用户名: 密码: 验证码:
微波辐射对雄性大鼠生殖系统的昼夜时间毒性及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:微波辐射(Microwave Radiation, MWR)是一种重要的环境电磁污染物(EEPs),因无线通讯技术的快速发展,特别是全世界手机用户的急剧增加而备受关注。由于微波辐射可对雄性生殖系统产生不良的影响,明确其作用途径和损伤机制已成为迫切任务。已知哺乳动物的生理功能和行为存在昼夜节律,机体在24小时中不同时相对毒物及微波辐射敏感性不同。本课题采用时间生物学和生殖内分泌毒理学相结合的策略,在建立微波辐射动物模型的基础上,研究微波辐射对雄性生殖系统和褪黑素(Melatonin,MEL)分泌的昼夜时间毒性,以及褪黑素通过GATA-4/SF-1信号通路抑制睾酮合成的作用机制,为微波辐射对生殖功能损害的防治提供新的思路。
     方法:(1)微波辐射对雄性大鼠生殖系统的昼夜时间毒性。以褪黑素日节律筛选具有昼夜(L:D,12h:12h)节律的SD大鼠,分别在授时时间(zeitgeber time,ZT,以ZT0为光照开始)ZT0, ZT4, ZT8, ZT12, ZT16和ZT20进行微波辐射(1800MHz,205μw/cm2),每次2h,每天一次,连续32天。对应的假辐射组(Sham)同样处理但不给予微波信号。辐射后24h内每隔4h尾静脉采血一次,ELISA法测定睾酮含量;同时Sham和MWR各时点组在辐射结束时点采集睾丸和附睾组织。测定附睾精子活动度;制作睾丸HE病理切片,测定睾丸每日精子生成量、睾丸标志酶ACP和γ-GT活性,Real-time PCR检测睾酮合成基因StAR和p450cc mRNA表达。利用余弦节律分析软件,根据方程式F(t)=M+Acos(ωt+Φ)将各指标数据拟合为余弦曲线,分析节律参数。(2)微波辐射改变大鼠褪黑素分泌的昼夜节律。微波辐射方法同上,辐射32天后,24h内每隔4h尾静脉采血一次,ELISA法检测血浆褪黑素浓度,同时Sham和MWR各时点组在辐射结束时点采集松果体,Real-time PCR测定褪黑素合成酶NAT mRNA的表达。节律分析同上。(3)褪黑素抑制睾酮分泌的信号通路及微波辐射对睾丸间质细胞睾酮分泌的影响。以小鼠睾丸间质细胞系(TM3)细胞作为研究对象,添加不同浓度(0,10-6,10-8,10-10和10-12mol/L)的褪黑素,或先添加褪黑素受体阻断剂(Luzindole,1μmol/L)再加褪黑素,MTT法检测细胞增殖、流式细胞仪检测线粒体膜电位、ELISA法检测睾酮和cAMP,Real-time PCR和Western blotting测定褪黑素受体和睾酮相关基因GATA-4,SF-1,StAR,P450cc和3β-HSD的mRNA和蛋白的表达。通过睾丸注射褪黑素,利用免疫组化和免疫荧光方法以整体动物实验验证褪黑素抑制睾酮合成的信号通路。采用TM3细胞进行体外培养,在1800MHz微波辐射(205μw/cm2)2h后,流式细胞仪检测线粒体膜电位,ELISA法测定睾酮和cAMP含量,Real-time PCR测定睾酮代谢调节因子相关基因SF-1、StAR和P450cc mRNA表达的改变。
     结果:(1)微波辐射可使雄性大鼠睾丸组织发生病理改变,降低睾丸每日精子生成量、精子活动度、睾丸标志酶ACP和γ-GT活性,其中ACP和γ-GT活性以及每日精子生成量的下降在ZT0时辐射的MWR0组最为明显。微波辐射还可改变血浆睾酮的昼夜节律,其中MWR0、MWR8、MWR12和MWR20组的昼夜节律消失,同时MWR0组大鼠血浆中睾酮的日均值水平下降最大。睾酮合成调控因子StAR和P450cc的mRNA表达在微波辐射后失去昼夜节律,且MWR0变化最大,提示大鼠雄性生殖系统对微波辐射最敏感的时点为ZT0:00。(2)微波辐射降低褪黑素的日均分泌量,其中以MWR16组最为明显。微波辐射扰乱褪黑素合成的昼夜节律,其中MWR8,MWR16和MWR20组的血浆褪黑素昼夜节律被破坏,而振幅变化在MWR16组最为明显,表明在ZT16:00时微波辐射对大鼠血浆褪黑素节律的影响最大。MWR后松果体NAT基因表达的昼夜节律改变,以ZT16时下调最为明显,同时表达的中值和振幅明显改变,峰值相位明显滞后。(3)褪黑素在体外可抑制TM3细胞增殖,降低睾酮含量,减少细胞内cAMP浓度,改变线粒体膜电位,下调核转录因子GATA-4及其目标基因SF-1,StAR,Cyp11A,HSD3β的基因和蛋白表达。褪黑素的这些抑制作用可被褪黑素受体阻断剂Luzindole所拮抗,特别是在褪黑素高水平作用时。大鼠睾丸组织注射褪黑素后0.5h、1h、2h,血浆中睾酮含量降低,睾丸间质细胞膜受体Mel1a,GATA-4和SF-1表达减弱,4h后上述效应消失。微波辐射后TM3细胞上清睾酮含量降低,细胞内cAMP浓度和线粒体膜电位水平下降,睾酮合成调节因子SF-1,StAR,P450cc基因表达下调。
     结论:
     1、建立了微波辐射大鼠的动物模型,发现微波辐射对雄性大鼠的生殖功能和睾酮内分泌具有昼夜时间毒性。
     2、微波辐射可改变褪黑素分泌和褪黑素合成酶NAT mRNA的昼夜节律,并通过褪黑素介导对雄性大鼠生殖功能的时间毒性。
     3、体内外实验证实褪黑素通过GATA-4/SF-1信号通路抑制睾酮分泌,其中GATA-4因子起着关键性的作用。
Objective: Microwave Radiation (MWR) is an important environmentalelectromagnetic pollutant with the rapid development of wireless communicationtechnology and mobile phone users in the world. It has been reported that MWRexposure may cause damage on male reproduction system, and it is therefore importantto clarify the route and mechanism of the MWR damage. Circadian rhythms of thephysiological and behavioral functions have been widely demonstrated in mammals,which result in different sensitivities of animals to toxicants and MWR at different timesof a day. This project is to study the circadian rhythm of male reproduction system andmelatonin (melatonin, MEL) toxicity induced by MWR with the combination ofchronobiology and reproductive endocrine toxicology on the basis of established animalmodel of microwave radiation, and to ellucidate the mechanism underlyingGATA-4/SF-1signal pathway that inhibits testosterone secretion in TM3Leydig cells,so that to provide with new ways in prevention and treatment of the male reproductionmalfunction caused by MWR.
     Methods:(1) Chronotoxicity of reproductive system in male rats exposed to MWR.Animals in circadian rhythm (as indicated by melatonin measurements) were dividedinto several groups and exposed to1800MHz RF at205μw/cm2power density for2h/dfor32days at different zeitgeber time (ZT) points, viz., ZT0, ZT4, ZT8, ZT12, ZT16and ZT20. Sham-exposed animals were used as controls in the study. From each rat,0.1ml blood samples were colleted from the caudal vein every4hours (ZT0, ZT4, ZT8,ZT12, ZT6and ZT20) after MWR exprosure to determine the concentration oftestosterone using the ELISA KIT. Testicular and epididymis tissues were collected forHE pathological section and assessed for testosterone levels, daily sperm productionand sperm motility, testis marker enzymes γ-GT and ACP, cytochrome P450side-chaincleavage (p450cc) mRNA expression, and steroidogenic acute regulatory protein (StAR)mRNA expression. The data obtained were then fitted for cosinor analysis as expressed in Eq.F(t)=M+Acos(w t+j).(2) Circadian alterations of melatonin secretion in male ratsexposed to MWR. The MWR and blood samples celection were the same as the firstsection. The concentration of MEL was determined by the ELISA KIT. Pineals werecollected after MWR from Sham and MWR groups at the end of exposure timepointsrespectively to determine melatonin synthetase NAT mRNA by Real-time PCR.(3)Signal pathway of testosterone secretion inhibition by melatonin and effects of MWRon testosterone secretion in TM3cells. TM3Cells were plated in the presence orabsence of melatonin (0,10-6,10-8,10-10and10-12mol/L) and melatonin receptorantagonist Luzindole (1μmol/L) for3h in multiwell-plates (six wells). Thenintracellular cAMP and testosterone levels in the supernatant were measured by ELISA.Gene and protein expression of the pathway foctors (Mel1a,GATA-4,SF-1,StAR,P450cc and3β-HSD) were determined by Real-qPCR and Western blot.Immunohistochemical (GATA-4) and immunofluorescence (SF-1and Mel1a) analysiswere used to verifiy the signal pathway in vivo model by intra-testicular injection ofmelatonin in C57BL/6J mice. The TM3Cells were exposed to1800MHz MWR (205μw/cm2) for2h to determine mitochondrial membrane potential by flow cytometry. Theintracellular cAMP and testosterone levels in the supernatant were measured by ELISA.Gene and protein expression of SF-1, StAR and P450cc were determined by Real-qPCR.
     Results:(1) MWR exposure led to histopathologic changes in testicles, lower dailysperm production and sperm motility, down-regulated activity of γ-GT and ACP, withthe most pronounced change in the MWR0group. Rats exposed to MWR exhibited analteration in circadian rhythms of plasma testosterone, which were absent in MWR0,MWR8, MWR12and MWR20groups. At the same time, the daily average testosteronelevel was most reduced in the MWR0group. Two testosterone synthesis regulatoryfactors of P450cc and StAR mRNA lost their circadian rhythms after MWR exposureand changed most dramatically in the MWR0group. These results suggest that the malereproduction system in rat was most sensitive to MWR exposure at ZT0.(2) MWRexposure decreased daily average testosterone levels, especially in the MWR0group.MWR exposure disturbed the circadian rhythms of plasma melatonin in MWR8, MWR16and MWR20groups, with the greatest amplitude reduction in MWR16group. These findings indicate that the biggest change in plasma melatonin occured at ZT16:00. Thecircadian rhythm of the NAT gene exprsession in pineal changed after MWR exprosure,with the most down-regulation at ZT16:00timepoint. Simultaneously, MWR exposurealtered the mean values and amplitudes of the NAT gene exprsession rhythm, with adelayed peak phase.(3) By measurements in vitro, it was shown that melatonininhibited cell proliferation, lowered the testosterone levels in the supernatant, decreasedintracellular cAMP, and down-regulated mRNA expression of nuclear transcriptionfactor GATA-4and its target genes SF-1(NR5A1), StAR, P450scc (CYP11A1) and3β-HSD, as well as their protein expression. However, the effects of melatonin wereblocked by Luzindole, especially in high melatonin dose level. At0.5h,1h and2h afterintra-testicular injection of melatonin, plasma testosterone level was reduced, Mel1a,GATA-4, SF-1(NR5A1) expression was downregulated, but these effects disappeared at4h. MWR exposure decreased testosterone levels in the culture supernatant of TM3cells, induced reduction of intracellular cAMP and mitochondrial membrane potentiallevels, down-regulated mRNA expression of testosterone synthesis regulatory factor ofSF-1, StAR and P450scc.
     Conclusions:
     (1) Animal and cell models of microwave radiation were established, andchronotoxicity of reproductive function and testosteron secretion exposed to MWR wasrevealed.
     (2) MWR altered circadian rhythms of melatonin secretion and melatoninsynthetase NAT mRNA, and melatonin mediated the reproductive chronotoxicity in ratsby MWR.
     (3) Melatonin inhibited testosterone secretion via the GATA-4/SF-1signalingpathway in vitro and vivo, with the GATA-4as a key regulatory factor.
引文
1. Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobilephones on male fertility. Ann Agric Environ Med,2007,14(1):169-72.
    2. Ashok,A, S Aspinder, H Kesari, et al. Cell phones and male infertility: a review ofrecent innovations in technology and consequences. Int. braz j urol,2011,37(4):32-454.
    3. Chia SE, Tay SK. Occupational Risk for Male Infertility: A Case-Control Study of218Infertile and227Fertile Men. J Occup Environ Med,2001,43(11):946-951.
    4. La Vignera S, Condorelli RA, Vicari E, et al. Effects of the exposure to mobilephones on male reproduction: a review of the literature. Journal of Andrology,2012,33(3):350–356.
    5. Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagneticwaves (RF-EMW) from cellular phones on human ejaculated semen: an in vitropilot study. Fertil Steril,2008,92(4):1318-1325.
    6. Kesari KK, Kumar S, Nirala J, et al. Biophysical evaluation of radiofrequencyelectromagnetic field effects on male reproductive pattern. Cell Biochem Biophys,2013,65(2):85-96.
    7. Agarwal A, Deepinder F, Sharma RK, et al. Effect of cell phone usage on semenanalysis in men attending infertility clinic: an observational study. Fertil Steril,2008,89(1):124-128.
    8. Anjum MWR, Sainath SB, Suneetha Y, et al. Lead acetate induced reproductive andpaternal mediated developmental toxicity in rats. Ecotoxicol Environ Safety,2011,74:793–799.
    9. Jarow JP, Zirkin BR. The androgen microenvironment of the human testis andhormonal control of spermatogenesis. Ann N Y Acad Sci,2005,1061:208-220.
    10..Wang RS, Yeh S, Tzeng CR, et al. Androgen receptor roles in spermatogenesis andfertility: lessons from testicular cell-specific androgen receptor knockout mice.Endocr Rev,2009,30(2):119-132.
    11. Turner TT, Jones CE, Howards SS, et al. On the androgen microenvironment ofmaturing spermatozoa. Endocrinology,1984,115:1925-1932.
    12. Zhang QX, Zhang XY, Zhang ZM, et al. Identification of testosterone-/androgenreceptor--regulated genes in mouse Sertoli cells. Asian Journal of Andrology,2012,14:294-300.
    13. Hamzeh M, Robaire B. Effect of testosterone on epithelial cell proliferation in theregressed rat epididymis. J Androl,2009,30:200-212.
    14. Hanukoglu I, Rapoport R, Weiner L, et al. Electron leakage from the mitochondrialNADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chaincleavage) system. Arch Biochem Biophys,1993,305:489-498.
    15. Manna PR, Wang XJ, Stocco DM. Involvement of multiple transcription factors inthe regulation of steroidogenic acute regulatory protein gene expression. Steroids,2003,68:1125-1134.
    16. Dolatshad H, Davis FC, Johnson MH. Circadian clock genes in reproductive tissuesand the developing conceptus. Reprod Fertil Dev,2009,21(1):1-9
    17.童建,耿美菊. γ—辐射对小鼠脾细胞周期和调亡节律的毒作用.工业卫生与职业病,1999,25(6):344-347.
    18. Asao T, Sakurai H, Harashima K, et al. The synchronization of chemotherapy tocircadian rhythms and irradiation in pre-operative chemoradiation therapy withhyperthermia for local advanced rectal cancer. International Journal ofHyperthermia,2006,22(5):399-406.
    19. Franz H, Germaine C, Zhengrong Wang, et al. Chronomics: circadian andcircaseptan timing of radiotherapy, drugs, calories, perhaps nutriceuticals andbeyond. Journal of Experimental Therapeutics and Oncology,2003,3(5):223–260.
    20. Duguay D, Cermakian N. The crosstalk between physiology and circadian clockproteins. Chronobiol Int,2009,26(8):1479-513.
    21. Gorbacheva VY, Kondratov RV, Zhang R, et al. Circadian sensitivity to thechemotherapeutic agent cyclophosphamide depends on the functional status of theCLOCK/BMAL1transactivation complex. Proc Natl Acad Sci USA,2005,102(9):3407-12.
    22. Masubuchi S, Honma S, Abe H, et al. Clock genes outside the suprachiasmaticnucleus involved in manifestation of locomotor activity rhythm in rats. Eur JNeurosci,2000,12(12):4206-14.
    23. Klein DC, Coon SL, Roseboom PH,et al. The melatonin rhythm-generating enzyme:molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recentprogress in hormone research,1997,52:307-358.
    24. Cardinali DP. Melatonin. A mammalian pineal hormone. Endocrine reviews,1981,3:327-346.
    25. Esquifino AI, Pandi-Perumal S, Cardinali DP. Circadian organization of theimmune response: A role for melatonin[J]. Clinical and Applied ImmunologyReviews,2004,6:423-433.
    26. Lincoln GA. Melatonin entrainment of circannual rhythms. Chronobiol Int.2006,23(1-2):301-6.
    27. Sirotkin AV, Schaeffer HJ. Direct regulation of mammalian reproductive organs byserotonin and melatonin. J Endocrinol.1997,154(1):1-5.
    28. Rossi SP, Matzkin ME, Terradas C, et al. New insights into melatonin/CRHsignaling in hamster Leydig cells. Gen Comp Endocrinol,2012,178(1):153-63.
    29. Redins CA, Redins GM, Novaes JC. The effects of treatment with melatonin on theultrastructure of mouse Leydig cells: a quantitative study. Braz J Biol,2002,62(3):517-23.
    30. Wu CS, Leu SF, Yang HY, Huang BM. Melatonin inhibits the expression ofsteroidogenic acute regulatory protein and steroidogenesis in MA-10cells. J Androl.2001,22(2):245-54.
    31. Jockers R, Maurice P, Boutin JA, et al. Melatonin receptors, heterodimerization,signal transduction and binding sites: what's new? Br J Pharmacol.2008,154(6):1182-95.
    32. Izzo G, Francesco A, Ferrara D, et al. Expression of melatonin (MT1, MT2) andmelatonin-related receptors in the adult rat testes and during development. Zygote,2010,18(3):257-64.
    33. Dubocovich ML, Markowska M. Functional MT1and MT2melatonin receptors inmammals. Endocrine.2005,27(2):101-10.
    34. Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors forhormonal and metabolic signals. Nat Rev Mol Cell Biol,2011,12(3):141-51.
    35. Tremblay JJ, Viger RS. Novel roles for GATA transcription factors in the regulationof steroidogenesis. J Steroid Biochem Mol Biol,2003,85(2-5):291-8.
    36. Bouchard MF, Taniguchi H, Viger RS. The effect of human GATA4gene mutationson the activity of target gonadal promoters. J Mol Endocrinol,2009,42(2):149-60.
    37. Svechnikov K, Landreh L, Weisser J, et al. Origin, development and regulation ofhuman Leydig cells. Horm Res Paediatr,2010,73(2):93-101.
    38. Bielinska M, Seehra A, Toppari J, et al. GATA-4is required for sex steroidogeniccell development in the fetal mouse. Dev Dyn,2007,236(1):203-13.
    39. Viger RS, Guittot SM, Anttonen M, et al. Role of the GATA family of transcriptionfactors in endocrine development, function, and disease. Mol Endocrinol,2008,22(4):781-98.
    40. Piao YS, Peltoketo H, Vihko P, et al. The proximal promoter region of the geneencoding human17beta-hydroxysteroid dehydrogenase type1contains GATA,AP-2, and Sp1response elements: analysis of promoter function inchoriocarcinoma cells. Endocrinology,1997,138(8):3417-25.
    41. Cai Z, Kwintkiewicz J, Young ME, et al. Prostaglandin E2increases cyp19expression in rat granulosa cells: implication of GATA-4. Mol Cell Endocrinol,2007,263(1-2):181-9.
    42. Peng L, Huang Y, Jin F, et al. Transcription enhancer factor-5and a GATA-likeprotein determine placental-specific expression of the Type I human3beta-hydroxysteroid dehydrogenase gene, HSD3B1. Mol Endocrinol,2004,18(8):2049-60.
    43. Flück CE, Miller WL. GATA-4and GATA-6modulate tissue-specific transcriptionof the human gene for P450c17by direct interaction with Sp1. Mol Endocrinol,2004,18(5):1144-57.
    44. Shih MC, Chiu YN, Hu MC, et al. Regulation of steroid production: analysis ofCyp11a1promoter. Mol Cell Endocrinol,2011,336(1-2):80-4.
    45. Silverman E, Yivgi-Ohana N, Sher N, et al. Transcriptional activation of thesteroidogenic acute regulatory protein (StAR) gene: GATA-4andCCAAT/enhancer-binding protein beta confer synergistic responsiveness inhormone-treated rat granulosa and HEK293cell models. Mol Cell Endocrinol,2006,252(1-2):92-101.
    46. Martin LJ, Tremblay JJ. The nuclear receptors NUR77and SF1play additive roleswith c-JUN through distinct elements on the mouse Star promoter. J MolEndocrinol,2009,42(2):119-29.
    47.王水明,彭瑞云,高亚兵,等.高功率微波辐射所致大鼠睾丸损伤的病理学研究.中华男科学杂志,2006,12(6):486.
    48. Fejes I, Závaczki Z, Sz llosi J, et al. Is there a relationship between cell phone useand semen quality? Arch Androl,2005,51(5):385-93.
    49.黄耀伟,于涟,周继勇.生物钟机制研究进展.生命科学,2000,12(1):10-14
    50. Wang GQ, Du YZ, Tong J. Daily oscillation and photoresponses of clock gene,Clock, and clock-associated gene, arylalkylamine N-acetyltransferase genetranscriptions in the rat pineal gland. Chronobiol Int,2007,24(1):24:9-20.
    51. Durney CH., Massoudi H., Iskander M.F. Radiofrequency Radiation DosimetryHandbook,4th Edition,1986, Texas: USAFSAM-TR-85-73, Brooks AFB.
    52. Meistrich ML. Evaluation of Reproductive Toxicity by Testicular Sperm HeadCounts. International Journal of Toxicology.1989,8:551-567.
    53. Griswold MD. The central role of Sertoli cells in spermatogenesis. Semin Cell DevBiol,1998,9:411-416.
    54. Aly HA, Lightfoot DA, El-Shemy HA. Bacterial lipopolysaccharide-inducedoxidative stress in adult rat Sertoli cells in vitro. Toxicol In Vitro,2010,24:1266-1272.
    55. Peruquetti RL, Taboga SR, Azeredo-Oliveira MT. Expression of acid phosphatasein the seminiferous epithelium of vertebrates. Genet Mol Res,2010,9:620-628
    56. Farombi EO, Abarikwu SO, Adedara IA, et al. Curcumin and kolaviron amelioratedi-n-butylphthalate-induced testicular damage in rats. Basic Clin PharmacolToxicol,2007,100(1):43-8.
    57. Alvarez JD, Hansen A, Ord T, et al. The Circadian Clock Protein BMAL1IsNecessary for Fertility and Proper Testosterone Production in mice. J Biol Rhythms,2008,23(1):26-36.
    58. Dasdag S, Akdag MZ, Ulukaya E, et al. Mobile phone exposure does not induceapoptosis on spermatogenesis in rats. Arch Med Res,2008,39:40-44.
    59. Lee HJ, Pack JK, Kim TH, et al. The lack of histological changes of CDMA cellularphone-based radio frequency on rat testis. Bioelectromagnetics,2010,31:528-534.
    60. Ribeiro EP, Rhoden EL, Horn MM, et al. Effects of subchronic exposure to radiofrequency from a conventional cellular te lephone on testicular function in adultrats. J Urol,2007,177:395-399.
    61. Imai N, Kawabe M, Hikage T, et al. Effects on rat testis of1.95-GHz W-CDMA forIMT-2000cellular phones. Syst Biol Reprod Med,2011,57:204-209.
    62. Yan JG, Agresti M, Bruce T, et al. Effects of cellular phone emissions on spermmotility in rats. Fertil Steril.2007,88:957-964.
    63. Kesari KK, Kumar S, Behari J. Mobile phone usage and male infertility in Wistarrats. Indian J Exp Biol,2010,48:987-992.
    64. Mailankot M, Kunnath AP, Jayalekshmi H, et al. Radio frequency electromagneticradiation (RF-EMWR) from GSM (0.9/1.8GHz) mobile phones induces oxidativestress and reduces sperm motility in rats. Clinics (Sao Paulo),2009,64:561-565.
    65. Coviello AD, Bremner WJ, Matsumoto AM, et al. Intratesticular testosteroneconcentrations comparable with serum levels are not sufficient to maintain normalsperm production in men receiving a hormonal contraceptive regimen. J Androl,2004,25:931-938.
    66. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev,1988,9:295-318.
    67. Stocco DM. A review of the characteristics of the protein required for the acuteregulation of steroid hormone biosynthesis: the case for the steroidogenic acuteregulatory (StAR) protein. Proc Soc Exp Biol Med,1998,217:123-129.
    68. Foster PMD. Testicular organization and biochemical function. In Lamb JC, FosterPMD (Eds). Physiology and toxicology of male reproduction.1988, New York:Academic Press, pp7-13.
    69. Meistrich ML, Shetty G. Inhibition of spermatogonial differentiation by testosterone.J Androl.2003,24:135-148.
    70. Bremner WJ, Vitiello MV, Prinz PN.. Loss of circadian rhythmicity in bloodtestosterone levels with aging in normal men. J Clin Endocrinol Metab,1983,56:1278-1281.
    71. Plymate SR, Tenover JS, Bremner WJ. Circadian variation in testosterone, sexhormone-binding globulin, and calculated non-sex hormone-binding globulinbound testosterone in healthy young and elderly men. J Androl,1989,10:366-371.
    72. Kennaway DJ. The role of circadian rhythmicity in reproduction. Hum ReprodUpdate,2005,11:91-101.
    73. Meo SA, Al-Drees AM, Husain S, et al. Effects of mobile phone radiation on serumtestosterone in Wistar albino rats. Saudi Med J,2010,30:869-873.
    74. Sarookhani MWR, Rezaei MA, Safari A, et al. The influence of950MHz magneticfield (mobile phone radiation) on sex organ and adrenal functions of male rabbits.Afr J Biochem Res.2011,5:65-68.
    75. Forgács Z, Somosy Z, Kubinyi G, et al. Effect of whole-body1800MHz GSM-likemicrowave exposure on testicular steroidogenesis and histology in mice. ReprodToxicol.2006,22:111-117.
    76. Shahryar HA, Lotfi AR, Bahojb M, et al. Effects of electromagnetic fields ofcellular phone on cortisol and testosterone hormones rate in syrian hamsters(Mesocricetus auratus). International Journal of Zoological Research,2008,4:230-233.
    77. Foulkes NS, Whitmore D, Sassone-Corsi P. Rhythmic transcription: the molecularbasis of circadian melatonin synthesis. Biol Cell,1997,89(8):487-94.
    78. Lanoix D, Beghdadi H, Lafond J, Vaillancourt C. Human placental trophoblastssynthesize melatonin and express its receptors. J Pineal Res,2008,45(1):50-60.
    79. Lincoln GA, Andersson H, Loudon A. Clock genes in calendar cells as the basis ofannual timekeeping in mammals--a unifying hypothesis. J Endocrinol,2003,179(1):1-13.
    80. Kasahara T, Abe K, Mekada K, et al. Genetic variation of melatonin productivity inlaboratory mice under domestication. Proc Natl Acad Sci U S A,2010,107(14):6412-7.
    81. Bakos J, Nagy N, Thuroczy G, et al. Urinary6-sulphatoxymelatonin excretion isincreased in rats after24hours of exposure to vertical50Hz,100microT magneticfield. Bioelectromagnetics,1997,18:190-192.
    82. Cocco P, Cocco ME, Paghi L, et al. Urinary6-sulfatoxymelatonin excretion inhumans during domestic exposure to50hertz electromagnetic fields. NeuroEndocrinol Lett,2005,26(2):136-42.
    83. Cajochen C, Kr uchi K, Wirz-Justice A. Role of melatonin in the regulation ofhuman circadian rhythms and sleep. J Neuroendocrinol,2003,15:432-7.
    84. Reiter RJ. Pineal melatonin: cell biology of its synthesis and of its physiologicalinteractions. Endocr Rev,1991,12:151-80.
    85. Arendt J. Melatonin and the pineal gland: influence on mammalian seasonal andcircadian physiology. Rev Reprod,1998,3:13-22.
    86. Yellon SM. Acute60Hz magnetic field exposure effects on the melatonin rhythmin the pineal gland and circulation of the adult Djungarian hamster. J Pineal Res,1994,16:136-144.
    87. Hata K, Yamaguchi H, Tsurita G, et al. Short term exposure to1439MHz pulsedTDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics,2005,26:49-53.
    88. Lewy H, Massot O, Touitou Y. Magnetic field (50Hz) increases N-acetyltransferase,hydroxy-indole-O-methyltransferase activity and melatonin release through anindirect pathway. Int J Radiat Biol,2003,79:431-435.
    89. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadianrhythms optimize maternal, placental and fetal physiology. Hum Reprod Update,2014,20(2):293-307.
    90. Korf HW, Schomerus C, Stehle JH. The pineal organ, its hormone melatonin, andthe photoneuroendocrine system. Adv Anat Embryol Cell Biol,1998,146:1-100.
    91. Strunecká A. Development of the views on the function of the pineal gland. CeskFysiol,2004,53(1):23-8.
    92. Macchi MM, Bruce JN. Human pineal physiology and functional significance ofmelatonin. Front Neuroendocrinol.2004,25(3-4):177-95.
    93. Valenti S, Guido R, Fazzuoli L, et al. Decreased steroidogenesis and cAMPproduction in vitro by leydig cells isolated from rats made hypothyroid duringadulthood. Int J Androl,1997,20(5):279-86.
    94. Arendt J. Melatonin and the Mammalian Pineal Gland.1995, London: ChapmanHall.
    95. Cagnacci A, Volpe A. Influence of melatonin and photoperiod on animal andhuman reproduction. J Endocrinol Invest,1996,19(6):382-411.
    96. Rivest RW, Jaconi ME, Gruaz N, et al. Short-term and long-term effects ofmelatonin on GnRH-stimulated gonadotropin secretion in pituitaries of sexuallymaturing rats. Neuroendocrinology,1987,46(5):379-86.
    97. Hattori A, Herbert DC, Vaughan MK, et al. Melatonin inhibits luteinizing hormonereleasing hormone (LHRH) induction of LH release from fetal rat pituitary cells.Neurosci Lett,1995,184(2):109-12.
    98. Vanecek J. Melatonin inhibits release of luteinizing hormone (LH) via decrease of[Ca2+] and cyclic AMP. Physiol Res,1998,47(5):329-335.
    99. Van cek J, Pavlík A, Illnerová H. Hypothalamic melatonin receptor sites revealedby autoradiography. Brain Res,1987,435(1-2):359-362.
    100.Vanecek J. Inhibitory effect of melatonin on GnRH-induced LH release. RevReprod.1999,4(2):67-72.
    101.Valenti S, Guido R, Giusti M, et al. In vitro acute and prolonged effects ofmelatonin on purified rat Leydig cell steroidogenesis and adenosine3',5'-monophosphate production. Endocrinology,1995,136(12):5357-62.
    102.M Niedziela, A Lukaszyk. Melatonin inhibits forskolin stimulated testosteronesecretion by hamster Leydig cells in primary culture.–Melatonin and the PinealGland: From Basic Science To Clinical Application,1993,285-288.
    103.孙佳音,应锋,韩晓冬.睾丸间质细胞中睾酮合成酶及蛋白表达的调控因子.生殖与避孕.2009,29(1):42-47.
    104.Ahmad R, Haldar C. Effect of intra-testicular melatonin injection on testicularfunctions, local and general immunity of a tropical rodent Funambulus pennanti.Endocrine,2010,37(3):479-88.
    105.Qin F, Zhang J, Cao H, et al. Effects of1800-MHz radiofrequency fields oncircadian rhythm of plasma melatonin and testosterone in male rats. J ToxicolEnviron Health A,2012,75(18):1120-8.
    106.Lefrancois-Martinez AM, Blondet-Trichard A, Binart N, Val P, et al. Transcriptionalcontrol of adrenal steroidogenesis: novel connection between Janus kinase (JAK)2protein and protein kinase A (PKA) through stabilization of cAMP responseelement-binding protein (CREB) transcription factor. J Biol Chem,2011,286(38):32976-85.
    107.Tremblay JJ, Viger RS. Nuclear receptor Dax-1represses the transcriptionalcooperation between GATA-4and SF-1in Sertoli cells. Biol Reprod,2001,64(4):1191-9.
    108.Mizutani T, Yazawa T, Ju Y, Imamichi Y, et al. Identification of a novel distalcontrol region upstream of the human steroidogenic acute regulatory protein (StAR)gene that participates in SF-1-dependent chromatin architecture. J Biol Chem,2010,285(36):28240-51.
    109.Andric SA, Janjic MM, Stojkov NJ, et al. Sildenafil treatment in vivo stimulatesLeydig cell steroidogenesis via the cAMP/cGMP signaling pathway. Am J PhysiolEndocrinol Metab.2010,299(4):544-50.
    110.von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecularbiology and signal transduction. Cell Tissue Res,2002,309(1):151-62.
    111.周振,姜秉成,曹毅.900MHz电磁辐射对小鼠自发活动昼夜节律的影响.环境与职业医学,2012,11:680-683.
    112.刘青,王亚军,徐辉,等. LH/hCG受体与cAMP在玉米赤霉烯酮抑制小鼠Leydig细胞分泌睾酮中作用的研.畜牧兽医学报,2013,44(7):1147-1154.
    [1] Agarwal A, Deepinder F, Sharma RK, et al. Effect of cell phone usage on semenanalysis in men attending infertility clinic: an observational study. Fertil Steril,2008,89:124–128.
    [2] Fejes I, Za′vaczki Z, Szo¨ llosi J, et al. Is there a relationship between cell phoneuse and semen quality? Arch Androl,2005,51:385–393.
    [3] Davoudi M, Brossner C, Kuber W. The influence of electromagnetic waves onsperm motility. J Urol Urogynakol,2002,19:18–22.
    [4] Erogul O, Oztas E, Yildirim I, et al. Effects of electromagnetic radiation from acellular phone on human sperm motility: an in vitro study. Arch Med Res,2006,37:840–843.
    [5] D’Andrea JA, Emmerson RY, Bailey CM, et al. Microwave radiation absorption inthe rat: frequency-dependent SAR distribution in body and tail.Bioelectromagnetics,1985,6(2):199–206.
    [6] Depinder F, Makkler K, Agarwal A. Cell phones and male infertility: dissectingthe relationship. Reprod Biomed Online,2007,3:266–270.
    [7] Saikhun J, Kitiyanant Y, Vanadurongwan V, et al. Effects of sauna on spermmovement characteristics of normal men measured by computer-assisted spermanalysis. Int J Androl,1998,21:358–363.
    [8] Dasdag S, Zulkuf Akdag M, Aksen F, et al. Whole body exposure of rats tomicrowaves emitted from a cell phone does not affect thetestes.Bioelectromagnetics,2003,24:182–188.
    [9] Yan JG, Agresti M, Bruce T, et al. Effects of cellular phone emissions on spermmotility in rats. Fertil Steril,2007,88(4),957–964.
    [10] Imai N, Kawabe M, Hikage T, et al. Effects on rat testis of1.95-GHz W-CDMAfor IMT-2000cellular phones. Syst Biol Reprod Med,2011,57(4):204–209.
    [11] Lee HJ, Pack JK, Kim TH, et al. The lack of histological changes of CDMAcellular phone-based radio frequency on rat testis. Bioelectromagnetics,2010,31:528–534.
    [12] Ribeiro EP, Rhoden EL, Horn MM, et al. Effects of subchronic exposure to radiofrequency from a conventional cellular telephone on testicular function in adultrats. J Urol,2007,177:395–399.
    [13] Mailankot M, Kunnath AP, Jayalekshmi H, et al. Radio frequency electromagneticradiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidativestress and reduces sperm motility in rats. Clinics (Sa o Paulo),2009,64:561–565.
    [14] Kesari KK, Kumar S, Behari J. Mobile phone usage and male infertility in Wistarrats. Indian J Exp Biol,2010,48:987–992.
    [15] Kesari KK, Kumar S, Behari J. Effects of radiofrequency electromagnetic waveexposure from cellular phones on the reproductive pattern in male Wistar rats.Appl Biochem Biotechnol,2011,164:546–559.
    [16] Meo SA, Arif M, Rashied S, et al. Hypospermatogenesis and spermatozoamaturation arrest in rats induced by mobile phone radiation. J Coll PhysiciansSurg Pak,2011,21:262–265.
    [17] Aitken RJ, Bennetts LE, Sawyer D, et al. Impact of radio frequencyelectromagnetic radiation on DNA integrity in the male germline. Int J Androl,2005,28:171–179.
    [18] Salama N, Kishimoto T, Kanayama HO, et al. The mobile phone decreases fructosebut not citrate in rabbit semen: a longitudinal study. Syst Biol Reprod Med,2009,55:181–187.
    [19] Salama N, Kishimoto T, Kanayama HO. Effects of exposure to a mobile phone ontesticular function and structure in adult rabbit. Int J Androl,2010,33:88–94.
    [20] Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagneticwaves (RF-EMW) from cellular phones on human ejaculated semen: an in vitropilot study. Fertil Steril,2009,92:1318–1325.
    [21] Falzone N, Huyser C, Fourie F, et al. In vitro effect of pulsed900MHz GSMradiation on mitochondrial membrane potential and motility of humanspermatozoa. Bioelectromagnetics,2008,29:268–276.
    [22] Falzone N, Huyser C, Franken DR, et al. Mobile phone radiation does not inducepro-apoptosis effects in human spermatozoa. Radiat Res,2010,174:169–176.
    [23] Falzone N, Huyser C, Becker P, et al. The effect of pulsed900-MHz GSM mobilephone radiation on the acrosome reaction, head morphometry and zona binding ofhuman spermatozoa. Int J Androl,2011,34:20–26.
    [24] De Iuliis GN, Newey RJ, King BV, et al. Mobile phone radiation induces reactiveoxygen species production and DNA damage in human spermatozoa in vitro.PLoS One,2009,4:6446.
    [25] Kilgallon SJ, Simmons LW. Image content influences men’s semen quality. Biol Lett,2005,1:253–255.
    [26] Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on malefertility. Ann Agric Environ Med,2007,14:169–172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700