用户名: 密码: 验证码:
单掺Tm~(3+)激光器频率锁定技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2μm固体激光器具有人眼安全、大气消光比低、体积小等优点,使其成为相干多普勒测风激光雷达和差分吸收激光雷达的首选光源。注入锁频技术在固体激光器中的应用,使输出激光脉冲同时具备单纵模、窄线宽、高频率稳定度、足够单脉冲能量和脉冲宽度的特点,满足相干多普勒测风激光雷达对激光光源的要求。注入锁频激光器由主激光器、从激光器和注入锁频伺服系统三部分组成。本文对单掺Tm~(3+)注入锁频固体激光器进行了理论分析和实验研究。
     理论方面,利用Tm~(3+)激光介质的能级跃迁结构以及粒子的玻尔兹曼分布,建立了Tm~(3+)激光器的准三能级速率方程理论模型,结合连续运转速率方程的求解,讨论了掺杂粒子浓度对输出激光性能的影响,计算了激光介质的最佳长度和掺杂浓度,并在此基础上求得了最佳谐振腔输出镜透过率。同时模拟了连续和长脉冲泵浦下激光器的弛豫振荡频率,结果表明Tm:YAG晶体更适合重复频率千赫兹以下的调Q。结合脉冲泵浦调Q速率方程理论模型,讨论了从激光器的脉冲建立时间,输出脉冲宽度、能量提取效率等问题。通过注入锁频的经典理论模型分析,对注入场、噪声场和锁定带宽方程进行了分析和求解,揭示了注入锁频的物理实质。并数值求解了注入锁频的时间特性,计算了实现锁频的最小注入功率。讨论了注入光强与注入锁频激光器的最大频率失谐量的关系。分析了注入锁频信号提取的影响因素,当主、从激光器的横、纵向模式匹配时,可以实现有效锁频信号的提取。
     实验方面,首先测量了Tm:YAG和Tm:LuAG两种激光介质的吸收谱、荧光谱及荧光寿命,对本文实验研究中激光介质和泵浦波长的选择及实验现象的分析提供了依据,同时为粒子能级跃迁的分析提供了前提。主激光器方面,利用F-P标准具法实现了主激光器的稳定、可调谐单纵模激光输出,并在此基础上进行了改进实验,提高了输出单纵模功率,实现种子光的线偏振激光输出。从激光器方面,从增加脉冲宽度、提高单脉冲能量和改善光束质量三个方面,对从激光器进行了理论和实验两个方面的研究。讨论了脉冲泵浦下激光介质的热效应问题,同时实验测得了脉冲泵浦下Tm:YAG的热焦距,然后利用ABCD环绕矩阵,优化“8”字环形从激光器的设计,使谐振腔可以适应更大范围内的热透镜焦距变化,保持稳定运转。从实验上获得了单脉冲能量、脉冲宽度、光束质量均满足测风雷达光源需要的Tm:YAG和Tm:LuAG从激光器调Q激光输出。在实验上设计并实现了主、从激光器之间的横、纵向模式匹配,完成了有效注入锁频信号的提取。最后,进行了单掺Tm~(3+)注入锁频激光器的实验研究。讨论了锁频激光器输出特性的变化,测量了激光器的输出线宽,分析了失谐量、注入功率及调Q触发时间对锁频激光输出性能的影响。最终实现了重复频率15Hz、单脉冲能量2mJ、脉冲宽度356.2ns的Tm:YAG锁频激光输出,重复频率100Hz、单脉冲能量2.4mJ、脉冲宽度347.7ns的键合Tm:YAG锁频激光输出,以及重复频率50Hz、单脉冲能量1.8mJ、脉冲宽度293ns的Tm:LuAG锁频激光输出。
2μm solid-state laser has been an important choice for the light source of Coherent Doppler Lidar and Differential Absorption Lidar, due to their characteristics of eye-safe, low atmospheric extinction ratio, small size and so on. With the application of injection locking technology to solid-state laser, the laser can be operated with single longitudinal mode(SLM), narrow linewidth, high frequency stability, sufficient pulse energy and long pulse width output simultaneously, which could meet the requirements for lidar system. Injection locked laser contains master laser, slave laser and servo system. View of this condition and background, this dissertation intends to make efforts on the research of Tm~(3+)-doped injection locked solid-state laser theoretically and experimentally, and hopefully we can make some contribution on the development and the application of pulsed SLM 2μm solid-state lasers.
     In theory, the Tm~(3+)-doped quasi-three-level rate equation is established using the transition energy level structure of Tm~(3+) laser medium and the Boltzmann distribution of particles. Based on the continuous wave operation rate equation, optimum length and doping concentration of the laser medium and the best cavity output mirror transmissivity are calculated, and the effect of doping concentration of particles to the laser output performance is discussed. The laser relaxation oscillation frequency is also calculated under continuous and long pulse pumping. The results show that Tm:YAG crystal is more suitable for Q-switched operation under kHz repetition rate. According to the Q-switched operation rate equation using pulsed laser-diode(LD) pumping, the build-up time of laser pulse, the output pulse width and the energy extraction efficiency are discussed. Using the classical theory model of injection locking, injection field, noise field and locking bandwidth are analyzed. The minimum injection locking power is calculated. The relationship between the injected laser intensity and the maximum detuning frequency of the injection locking laser is discussed. The disadvantageous factors for extracted signal about injection locking are analyzed. Good matches between horizontal mode and vertical mode are helpful to achieve extracted locking signal effectively and to avoid the generation of false signals.
     In experiment, the absorption spectra, fluoresce spectra and fluorescence lifetime of Tm:YAG and Tm:LuAG are measured. That is helpful to select the laser medium and pump source, to explain the experimental phenomena and to provide a premise analysis for the particle level transition. For the master laser, by inserting two F-P etalons to the cavity, stable, single longitudinal mode and tunable laser output was realized. Furthermore, experiments are carried out to improve the output power of SLM linear-polarized laser laser. For the slave laser, the output laser characteristics are optimized, such as pulse width, pulse energy and the beam quality. The thermal effect of the pulsed LD pumping laser is discussed. The thermal focal length of Tm: YAG laser is measured experimentally. Then,‘8’ring laser cavity is designed and optimized by using the ABCD matrix theory, which is thermal insensitive, and it can be adapted to a wide change of thermal focal length and operated stably. After optimization, the single pulse energy, pulse width and beam quality of the Tm:YAG and Tm:LuAG slave laser can meet the requirements. Besides master laser and slave laser, the extract of the injection locking signal is an important part. Injection locking signal extraction is directly infected by the mode matching between the master laser and the slave laser. The matching of transverse mode and longitudinal mode were designed. And effective injection locking signal was extracted in experiment. Finally, Tm~(3+)-doped injection locked lasers are achieved experimentally. The characteristics of the injection locking laser are discussed. The linewidth of the laser is measured. The influence of the detuning, the injected power and the trigger time of the Q-switch to the injection locking laser are analyzed. As a result, the single pulse energy of 2mJ and pulse width of 356.2ns for Tm:YAG injection locked laser is obtained at a repetition rate of 15Hz. Using a composite Tm:YAG laser crystal, the single pulse energy of 2.4mJ and pulse width of 347.7ns pulsed SLM laser is achieved at 100Hz. In addition, the single pulse energy of 1.8mJ Tm:LuAG injection locked laser is realized at 50Hz, with the pulse width of 293ns.
引文
[1] M. J. Kavaya, G. J. Koch, M. Petros, et al. Test Bed Doppler Wind Lidar and Intercomparison Facility at NASA Langley Research Center[C]. Honolulu: Lidar Remote Sensing for Industry and Environmental Monitoring, 2004.
    [2] World Meteorological Organization. Preliminary Statement of Guidance Re-garding How Well Satellite Capabilities Meet WMO User Requirements in Several Application Areas. WMO/TD[R]. 1998.
    [3]谢从刚.大气风场测量技术简介[J].湖北气象,2006,25(1):44.
    [4]陈少应.风廓线雷达测风结果与气球测风量结果的对比分析[C].合肥:中国气象学会雷达气象学与气象雷达委员会第二届学术年会,2006.
    [5] R. M. Huffaker. Laser Doppler detection systems for gas velocity measure-ments[J]. Applied Optics,1970,9(5):1026-1039.
    [6] M. J. Post, R. A. Richter and R. M. Hardesty. NOAA’s pulsed, coherent IR Doppler lidar characteristic sand data[C]. Proc. of SPIE. 1981,300:60-65.
    [7] J. Rothermel, L. Olivier, R. Banta, R. M. Hardesty, J. Howell, D. Cutten, S. Johnson, R. Menzies and D. M. Tratt. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar[J]. Optics Express,1998,2(2):40-50.
    [8] T. J. Kane, W. J. Kozlorsky and R. L. Byer. Coherent Laser Radar at 1.06μm Using Nd: YAG Lasers[J]. Optics Letters,1987,12(4):239-242.
    [9] M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale and R. M. Huffaker. Remote wind profiling with a solid-state Nd:YAG coherent lidar system[J]. Optics Letters,1989,14(15):776-778.
    [10] T. Yanagisawa, K. Asaka, K. Hamazu and Y. hirano. 11mJ, 15Hz Single-frequency Diobe-pumped Q-switched Er, Yb: Phosphate Glass. Laser[J]. Optics Letters,2001,26(16):1262-1264.
    [11] K. Asaka, T. Yuki, T. Yanagisawa and Y. Hirano. 1.5μm Coherent Lidar System for Wind Velocity Measurement[C]. Proc. of SPIE. 2001,4153:321-328.
    [12] T. Yanagisawa, K. Asaka and Y. Hirano. 10.9mJ Single-frequency Diode- pumped Glass Laser for a Coherent Doppler Lidar[C]. Proc. of SPIE. 2001,4153:86-92.
    [13] V. Philippow, C. Codemard and Y. Jeong. High-Energy In-fiber Pulse Am-plification for Coherent Lidar Applications[J]. Applied Optics,2004,29(22):2590-2592.
    [14] S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya and A. V. Huffaker. Eye-safe coherent laser radar system at 2.1μm using Tm,Ho:YAG lasers[J]. Optics Letters,1991,16(10):773-775.
    [15] S. W. Henderson and C. P. Hale. Coherent laser radar at 2μm using solid- state lasers[C]. IEEE Transactions On Geoscience And Remote Sensing,1993,31(1):4-15.
    [16] S. G. Anderson. Confocal Laser Microscopes See a Wider Field of Appli-cation[J]. Laser focus World,1994,30(1):83-86.
    [17]毕德仓,李荣忠.中国海洋大学研制的多普勒测风激光雷达为“神七”回收提供气象保障服务. [2008-10-07]. http://laser.ofweek.com/2008-10/ART-240003-8100-22974001.html.
    [18]张寅超,胡欢陵,皖平.我国第一台车载激光雷达. [2002-09-30]. http://www.hfcas.ac.cn/kxd/138/2.1.htm.
    [19] R. M. Schotland. Some Observations of the Vertical Profile of Water Vapor by Means of a Laser Optical Radar[C]. In Proceedings of the Fourth Symposium on Remote Sensing of Environment. 1966:273-283.
    [20] C. E. Hamilton. Single-frequency, Injection-seeded Ti:sapphire Ring Laser with High Temporal Precision[J]. Optics Letters,1992,17:728-730.
    [21] J. Yu, U. N. Singh, N. P. Barnes and M. Petros. 125mJ Diode-pumped Injection- seeded Ho:Tm:YLF Laser[J]. Optics Letters,1998,23(10):780-782.
    [22] H. Fukuoka, M. Kadoya, K. Asaba, K. Asai, K. Mizutani and T. Itabe. Injection Seeded Tm,Ho:YLF Laser[C]. Proc. of SPIE. 2001, 4153: 455-462.
    [23] A. K. Hankla and T. J.Carrig. Q-switch, Injection-seeded, Single-frequency, Yb:YAG Disk Laser[C]. Conference on Lasers and Electro-Optics (CLEO). 2002:MD5.
    [24] S. Chen, J. Yu, M. Petros and Y. Bai. Diode-pumped Double-pulsed Ho:Tm:LuLF Laser at 2.05μm for CO2 Differential Absorption Lidar (DIAL)[C]. Proc. of SPIE. 2004,5575:44-49.
    [25]王振国,鞠有伦,李玉峰,吴春婷,王月珠. 2μm固体激光器的注入锁定[J].中国激光,2008,34(8):17-20.
    [26] Z. G. Wang, Y. L. Ju, C. T. Wu, C. W. Song and Y. Z. Wang. Diode-pumped injection-seeded Tm,Ho:GdVO4 laser[J]. Laser Physics Letters,2009,6(2):98-101.
    [27] Y. Bai, J. Yu, P. Petzar and M. Petros. Single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser for remote sensing[C]. Conference on Lasers and Electro-Optics (CLEO). 2009:CWH5.
    [28]王强. Tm,Ho:YAP激光器注入锁频技术研究[D].哈尔滨:哈尔滨工业大学,2010:85.
    [29] R. L. Schmitt and L. A. Rahn. Diode-laser-pumped Nd:YAG laser injection seeding system[J]. Applied Optics,1986,25(5):629-633.
    [30] S. W. Henderson, E. H. Yuen and E. S. Fry. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG laser. Optics Letters,1986,11(11):715-717.
    [31] T. Yanagisawa, K. Asaka and Y. Hirano. 10.9mJ single-frequency diode-pumped Q-switched Er,Yb:glass laser for a coherent Doppler lidar[C]. Proc. of SPIE. 2001,4153:86-92.
    [32] K. Asaka, T. Yanagisawa and Y. Hirano. 1.5μm eye-safe coherent lidar system for wind velocity measurement[C]. Proc. of SPIE. 2001,4153:321.
    [33]郭少锋,林文雄,黎全.种子注入式单纵单横电光调Q激光器[J].中国激光,2006,33(2):1585-1589.
    [34] M. Petro, J. Yu, B. Trieu, Y. Bai, P. Petzar, U. N. Singh and K. Reithmaier. 2.5MHz Line-Width High-energy, 2μm Coherent Wind Lidar Transmitter[C]. Conference on Lasers and Electro-Optics (CLEO). 2007:JWA86.
    [35] J. Yu, S. Chen, M. Petros, Y. Bai, P. Petzar, B. C. Trieu, U. N. Singh and M. J. Kavaya. Diode-pumped One Joule per Q-Switched Pulse 2μm Laser[C]. Conference on Lasers and Electro-Optics (CLEO). 2006:CThFF1.
    [36] H. Lee, Y. Bai, J. Yu and U. Singh. Proton and Gamma Radiation Effects in Undoped, Single-doped and co-doped YLiF4 and LuLiF4[C]. Conference on Lasers and Electro-Optics (CLEO). 2009:JThE37.
    [37] J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai and P. J. Petzar. 1J/pulse Q-switched 2μm solid-state laser[J]. Optics Letters,2006,31(4):462-464.
    [38] Y. Bai, J. Yu, M. Petros, P. Petzar, B. Trieu, H. Lee, U. Singh, V. Leyva, V. Shkunov, D. Rockwell, A. Betin and J. Wang. Phase-cojugated 2-μm laser system[C]. Conference on Lasers and Electro-Optics (CLEO). 2007:MB21.
    [39] J. Koch, J. P. Deyst and M. E. Storm. Single-frequency Lasing of Monolithic Ho,Tm:YLF[J]. Optics Letters,1993,18(15):1235-1237.
    [40] C. He and D. K. Killinger. Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1μm microchip Ho,Tm:YAG laser[J]. Optics Letters,1994,19(6):396-398.
    [41] A. F. Heine and G. Huber. Tunable Single Frequency Thulium:YAG Micro-chip Laser with External Feedback[J]. Applied Optics,1998,37(15):3268-3271.
    [42] C. Nagasawa, T. Suzuki, H. Nakajima, H. Hara and K. Mizutani. Characteris-tics of Single Longitudinal Mode Oscillation of the 2μm Tm,Ho:YLF Microchip Laser[J]. Optics Communications,2001,200:315-319.
    [43] Z. Lin, C. Gao, M. Gao, Y. Zhang, H. Weber. Diode-pumped Single-frequency Microchip CTH:YAG lasers Using Different Pump Spot Diameters[J]. Applied Physics B,2009,94:81-84.
    [44] T. Yokozawa, J. Izawa and H. Hara. Mode Control of a Tm:YLF Microchip Laser by a Multiple Resonator[J]. Optics Communications,1998,145:98-100.
    [45] J. Izawa, H. Nakajima, H. Hara and Y. Arimoto. A tunable and Longitudinal Mode Oscillation of a Tm,Ho:YLF Microchip Laser Using an External Etalon. Optics Communications,2000,180:137-140.
    [46] J. Izawa, H. Nakajima, H. Hara and Y. Arimoto. Comparison of Lasing Performance of Tm,Ho:YLF Lasers by Use of Single and Double Cavities[J]. Applied Optics,2000,39(15):2418-2421.
    [47] C. Nagasawa, D. Sakaizawa, H. Hara and K. Mizutani. Lasing Characteris-tics of a CW Tm,Ho:YLF double cavity microchip Laser[J]. Optics Communications,2004,234:301-304.
    [48] T. J. Kane and R. L. Byer. Monolithic Unidirectional Single-mode Nd:YAG Ring Laser[J]. Optics Letters,1985,10:65-67.
    [49] T. J. Kane and T. S. Kubo. Diode-pumped single-frequency lasers and Q-switched lasers using Tm:YAG and Tm,Ho:YAG[C]. Advanced Solid-State Photonics (ASSP). 1990,6:136-139.
    [50] A. Finch, J. H. Flint and D. M. Rines. 2.5-Watt Single-frequency CW Tm, Ho:YLF Ring Laser[C]. Advanced Solid-State Photonics (ASSP). 1996,14:312-314.
    [51] C. Svelto and I. Freitag. Room-temperature Tm:YAG Ring Laser with 150mW Single-frequency output power at 2.02μm[J]. Electronics Letters,1999,35(2):152-153.
    [52] N. Coluccelli, G. Galzerano, D.Parisi, M. Tonelli and P. Laporta. Diode-pumped Single-frequency Tm:LiLuF4 Ring Laser[J]. Optics Letters,2008,33 (17):1951-1953.
    [53] B. Q. Yao, X. M. Duan, D. Fang, Y. J. Zhang, L. Ke, Y. L. Ju, Y. Z. Wang and G. J. Zhao. 7.3W of Single-frequency Output Power at 2.09μm from anHo:YAG Monolithic Nonplanar Ring Laser[J]. Optics Letters,2008,33:2161-2163.
    [54] Z. F. Lin, M. W. Gao, Y. S. Zhang and C. Q. Gao. Single-frequency Operation of 2μm Monolithic sandwich Tm:YAG Non-planar Ring Laser at Room Temperature[C]. Advanced Solid-State Photonics (ASSP). 2009:WB11.
    [55] S. W. Henderson and C. P. Hale. Tunable Single-longitudinal-mode Diode Laser Pumped Tm:Ho:YAG Laser[J]. Applied Optics, 1990, 29(12):1716-1717.
    [56] B. T. McGuckin, R. T. Menzies and C. Esproles. Tunable Frequency Stabiliz-ed Diode-laser-Pumped Tm,Ho:YLiF4 Laser at Room Temperature[J]. Applied Optics,1993,32(12):2082-2084.
    [57] I. F. Elder and M. J. P. Payne. Single Frequency Diode-pumped Tm,Ho:YLF Laser[J]. Electronics Letters,1998,34(3):284-285.
    [58] G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald and J. C. McCarthy. Frequency Stabilization of a Ho:Tm:YLF Laser to Absorption Lines of Carbon Dioxide[J]. Applied Optics,2000,39(21):3664-3669.
    [59] K. Scholle, E. Heumann and G. Huber. Single Mode Tm and Tm,Ho:LuAG Lasers for LIDAR Applications[J]. Laser Physics Letters,2004,1(6):285-290.
    [60] X. L. Zhang, Y. L. Ju and Y. Z. Wang. Diode-end-pumped room temperature Tm,Ho:YLF lasers[J]. Optics Express,2005,13(11):4056-4063.
    [61] A. Galzerano, E. Sani, A. Toncelli, G. Della Valle, S. Taccheo, M. Tonelli and P. Laporta. Widely Tunable Continuous-wave Diode-pumped 2μm Tm- Ho:KYF4 Laser[J]. Optics Letters,2004,29(7):715-717.
    [62] P. A. Budni, M. G. Knights, E. P. Chicklis and H. P. Jenssen. Performance of a Diode-pumped High PRF Tm,Ho:YLF Laser[J]. IEEE Journal of Quantum Electronics. 1992,28:1029-1032.
    [63] M. G. Jani, F. L. Naranjo, N. P. Barnes. K. E. Murray and G. E. Lockard. Diode-pumped Long-pulse-length Ho:Tm:YliF4 Laser at 10 Hz[J]. Optics Letters,1995,20(8):872-874.
    [64] V. Kushawaha, Y. Chen, Y. Yan and L. Major. High-efficiency Continuous-wave Diode-pumped Tm: Ho: LuAG Laser at 2.1μm[J]. Applied Physics B,1996,62:109-111.
    [65] V. Sudesh and K. Asai. Spectroscopic and diode-pumped-laser properties of Tm,Ho:YLF; Tm,Ho:LuLF; and Tm,Ho:LuAG crystals: a comparative study[J]. Journal of the Optics Society America B. 2003,20 (9):1829-1837.
    [66] M. Petros, J. Yu, S. Chen, U. N. Singh, B. M. Walsh, Y. Bai and N. P. Barnes. Diode pumped 135 mJ Ho:Tm:LuLF oscillator[C]. Advanced Solid-State Photonics (ASSP). 2003:1-5.
    [67] A. Sato, K. Asai and K. Mizutani. Lasing Characteristics and Optimizations of a Diode-side-pumped Tm, Ho: GdVO4 Laser[J]. Optics Letters,2004,2(8):836-838.
    [68] B.Q. Yao, X. B. Zhang, Y.Z. Wang, W.J. He, Y.F. Li and Y.L. Ju. LD pumped 2μm CW laser from Tm,Ho:GdVO4[J]. Chinese Optics Letters,2004,2(10):595-596.
    [69] Y. X. Bai, J. Yu, B. Trieu, M. Petros, P. Petzar, H. Lee and U. Singh. Efficient operation of conductively cooled Ho:Tm:LuLiF laser oscillator/amplifier[C]. Advanced Solid-State Photonics (ASSP). 2008:WE34.
    [70] X. M. Duan, B. Q. Yao, L. L. Zheng, C. T. Wu, L. J. Zhang, Y. J. Zhang, Y. L. Ju and Y. Z. Wang. Lasing of diode-pumped c-cut Tm,Ho:YAlO3[J]. Laser Physics,2008,18 (8):951-953.
    [71] B. Q. Yao, L. J. Li, L. L. Zheng, Y. Z. Wang, G. J. Zhao and J. Xu. Diode-pumped continuous wave and Q-switched operation of a c-cut Tm,Ho:YAlO3 laser[J]. Optics Express,2008,16 (7):5075-5081.
    [72] C. Bollig, R. A. Hayward, W. A. Clarkson and D. C. Hanna. 2-W Ho:YAG laser intracavity pumped by a diode-pumped Tm:YAG laser[J]. Optics Letters,1998, 23(22):1757-1759.
    [73] P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro and E. P. Chicklis. 50mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9μm thulium laser[J]. Optics Letters,2003,28 (12):1016-1018.
    [74] A. Dergachev, P. F. Moulton and T. E. Drake. High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser[C]. Advanced Solid-State Photonics (ASSP). 2005,98:608-612.
    [75] M. Schellhorn. Performance of a Ho:YAG thin-disc laser pumped by a diode-pumped 1.9μm thulium laser[J]. Applied Physics B,2006,85:549-552.
    [76] I. Elder. High average power thulium fibre laser pumped mid-IR source[C]. Proc. of SPIE. 2007,6378:673804.
    [77] G. Renz, M. Klose, C. Reiter, F. Massmann and H. Voss. A high energy Tm:YLF-fiber-laser (1.9μm) pumped Ho:YAG MOPA (2.09μm) laser system[C]. Advanced Solid-State Photonics (ASSP). 2006:WD3
    [78] S. So, J. I. Mackenzie, D. P. Shepherd and W. A. Clarkson. High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG[C]. Proc. of SPIE.2008,6871:68710R.
    [79] J. Kwiatkowski, J. K. Jabczynski, L. Gorajek, W. Zendzian, H. Jelínková, J. ?ulc, M. Němec and P. Koranda. Resonantly pumped tunable Ho:YAG laser[J]. Laser Physics Letters,2009,6 (7):531-534.
    [80] P. J. M. Suni and S. W. Henderson. 1-mJ/pulse Tm:YAG laser pumped by a 3-W diode laser[J]. Optics Letters. 1991,16(11):817-819.
    [81] G. Rustad and K. Stenersen. Low threshold laser-diode side-pumped Tm:YAG and Tm:Ho:YAG lasers[J]. IEEE Journal Of Selected Topics In Quantum Electronics,1997,3(1):82-89.
    [82] C. Li, J. Song, D. Shen, N. S. Kim and K. Ueda. Diode-pumped high- efficiency Tm:YAG lasers[J]. Optics Express,1999,4(1):12-18.
    [83] K. S. Lai, P. B. Phua, R. F. Wu, Y. L. Lim, E. Lau, S. W. Toh and A. Chng. 120-W continuous-wave diode-pumped Tm:YAG laser[J]. Optics Letters,2000,25(21):1591-1593.
    [84] V. Sudesh and J. A. Piper. Spectroscopy, modeling, and laser Operation of Thulium-doped crystals at 2.3μm[J]. IEEE Journal of Quantum Electronics,2000,36(7):879-884.
    [85] S. Goidring, E. Lebiush and R. Lavi. RTP Q-switched 2-micron Tm:YAG Laser[C]. Proc. of SPIE. 2002,4630:13-16.
    [86] S. W. Henderson and S. M. Hannon. Advanced coherent lidar system for wind measurements[C]. Proc. of SPIE. 2005, 5887:1-10.
    [87]林志峰,高明伟,高春清.激光二极管端面抽运Tm:YAG激光器[J].中国激光,2007, 34(2):181-185.
    [88] M. Eichhorn, C. Kieleck and A. Hirth. Q-switched Tm~(3+):YAG rod laser with crystalline fiber geometry[C]. Conference on Lasers and Electro-Optics (CLEO). 2009:CWH2.
    [89] R. A. Hayward. High-power diode-pumped solid-states 2 micron lasers[D]. UK:University of Southampton,2003:54.
    [90] M. Reynaud, N. Luiselli, L. Gheorghe, P. Loiseau, G. Aka, C. Larat, E. Lal-lier and A. Ikesue. Spectroscopic properties and gain cross section of Er, Yb doped Y2O3 transparent ceramic for eye-safe laser[C]. Conference on Lasers and Electro-Optics (CLEO). 2009:JTuD6.
    [91] O. A. Buryy, D. Y. Sugak, S. B. Ubizskii, I. I. Izhnin, M. M. Vakiv and I. M. Solskii. The comparative analysis and optimization of the free-running Tm~(3+):YAG microlasers[J]. Applied Physics B,2007,88:433-442.
    [92]蓝信钜.激光技术[M].北京:科学出版社,2005:86.
    [93] A. E. Siegman. Lasers[M]. California:University Science Books,1986:1008-1018.
    [94] P. Cassard and J. Lourtioz. Injection locking of high-power pulsed lasers-Part I: Monochromatic injection[J]. IEEE Journal of Quantum Electronics,1988,24(11):2321-2337.
    [95] U. Ganiel, A. Hardy, G. Neumann and D. Treves. Amplified Spontaneous Emission and Signal Amplification in Dye-laser Systems[J]. IEEE J. Quantum Electronics. 1975, 11(11):881-892.
    [96] U. Ganiel, A. Hardy and D. Treves. Analysis of injection locking in pulsed dye laser systems[J]. IEEE Journal of Quantum Electronics , 1976 ,12(11):704-716.
    [97] R. M. Kurtz, R. D. Pradhan, N. Tun, T. M. Aye, G. D. Savant, T. P. Jannson and L. G. DeShazer. Mutura injection locking: A New Architecture for High-Power Solid-State Laser Arrays[J]. IEEE Journal of Quantum Electronics,2005, 11(3):578-586.
    [98] R. M. Kurtz, R. D. Pradhan, N. Tun, T. M. Aye, G. D. Savant, T. P. Jannson and L. G. DeShazer. Injection Locking Efficiency of Two Independent Lasers[C]. Proc. of SPIE. 2004,5413:41-49.
    [99] W.克西耐尔.固体激光工程[M].孙文,江译文,程国祥译.北京:科学出版社,2002:216-217.
    [100]K. I. Martin, W. A. Clarkson and D. C. Hanna. Increased single-frequency power from end-pumped ring lasers by pump beam displacement[J]. Optics Communications,1997,133(1):180-184.
    [101]L. B. Mercer. 1/f frequency noise effects on self-heterodyne linewidth measurements[J]. Journal of lightwave technology,1991,9(4):485-193.
    [102]王振国.注入锁频2μm固体激光器研究[D].哈尔滨:哈尔滨工业大学. 2009:45-55.
    [103]J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin and J. Yu. Room-temperature, Diode-pumped Ho,Tm:YLF Laser Amplifiers Generating 700 mJ at 2μm[C]. Conference on Lasers and Electro-Optics (CLEO). 1997,10:199-201.
    [104]王振国.注入锁频2μm固体激光器研究[D].哈尔滨:哈尔滨工业大学. 2009:36-37.
    [105]万顺平,孙利群,田芊,章恩耀.一种LD泵浦双向输出固体环形激光器[J].光学技术,2005, 31(1):44-47.
    [106]N. P. Barnes and J. C. Barnes. Injection seeding I: Theory[J]. IEEE Journalof Quantum Electronics,1993,29(7):2670-2683.
    [107]H. Kogelnik. Coupling and Conversion Coefficients for Optical Modes[A]. Symposium on Quasi-Optics,1964:333-345.
    [108]蓝信钜.激光技术[M].北京:科学出版社,2000:190-191.
    [109]季家镕,冯莹,肖贵遐.环形腔扫描干涉仪及其模式匹配研究[J].激光技术. 1997,21(5):277-280.
    [110]肖贵遐,丁金星.腔失调对模耦合的影响.激光杂志[J].1996, 17(3): 128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700