用户名: 密码: 验证码:
煤岩体水力压裂裂缝扩展及对瓦斯运移影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的增加,煤与瓦斯突出危险性不断增加。对于低渗透性且具有突出危险的煤体,如何有效降低煤与瓦斯突出危险性是亟待解决的重大安全科技问题。煤岩体水力压裂是低渗透煤体瓦斯抽采、突出煤体消突的有效技术途径,尤其是对于单一低渗突出煤体。煤岩体水压裂缝的扩展及瓦斯运移是决定煤岩体水力压裂效果的主要因素。为此,本文以煤岩体水压裂缝扩展及瓦斯运移为主要研究对象,采用理论分析、数值计算和现场试验相结合的方法,系统、深入地研究了煤岩体水力压裂裂缝扩展及对瓦斯运移影响。本文的主要研究成果与结论有:
     ①建立了煤岩体水力压裂渗流—损伤耦合数学模型,该模型采用统计方法来表征煤岩体参数的非均匀性,涉及了渗流场和应力场的耦合作用,内含弹—脆性、弹性软化和弹性弱化3种损伤本构,考虑了损伤的演化过程及其对渗透率等物理参数的影响;提出了该数学模型的耦合迭代求解算法,并利用Matlab软件进行有限元编程实现了数值求解,通过与商业软件计算结果及理论解析解的比较,验证了该数学模型及其数值解法的正确性;系统研究了煤岩体的非均匀性、初始地应力场和钻孔孔径对水压裂缝起裂、扩展的影响,研究了预先水力割缝导向压裂法和多孔控制压裂法的水压裂缝控制机制及影响因素,研究结果为现场水力压裂参数设计及控制压裂提供了理论依据。
     ②从水力压裂驱赶瓦斯效应、改变瓦斯流态和影响瓦斯吸附解吸特性三方面研究了煤岩体水力压裂对瓦斯运移的影响。提出了煤岩体水力压裂与瓦斯抽采统一数学模型,并应用于压裂后的瓦斯抽采数值模拟,研究压裂后的瓦斯运移规律;数值计算结果表明,损伤单元的煤体瓦斯压力降低明显,说明水压裂缝处的煤体透气性得到改善,形成了新的“更宽阔、通畅”的瓦斯运移通道,显著提高了瓦斯抽采效果。研究结果对现场压裂钻孔和瓦斯抽采钻孔布置优化具有指导意义。
     ③基于煤岩体变形模型、水压裂缝面内流体压降模型和水压裂缝扩展模型,建立了低渗透煤岩体水力压裂单一裂缝扩展数学模型,提出了该数学模型的数值求解算法,并利用APDL二次开发语言实现了数值求解。确定了注入压力、煤岩体弹性模量、初始地应力场以及压裂液黏度对水力压裂单一裂缝扩展的影响规律。研究结果为现场水力压裂施工作业参数选择提供理论指导。
     ④基于煤体注水难易程度的6个判别指标,构建了煤岩体水力压裂后注水难易程度的Fisher判别模型和可拓判别模型。工程实例判别结果表明,2种方法的判别结果与工程勘察分类、模糊聚类法和神经网络法的结果一致或更好,实现了压裂后煤体注水难易程度的科学评价和分类,为水力压裂后进一步采取静压注水措施的可行性判断提供了参考依据。
     ⑤基于水力压裂裂缝扩展规律及其对瓦斯的运移影响理论研究,并兼顾考虑煤矿井下施工条件和瓦斯抽采等制约因素,提出了煤岩体水力压裂技术,该技术集煤岩体增透、瓦斯驱赶、抽采与注水湿润于一体。煤岩体水力压裂现场试验结果表明,水压裂缝的扩展经历了“闭合—张开—产生新裂缝”的过程,随着压裂孔与水压裂缝前沿距离的增大,水压力沿程衰减,水压裂缝扩展所需的水压不断增大;压裂后的考察钻孔和压裂钻孔中的瓦斯浓度增加,验证了水力压裂的驱赶瓦斯效应。现场瓦斯抽采和突出预测指标结果表明,压裂钻孔的瓦斯抽采浓度和抽采纯量呈现“高—低—高”的特点;压裂影响范围内的突出危险性预测指标值均未超标,验证了煤岩体水力压裂对瓦斯运移的影响理论,即水力压裂技术可有效增大煤岩体的透气性,提高瓦斯抽采率和消除煤与瓦斯突出危险性,并具有显著的技术经济效益。
With the increase of mining depth, the risk of coal and gas outburst increases. Howto reduce coal and gas outburst risk effectively is a major safety problem and letter to beresolved for low permeability and gas bursting coal seam. Hydraulic fracturing ofcoal-rock mass is an effective technical approach for gas drainage of low permeabilityand gas bursting coal seam, especially for a single coal seam. Crack propagation ofhydraulic fracturing for coal-rock mass and gas migration are major factors deciding theeffect of hydraulic fracturing. Thus, this paper took crack propagation of hydraulicfracturing for coal-rock mass and gas migration as main study object, crack propagationof hydraulic fracturing for coal-rock mass and its influence on gas migration weresystematically and thoroughly studied by combining theoretical analysis with numericalsimulation and field investigation, which had important theoretical significance andengineering application prospect. The main research results and conclusions are asfollows:
     Firstly, mathematical model for seepage and damage coupling of hydraulicfracturing was established, which used statistical approach to represent heterogeneity ofcoal-rock mass parameters, involved coupling effect between seepage filed and stressfield, contained three constitutive relations, namely elastic-brittle, elastic-soften andelastic-weaken, considered the evolutionary process of damage and its influence onpermeability and other physical parameters; the coupling iterative algorithm for thismodel was worked out and numerically solved by finite element programming usingmatlab software, and the results of which were compared with business software andtheoretical analsysis, which verified the validity of mathematical model and itsnumerical method. Designed programme of numerical calculations were used to studyheterogeneity of coal-rock mass, in-situ stress field, diameter and shape of boreholewhose influences on crack and propagation of hydraulic fracturing for coal-rock mass.Hydraulic fracturing technology of hydraulic cutting in advance and multiboreholecontrol fracturing were studied. The above research results provided theoretical basisfor parameter design and borehole layout for field hydraulic fracturing.
     Secondly, gas migration influenced by hydraulic fracturing was studied from threeaspects, namely methane driven effect, gas flow feature changed and gas adsorption anddesorption influenced. Based on this, the unified mathematical model for hydraulic fracturing and gas drainage was established, and then was applied to numericalsimulation of gas drainage after fracturing, which studied the gas migration afterfracturing. The results proved that gas pressure near damage zone decreasedsignificantly, which illustrated that coal seam permeability near hydraulic fracture wasgreatly improved and new gas migration channel was formed near hydraulic fracture,which could significantly improve gas drainage effect. The above results providedguiding significance for the field borehole location optimization of gas drainage.
     Thirdly, based on deformation model of coal-rock mass, fluid pressure drop modelin hydraulic fracture, crack model and criterion for hydraulic fracture propagation,mathematical model of single crack propagation for low permeability coal-rock masswas established, whose numerical algorithm was studied and implemented using thesecondary development language APDL of ANSYS. The crack propagationcharacteristics, by changing injection pressure, elastic modulue, and in-situ stress fieldand fracturing fluid viscosity respectively were studied. The numerical simulationresults were consistent with the field observation results, which showed that thesimulation results could provide guidance for the choice of field construction parameterof hydraulic fracturing.
     Fourthly, based on six discriminant index of water infusion difficulty degree forcoal seam, Fisher discrimination model and extension discrimination model for coalseam water infusion difficulty degree after hydraulic fracturing were built. Thediscrimination results of engineering cases showed that the two above methods wereconsistent or better than the results of engineering investigation, fuzzy clusteringmethod and neural network method, which achieved the scientific evaluation andclassification of water infusion difficulty degree after hydraulic fracturing, and providedreference for the feasibility judgement of static pressure water infusion measure afterhydraulic fracturing to prevent coal and gas outburst.
     Fifthly, aiming at different coal structure types and considering constructionconditions underground coal mine and constraint factors of gas drainage, hydraulicfracturing process and technology was proposed, and then was applied in guiding thedesign of field hydraulic fracturing. The field hydraulic fracturing observation resultsshowed that the crack propagation had went through process of closure, expansion andnew crack generated. With the increase of distance between borehole and fractureleading edge, the water pressure decayed along distance and the intrinsic crack reopened,the water pressure needed for crack propagation was increased gradually. The gas concentration in inspection boreholes and fracturing boreholes after hydraulic fracturingwer all increased, which verified the methane driven effect of hydraulic fracturing. Thefiled investigation results of gas drainage and outburst prediction index showed that thegas drainage scalar quantity was high and kept smooth and steady during initial gasdrainage stage, followed by a short reduction period, and then gas drainage scalarquantity increased again later, a persistent gas production period emerged; besides, theoutburst prediction index in the influence range of hydraulic fracturing was lower thanthe critical index, which verified gas migration influenced by hydraulic fracturing,namely, hydraulic fracturing of coal-rock mass could increase permeability of coal-rockmass effectively, enhance gas drainage efficiency and eliminate the risk of coal and gasoutburst, it had obvious technical and economic benefit.
引文
[1]付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策[J].采矿与安全工程学报,2007.82(3):253-259.
    [2]林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,2010.
    [3]国家安全生产监督管理总局.煤矿安全规程[M].北京:煤炭工业出版社,2012.
    [4]中华人民共和国煤炭工业部.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [5]于不凡,王佑安.矿井瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [6]林柏泉,孟凡伟,张海宾.基于区域瓦斯治理的钻割抽一体化技术及应用[J].煤炭学报,2011.36(1):75-79.
    [7]冯增朝.低渗透性煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [8]王素玲.低渗透油层水力压裂三维裂缝数值模拟研究[D].大庆石油学院,2008.
    [9]吴世跃.煤层气与煤层耦合运动理论及其应用的研究[D].东北大学,2006.
    [10]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学,2004.
    [11]李宗利,任青文.岩石混凝土类材料单裂纹水力劈裂研究述评[J].水利水运工程学报,2005.(1):67-74.
    [12]维里奇斯基АБ,安志雄.采用水力压裂强化煤层瓦斯抽放的远景[J].煤矿安全,1989.(9):51-53.
    [13]林柏泉,李子文,翟成,等.高压脉动水力压裂卸压增透技术及应用[J].采矿与安全工程学报,2011.28(3):452-455.
    [14]柏泉等,孟杰,宁俊,等.含瓦斯煤体水力压裂动态变化特征研究[J].采矿与安全工程学报,2012.29(1):106-110.
    [15]郭红玉,基于水力压裂的煤矿井下瓦斯抽采理论与技术[D],河南理工大学,2011.
    [16]黄炳香.煤岩体水力致裂弱化的理论与应用研究[D].江苏:中国矿业大学,2009.
    [17]刘建军,冯夏庭,裴桂红.水力压裂三维数学模型研究[J].岩石力学与工程学报,2003,22(12):2042-2046.
    [18]刘洪,张光华,钟水清,等.水力压裂关键技术分析与研究[J].钻采工艺,2007,30(2):49-52.
    [19]张国华,魏光平,侯凤才.穿层钻孔起裂注水压力与起裂位置理论[J].煤炭学报,2007,32(1):52-55.
    [20]阳友奎,肖长富,吴刚,等.不同地应力状态下水力压裂的破裂模式[J].重庆大学学报,1993,16(3),30-35.
    [21] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing[J].Trans AIME,1957,210:153–168.
    [22]李传亮,孔祥言.油井压裂过程中岩石破裂压力计算公式的理论研究[J].石油钻采工艺,2000,22(2):54-56.
    [23] Haimson B, Fairhurst C. Initiation and extension of hydraulic fractures in rocks[J].SPEJ,Sept1967:310-318.
    [24]任岚,赵金洲,胡永全,等.水力压裂时岩石破裂压力数值计算[J].岩石力学与工程学报,2009,28(增2):3417-3422.
    [25] M.M.Hossain,M.K.Rahman,S.S.Rahman.Hydraulic fracture initiation and propagation: roles ofwellbore trajectory,perforation and stress regimes[J].Journal of Petroleum Science andEngineering,2000,27:129-149
    [26] Zhang Guangqing, Chen Mian.Complex fracture shapes in hydraulic fracturing with orientatedperforations [J].Petroleum Exploration and Development,2009,36(1),103-107.
    [27]姜浒,陈勉,张广清.定向射孔对水力裂缝起裂与延伸的影响[J].岩石力学与工程学报,2009,28(7):1321-1326.
    [28]连志龙,水力压裂扩展的流固耦合数值模拟研究[D].中国科学技术大学,2007.
    [29]乌效鸣,屠厚泽.煤层水力压裂典型裂缝形态分析与基本尺寸确定[J].地球科学—中国地质大学学报,1995,20(1):112-116.
    [30]单学军,张士诚,李安启,等.煤层气井压裂裂缝扩展规律分析[J].天然气工业,2005,25(1):130-132.
    [31]乌效鸣,屠厚泽.煤层水力压裂典型裂缝形态分析与基本尺寸确定[J].地球科学—中国地质大学学报,1995,20(1):112-116.
    [32]朱宝存,唐书恒,张佳赞.煤岩与顶底板岩石力学性质及对煤储层压裂的影响[J].煤炭学报,2009,34(6):756-760.
    [33]王鹏等,茅献彪,杜春志,等.煤层钻孔水压致裂的裂缝扩展规律研究[J].采矿与安全工程学报,2009.26(1):31-35.
    [34] S.Y.Wang,L.sun,A.S.K.Au,etal.2D-numerical analysis of hydraulic fracturing in heterogeneousgeo-materials[J].Construction and Building Materials,2009,23:2196-2206
    [35]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [36] Detournay E, Carbonell R.Fracture mechanics analysis of break-down process in minifrac orleak of tests[A].Proceeding of Eu-rock’94[C].Rotterdam:Balkema,1994,399-407.
    [37] Zhao Z,Kim H,Haimson B.Hydraulic fracturing initiation in granite[A].Rock Mechanics[M].Aubertin, Hassani and Mitrieds.Balkema Publishers,Rotterdam,1996:1279-1284.
    [38] M.M.Hossain,M.K.Rahman,S.S.Rahman.A comprehensive monograph for hydrnulic fractureinitiation from deviated wellbores under arbitrary stress regimes[J].SPE,54360,1999.
    [39]邓广哲,黄炳香,王广地,等.圆孔孔壁裂缝水压扩张的压力参数理论分析[J].西安科技学院学报,2003,23(24):361-364.
    [40]邓广哲,王世斌,黄炳香.煤岩水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20):3489-3493.
    [41] I.Berchenko, E.Detournay, N.Chandler, et al.An in-situ thermo-hydraulic experiment in asaturated granite I: design and results[J].International Journal of Rock Mechanics&MiningSciences,2004,41:1377-1394.
    [42] E.Detournay, T.Senjuntichai,I.Berchenko. An in situ thermo-hydraulic experiment in asaturated granite II: analysis and parameter estimation[J].International Journal of RockMechanics&Mining Sciences,2004,41:1395-1411.
    [43] B.C.Haimson.Hydraulic fracturing and rock characterization[J].International Journal of RockMechanics and Mining Sciences,2004,41(3):1-6.
    [44]连志龙,张劲,吴恒安,等.水力压裂扩展的流固耦合数值模拟研究[J].岩土力学,2008,29(11):3021-3026.
    [45]连志龙,张劲,王秀喜,等.水力压裂扩展特性的数值模拟研究[J].岩土力学,2009,30(1):169-174.
    [46]鲁连军,孙逢春,安申法,等.水力裂缝内流场分布的有限元分析[J].北京理工大学学报,2004,24(1):27-30.
    [47] Morten Gjnnes, Antonio M.G.L.Cruz,Per Horsrud,et al.Leak-off tests for horizontal stressdetermination?[J].Journal of Petroleum Science and Engineering,1998,20:63-71.
    [48] Andrew R.Piggott.Static and dynamic calculation of formation fluid displacement induced byhydraulic fracturing [J].Appl.Math.Modelling,1996,20:714-718.
    [49] Riaz Khan.A study of the mechanisms of internal cake formation during drilling,wellcompletion and hydraulic fracturing operations[D].Dissertation of graduate studies inUniversity of Alberta,2004.
    [50]杨焦生.煤岩水力裂缝扩展规律试验研究[J].煤炭学报,2012,37(01):73-77.
    [51]赵益忠,曲连忠,王幸尊,等.不同岩性地层水力压裂裂缝扩展规律的模拟实验[J].中国石油大学学报,2007,31(3):63-66.
    [52]周健,陈勉,金衍,等.裂缝性储层水力裂缝扩展机理试验研究[J].石油学报,2007,28(5):109-113.
    [53]李传华,陈勉,金衍.层状介质水力压裂模拟实验研究[M],中国岩石力学与工程学会第七次学术会议大会论文集,2002.
    [54]杜春志.煤层水压致裂理论及应用研究[D].中国矿业大学,2008.
    [55]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增刊):868-872.
    [56] ZIFENG MA.Experimental studies of rock fracture behavior related to hydraulic fracture[D].Doctor thesis of philosophy in material engineering of the University of Illinois at Chicago,2000.
    [57] B.Bohloli,C.J.de Pater.Experimental study on hydraulic fracturing of soft rocks:Influence offluid rheology and confining stress[J].Journal of Petroleum Science and Engineering,2006,53:1-12.
    [58]邓广哲.封闭型煤层裂隙地应力场控制水压致裂特性[J].煤炭学报,2001,26(5),478-482.
    [59]詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报,2007,26(6):1173-1181.
    [60]中国地震局地壳应力研究所,日本电力中央研究所.水压致裂裂缝的形成和扩展研究[M].北京:地震出版社,1999.
    [61] B.Legarth, E.Huenges, G.Zimmermann.Hydraulic fracturing in a sedimentary geothermalreservoir: Results and implications[J].International Journal of Rock Mechanics&MiningSciences,2005,42:1028-1041.
    [62] J.Adachi, E.Siebrits, A.Peirce, et al.Computer simulation of hydraulic fractures[J].InternationalJournal of Rock Mechanics&Mining Sciences,2007,44:739-757.
    [63]朱宝存,唐书恒,颜志丰,等.地应力与天然裂缝对煤储层破裂压力的影响[J].煤炭学报,2009,34(09):1199-1202.
    [64]张春华,刘泽功,王佰顺,等.高压注水煤层力学特性演化数值模拟与试验研究[J].岩石力学与工程学报,2009,28(A02):3371-3375.
    [65]申晋,赵阳升,段康廉.低渗透煤岩体水力压裂的数值模拟[J].煤炭学报,1997,22(6):580-584.
    [66]杨天鸿,谭国焕,唐春安,等.非均匀性对岩石水压致裂过程的影响[J].岩土工程学报,2002,24(6):724-728.
    [67]冷雪峰,唐春安,杨天鸿等.岩石水压致裂过程的数值模拟分析[J].东北大学学报(自然科学版),2002,23(11):1104-1107.
    [68]李连崇,唐春安,杨天鸿,等.FSD耦合模型在多孔水压致裂试验中的应用[J].岩石力学与工程学报,2004.23(19):3240-3244.
    [69]郭保华.单孔岩样水压致裂的数值分析[J].岩土力学,2010(6):1965-1970.
    [70]富向,刘洪磊,杨天鸿,等.穿煤层钻孔定向水压致裂的数值仿真[J].东北大学学报(自然科学版),2011,32(10):1480-1483.
    [71]张鑫,沈振中,徐力群.含孔岩体破裂过程的无单元法数值模拟[J].河海大学学报,2008,36(5):722-726.
    [72]赵延林,曹平,汪亦显,等.裂隙岩体渗流-损伤-断裂耦合模型及其应用[J].岩石力学与工程学报,2008,27(8):1634-1643.
    [73]孙可明,崔虎,李成全.预制定向裂纹水力压裂延伸数值模拟[J].辽宁工程技术大学学报,2006,25(2):176-179.
    [74]黄炳香,邓广哲,刘长友.煤岩体水力致裂弱化技术及其进展[J].中国工程科学,2007,9(4):83-88.
    [75] Gregg S J,Sing K S. Adsorption surface area and Porosity[M]. London Academic press,1982.
    [76] McLennan J D, Schafer P S, Pratt T J. A guide to determining coalbed gas cont-ent. Chicago:US Gas Research Institute,1995.
    [77]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001:42-84.
    [78]赵志根,唐修义.对煤吸附甲烷Langmuir方程的讨论[J].焦作工学院学报,2002,21(1):93-98.
    [79] Harpalani S, Pariti U M.Study of coal sorption isotherm using a multicomponent gasmixture[C],1993International Coalbed Methane Symposium,1993.
    [80] Chaback J J,Morgan D, Yee D.Sorption irreversibities and mixture compositional behaviorduring enhanced coal bed methane recovery processes[C]. SPE35622. Gas technologyconference,1996.
    [81]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-37.
    [82]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用[J].煤炭学报,1986,11(3),87-94.
    [83] Saghafi.A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用[A].第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987.
    [84]孙培德.煤层瓦斯流场流动规律的研究[J].煤炭学报,1987,12(4):74-82.
    [85] Sun Pei de. Study of the Dynamic Models for Coal Gas Dynamics (part1)[J].Min.Sci. Technol.1991,12(1).
    [86] Harpalain.S. Gas Flow Through Stressed Coal [D].Univ.of California Berkeley, Ph.D.thesis,1985.
    [87] Gawuga.J. Flow of Gas Through Stressed Carboniferous Strata [D].Univ.of Nottingham,Ph.D.thesis,1979.
    [88] Khodot.V.V..Roleof Methane in The Stress State of a Coal Seam [J].Fiziko_TekhnicheskieProblemy Razrabotki Poleznykh Iskopaemykh.1980,(5).
    [89] Somerton.W.H. Effect of Stress on Permeability of Coal [J].Int.J.Rock Meck.Mech.Min.Sci.&Geomech.Abstr.,1975,12(2).
    [90]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究[J].中国矿业学院学报,1986,15(3):12-19.
    [91]林柏泉,周世宁.煤样瓦斯渗透率的实验研究[J].中国矿业学院学报,1987,16(1):24-31.
    [92]姚宇平,周世宁.含瓦斯煤的力学性质[J].中国矿业学院学报,1988,17(2):4-10.
    [93]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,19(2):4-11.
    [94]许江,鲜学福.含瓦斯煤的力学特性的实验分析[J].重庆大学学报,1993,16(5):42-47.
    [95]杜云贵.地球物理场中煤层瓦斯吸附、渗流特性研究[D].重庆大学博士学位论文,1993.
    [96]易俊.声震法提高煤层气抽采率的机理及技术原理研究[D].重庆:重庆大学,1995.
    [97]杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].东北大学,2001.
    [98]盛金昌,廖秋林,刘继山,等.基于FEMLAB的钻井过程中流固热耦合响应分析[J].工程力学,2008,12(02):219-223.
    [99]朱珍德.裂隙岩体损伤力学[M].北京:科学出版社,2005.
    [100]杨天鸿,唐春安,等.水压致裂过程分析的数值试验方法[J].力学与实践,2001,23(5):51-54.
    [101]Yuan SC, Harrison JP. Development of a hydro-mechanical local degradation approach and itsapplication to modelling fluid flow during progressive fracturing of heterogeneous rocks [J].International Journal of Rock Mechanics&Mining Sciences,2005,42:739-757.
    [102]Y.Hamiel,V.Lyakhovsky. Coupled evolution of damage and porosity in poroelastic media:theory and applications to deformation of porous rocks[J]. Geophysical Journal International,156(3):701-713.
    [103]Lei Zhou, Michael Z.Hou.A new numerical3D-model for simulation of hydraulic fracturing inconsideration of hydro-mechanical coupling effects[J].International Journal of RockMechanicss&Mining Sciences,2013,60:370-380.
    [104]SOUSA J L.Three-dimensional simulation of near-wellbore phenomena related to hydraulicfracturing from a perforated wellbore[D]. New York: Cornell University,1992.
    [105]李根,唐春安,李连崇,等.水压致裂过程的三维数值模拟研究[J].岩土工程学报,2010,12(12):1875-1881.
    [106]Rummel F. Fracture mechanics approach to hydraulic fracturing stress measurements[J].Fracture Mechanics Symposium, Stateline, Nevada,1978:10-13.
    [107]Haimson B. Hydraulic fracturing in porous and non-porous rock and its potential for determingin-situ stress at depth[D].Ph.D Thesis, University of Minnesota, Misseapolis, MN.1968.
    [108]T.H.Yang, L.C.Li, L.GTham, C.A.Tang, Numerical approach to hydraulic fracturing inheterogeneous and permeable rocks[J]. Key Engineering Materia1s,2002,(46-47):351-356.
    [109]朱万成,魏晨慧,张福壮,等.流固耦合模型用于陷落柱突水的数值模拟研究[J].地下空间与工程学报,2009,7(5):928-933.
    [110]Jonny Rutqvist. Coupled reservoir–geomechanical analysis of the potential for tensile andshear failure associated with CO2injection in multilayered reservoir–caprock systems.International Journal of Rock Mechanics&Mining Sciences,2008,45:133-144.
    [111]Rice and Cleary.Some basic stress-diffusion solutions for fluid saturated elastic porous mediawith compressible constituents[J].Rev. Geophys.Space Phys.2005,14:227-241.
    [112]Zhou et al. Non-linear thermo-hydro-mechanical behavior of saturated and unsaturated porousmedia[D]. University of Manitoba,1998.
    [113]Tsang and Noorishad. Coupled thermal-hydraulic-mechanical Phenomena in saturatedfractured porous rocks: numerical approach[J]. Joumal of Geophysica Research,1984,(89):10365-10373.
    [114]E.Detournay, A.H-D. Cheng. Poroelastic response of a borehole in a non-hydrostatic stressfield[J].. International Journal of Rock Mechanics&Mining Sciences,1988,25(3):171-182.
    [115]Sun P D.Study of dynamic models for coal gas dynamics(Part I)[J]. International Journal ofRock Mechanics and Mining Sciences&Geomechanical Abstracts,1990,27:325-327.
    [116]陆明万.工程弹性力学与有限元法[M].清华大学出版社,2005.
    [117]胡国忠,王宏图,袁志刚.保护层开采保护范围的极限瓦斯压力判别准则[J],煤炭学报,2010,(7),1131-1136.
    [118]孙培德.多物理场耦合模型及数值模拟导论[M].中国科学技术出版社,2007.
    [119]唐春安.岩石破裂过程中的灾变[M].科学出版社,1993.
    [120]Sang Hoon Lee, Ahmad Ghassemi. THREE-DIMENSIONAL THERMO-PORO-MECHANICAL MODELING OF RESERVOIRSTIMULATION AND INDUCEDMICROSEISMICITY IN GEOTHERMAL RESERVOIR[C]. PROCEEDINGS, Thirty-SixthWorkshop on Geothermal Reservoir Engineering,2011.
    [121]陆银龙.煤炭地下气化过程中温度-应力耦合作用下燃空区覆岩裂隙演化规律[J].煤炭学报,2012,5(8):1292-1298.
    [122]L.C.Li,C.A.Tang,G.Li,S.Y.Wang. Numerical Simulation of3D Hydraulic Fracturing Based onan Improved Flow-Stress-Damage Model and a Parallel FEM Technique[J].NumericalSimulation of3D Hydraulic Fracturing,2012,(45):801-818.
    [123]朱万成.岩石损伤过程中的热-流-力耦合模型及其应用初探[J].岩土力学,2009(12):3851-3857.
    [124]魏晨慧.岩体开挖损伤区的热-流-力耦合模型研究[D].东北大学硕士学位论文,2008.
    [125]赵阳升.多孔介质多场耦合作用及其工程响应[M].科学出版社,2010.
    [126]Y.L.Lu,D.Elsworth,L.G.Wang. Microcrack-based coupled damage and flow modeling offracturing evolution in permeable brittle rocks[J].Computers and Geotechnics,2013,49:226-244.
    [127]刘永忠,黄必武,王乐.非均质多孔盐水层中超临界CO2的注入压力与饱和度分布特性[J].化工学报,2010(01):32-42.
    [128]王勖成.有限单元法基本原理和数值方法[M].清华大学出版社,2003.
    [129]尹光志.含瓦斯煤岩固气耦合失稳理论与实验研究[M].科学出版社,2011.
    [130]Yibing Zheng. Reservoir Simulation with the Finite Element Method Using Biot PoroelasticApproach[J]. International Journal of Rock Mechanics&Mining Sciences,2007,47:138-154.
    [131]周军平,鲜学福,姜永东,等.考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析[J].岩土力学,2010(7):2317-2323.
    [132]Bruno M.S. and Nakagawa F.M. Pore pressure influence on tensile fracture propagation insedimentary rock[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.1991,28(4):261-273.
    [133]黄容樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,(5):62-74.
    [134]刘勇.煤矿井下导向压裂裂缝扩展及增透机理[D].重庆大学,2012.
    [135]冯彦军.受压脆性岩石Ⅰ-Ⅱ型复合裂纹水力压裂研究[J].煤炭学报,2013,38(02):226-232.
    [136]赵延林,曹平,文有道,等.渗透压作用下压剪岩石裂纹损伤断裂机制[J].中南大学学报(自然科学版),2008,39(4):838-844.
    [137]李碧勇,朱哲明.压缩载荷作用下分支裂纹断裂与扩展的数值和实验研究[J].煤炭学报,2013(07):1207-1214.
    [138]宋维源,李大广,章梦涛,等.煤层注水的水气驱替理论研究[J].中国地质灾害与防治学报,2006,17(2):147-150.
    [139]程庆迎.低透煤层水力致裂增透与驱赶瓦斯效应研究[D].中国矿业大学,2012.
    [140]松藻煤电公司打通一煤矿.松软突出煤层高压水力压裂试验总结报告[R].2011.
    [141]郭红玉.煤储层渗透率与地质强度指标的关系研究及意义[J].煤炭学报,2010(08).
    [142]赵东,冯增朝,赵阳升.高压注水对煤体瓦斯解吸特性影响的试验研究[J].岩石力学与工程学报,2011,30(03):547-555.
    [143]陶树,汤达祯,许浩,等.沁南煤层气井产能影响因素分析及开发建议[J].煤炭学报,2011,36(2):194-198.
    [144]郭红玉,苏现波.煤层注水抑制瓦斯涌出机理研究[J].煤炭学报,2010,35(6):923-931.
    [145]涂敏,付宝杰.低渗透性煤层卸压瓦斯抽采机理研究[J].采矿与安全工程学报,2009(04):434-437.
    [146]Zhao Y S, Qing H Z, Bai Q Z. Mathematical model for solid-gas coupled problems on themethane flowing in coal seam[J].Acta Mechanica SolidaSinica,1993,6(4):459.
    [147]Valliappan S, Zhang W H. Numerical modeling of methane gas migration in dry coal seams[J].Geomechanics Abstracts,1997,(1):10.
    [148]SAMIER P, FONTAINE G. Coupled analysis of geomechanics and fluid flow in reservoirsimulation[C].Proceeings of the SPE Reservoir Simulation Symposium. Houston,2003:485-497.
    [149]胡国忠.低渗透煤与瓦斯的固-气动态耦合模型及数值模拟[J].中国矿业大学学报,2011(1):1-6.
    [150]刘洪永.远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究[D].中国矿业大学,2010.
    [151]孙文斌.断层对底板突水的作用影响研究[D].山东科技大学,2006.
    [152]李围. ANSYS土木工程应用实例[M].中国水利水电出版社,2006.
    [153]连志龙,水力压裂扩展的流固耦合数值模拟研究[D].中国科学技术大学,2007.
    [154]杨秀夫,陈勉,刘希圣,等.层状介质条件下水压裂缝缝内流场的理论研究[J].中国海上油气(工程),2003,15(2):35-38.
    [155]梁卫国,赵阳升.盐类矿床群水力压裂连通理论与实践[J].岩石力学与工程学报,2002,21(增2):2579-2582.
    [156]禹华谦.工程流体力学[M].西南交通大学出版社,1999.
    [157]杨永杰.李子垭矿构造应力场存在的推断[J].河北煤炭,1993,(4):12-15.
    [158]王晓锋.煤储层水力压裂裂缝展布特征数值模拟[D].中国地质大学,2011.
    [159]肖知国,王兆丰.煤层注水防治煤与瓦斯突出机理的研究现状与进展[J].中国安全科学学报,2009,19(10),150-158.
    [160]秦书玉,张永吉,秦伟翰.煤层注水技术[M].北京:煤炭工业出版社,2001.
    [161]海治国,李宗翔,秦书玉.煤层注水难易性的模糊聚类分析与判别[J].煤炭科学技术,1993,(4),18-21.
    [162]秦书玉,秦威,赵景馥.煤层注水难易程度的BP神经络评价法[J].中国地质灾害与防治学报,2006,17(3),87-90.
    [163]董陇军,李夕兵,白云飞.急倾斜煤层顶煤可放性分类的Fisher判别分析模型及应用[J].煤炭学报,2009,34(1),58-63.
    [164]张乐文,张德永,邱道宏.基于粗糙集的可拓评判在岩爆预测中的应用[J].煤炭学报,2010(9):1461-1465.
    [165]周健,史秀志.冲击地压危险性等级预测的Fisher判别分析方法[J].煤炭学报,2010(S1):22-27.
    [166]杨玉中,吴立云,高永才.煤与瓦斯突出危险性评价的可拓方法[J].煤炭学报,2010(S1):100-104.
    [167]煤炭科学研究总院重庆分院,MT/T1023-2006,煤层注水可注性鉴定方法[S].北京:煤炭工业出版社,2006.
    [168]张国华,孙广义.多分层煤层渗透率及压裂钻孔位置确定[J].黑龙江科技学院学报,2004,14(5):265-268.
    [169]HARPALANI S, CHEN G. Estimation of change in fracture porosity of coal with gasemission[J]. Fuel,1995,74(10):1491-1498.
    [170]HARPALANI S,SHRAUFNAGEL R A. Shrinkage of coal matrix with release of gas and itsimpact on permeability of coal[J]. Fuel,1990,69(5):551-556.
    [171]傅佩河.断层富水性的矿井瞬变电磁法探测[J].煤矿开采,2006(2):100-103.
    [172]王东伟.矿井瞬变电磁探测技术在煤系地层探测中的研究与应[J].煤炭工程,2012(04):23-26.
    [173]梁爽.瞬变电磁法在煤矿水害防治中的应用[J].煤田地质与勘探,2012(03):34-36.
    [174]牛向东.瞬变电磁法在探测导水通道中的应用[J].山东科技大学学报(自然科学版),2005(2):123-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700