2003,53:201-217
    122. Craig T. Rightmire, Greg E. Eddy, James Kirr. Coalbed Methane Resource of theUnited States[M].Oklahoma:Amer Assn of Petroleum Geologists,1985.
    123. Patching, T. H.. The Retention and Release of Gas in Coal-A Review[J].Canadian Mining and Metallurgical Bulletin.1970,63:1302-1308.
    124. C. R. Clarkson, R. M. Bustin. Variation in permeability with lithotype and maceral composition of Cretaceous coals of the Canadian Cordillera[J]. International Journal of Coal Geology,1997,33(2):135-151.
    125. Gregg, S. J., and Sing, K. S. W.. Adsorption Surface Area and Porosity[M].London:Academic Press,1982.
    126. Gregg, S. J.. The surface chemistry of solids[M].New York:Reinhold,1961.
    127. Arri, L. E., Yee, D., Morgan, W. D., Jeansonne, M. W.. Modeling Coalbed Methane Production with Binary Gas Sorption[A].SPE RockyMountain Regional Meeting[M].Casper,1992.
    128. Rogers, R. E.. Coalbed Methane:Principles and Practices [M] New Jersey:Prentice Hall,1994.
    129. King, G R.. Numerical Simulation of the Simultaneous Flow of Methane and Water through Dual Porosity Coal Seams during the Degasification Process[D]. United States:Pennsylvania State University,1985
    130. Harpalani, S., Chen, G. Estimation of Changes in Fracture Porosity of Coal with Gas Emission [J].Fuel,74 (10):1491-1498.
    131. Kolesar.J. E., Turgay Ertekin, S.T. Obut. The Unsteady-State Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal:Part 1-Theory and Mathematical Formulation [J]. SPE Formation Evaluation,1990,5(1):81-88.
    132. Smith, Douglas M., Williams, Frank L.. Diffusional Effects in the recovery of Methane from Coalbed[J].SPE Journal,1984,24(5):529-535.
    133. Crank,J.1975, "The Mathematics of Diffusion",Second Edition, Oxford University
    134. Zutshi, A.. Matrix Swelling with Carbon Dioxide Injection and Its Impact on Coal Permeability.[D]. Carbondale:Southern Illinois University,2005.
    135. Sullivan, R.R. and Hertel, K.L.. The Flow of Air through Porous Media[J].Journal of Applied Physics, 1940,11:761-765.
    136. Karl Terzaghi. Theoretical Soil Mechanics[M],New York:Wiley,1943.
    137. Klinkenberg, L. J.. The Permeability of Porous Media to Liquids and Gases[J]. Drilling and Production Practice,1941:200-213.
    138. Philip H. Francis. Dynamic Problems of Thermoelasticity [M].The Netherlands:Kluwer Academic Publishers Group,1975.
    139. Bear, J., Corapcioglu, M. Y.. Mathematical Model for Consolidation in a Thermoelastic Aquifer Due To Hot Water Injection or Pumping[J].Water Resources Research,1981,17 (3):723-736.
    140. Ates, Y. and Barron, K.. The effect of gas sorption on the strength of coal [J].Mining science and Technology,1987,6:291-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700