用户名: 密码: 验证码:
软土盾构隧道施工期上浮机理分析及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构隧道施工中,对于刚脱离盾尾的管片,经常会出现局部或整体上浮,已经被众多的工程实际所证实。表现为管片错台、裂缝、破损,乃至轴线偏位等现象,尤其是在穿越河底浅覆土时,该问题尤为突出,已经引起了一定关注。本文主要针对施工期盾构隧道存在的上浮问题产生机理及控制计算展开研究:
     提出将盾构管片上浮力分为“静态上浮力”和“动态上浮力”。“静态上浮力”是由泥浆、注浆浆液或者地下水包裹管片,造成局部管片浸泡在液态环境中,从而产生的上浮力;“动态上浮力”是伴随着盾尾管片壁后注浆的施工过程而产生的可能引起管片上浮、局部错台、开裂、压碎或其他破坏形式的力。分析研究了注浆浆液在管片壁后的扩散过程。将管片壁后注浆的扩散过程归纳为充填注浆、渗透注浆、压密注浆及劈裂注浆等4个阶段。认为渗透注浆和压密阶段是对管片产生注浆压力,形成动态上浮力的主要阶段。
     通过引入等效孔隙率替代土体本身的孔隙率,即将管片脱离盾尾后形成的建筑间隙折算为土体本身的孔隙率,来考虑建筑间隙的影响,分别基于magg球面扩散公式和柱面扩散公式,在假定半球面扩散和弧面扩散的前提下,对盾构隧道壁后注浆的渗透范围及因注浆而对管片造成的注浆压力进行了理论推导,得到了考虑建筑间隙影响的浆液扩散半径及对管片产生的压力大小计算式。实例分析表明,盾构隧道壁后注浆浆液的扩散半径及对管片产生的压力与注浆压力、注浆时间、浆液粘度、土体渗透率、建筑间隙厚度、注浆管半径等众多因素有关。并针对具体工程实际,通过给定部分施工和土性参数,讨论了盾构隧道壁后注浆的扩散半径及对管片产生的压力与各影响因素之间的关系。
     提出了“局部抗浮计算模式”——研究一块(数块)或一环(数环)管片在上浮力的作用下,管片、螺栓,乃至上覆土对其上浮的影响。并分别从单一管片抗浮角度和整环(或数环)管片抗浮角度提出了管片局部抗浮计算的计算式。单一管片抗浮计算式是针对上浮力(主要是因注浆产生的动态上浮力)集中于局部管片背部,产生了较大集中力,进而可能造成单块管片出现错台的抗浮验算;整环管片错动分析计算式是将动态上浮力考虑作用于整环管片(主要是刚脱离盾尾的管片),考虑该环在动态上浮力作用下的受力和与上覆土的作用效应。
     提出了“纵向整体抗浮计算模型”——将已拼装成型管片纵向考虑为一整体,将其简化为一纵向长梁,考虑该梁在上浮力的作用下,简化梁与地层总体的受力和变形性能。在纵向总体计算模型中,将横向刚度有效率及横向刚度影响系数引入到纵向等效抗弯刚度的分析计算中,推导了考虑横向刚度有效率的纵向等效抗弯刚度计算式,从而初步将纵向刚度的分析与横向刚度的变化统一起来,进而也说明了盾构隧道纵、横向抗弯刚度的相关性和匹配性。实例分析表明:盾构隧道横向抗弯刚度的大小与纵向等效抗弯刚度关系密切,表现为同方向变化,即纵向抗弯刚度随横向抗弯刚度的增大而增大。并利用三维有限元模型对施工期盾构隧道的上浮特性进行了数值模拟。
     最后,对存在问题和进一步研究的方向进行了简要讨论。
It has been verified by many practical engineering that segments just out fromshield tail often take place partial or whole upward movement in the process of shieldtunneling. The upward movement leads to staggering of segment joints, cracks,disrepair or even axes deflection and the case would be especially serious when theshield goes through the area with shallow overburden. This paper analyzed thereasons for upward movement of the segments and the corresponding calculatingmethods.
     The buoyancy was divided into static buoyancy and dynamic buoyancy in thepaper. The static buoyancy was generated by the segment rings immersing in theliquid, such as slurry, grouts or underground water. And the dynamic buoyancyoriginated from the pressure in the grouting process, which brought about thesegments upward movement, staggering, crack, or other forms of damage. Thediffusion process of back-filled grouting was analyzed and divided into four phases,including fill, penetration, compaction and hydrofracture. The penetration andcompaction were considered as the main factors that originated pressure andbuoyancy to the segments.
     On the basis of Maag's spherical surface diffusion formula and cylinder surfacediffusion formulas, and with the assumption of half-spherical and arc surfacediffusion models, the grouts diffusion radius and the pressure to shield tunnelsegments were studied by substituting the intrinsic void percent of soil with theequivalent void percent to consider the existing of construction gap. As a result, thecorresponding formula was acquired. It is shown that the grouts diffusion radius andthe pressure to segments are related to many factors, such as the grouting pressure,grouting duration, grouts viscosity, soil permibility, thickness of the construction gap,radius of the grouting pipe, etc. And the relationship between them was also discussedfor engineering practice.
     The partial upward movement controlling model was proposed in the paper, which was used to analyze the effects of segments, bolts and the overburden, whenone segment (or several segments) or one segment ring (or several segment rings)experienced buoyancy. Then, a single segment upward movement control formulaand a whole segment ring upward movement control formula were put forward,respectively. The former adapts to the condition that the buoyancy concentrates on thebackside of one segment or several segments. And the latter is fit for the conditionthat one whole segment ring experiences buoyancy.
     The longitudinal upward movement controlling model was proposed, which wasused to analyze the force and distortion of the segments and ground whenexperiencing buoyancy, by assuming the shield tunnel segments as a long beam. Thetransverse rigidity efficiency and inflection factors were considered in thelongitudinal equivalent continuous model, so the transverse rigidity and longitudinalrigidity could be unified. Engineering practice shows that the longitudinal rigidity hasa close relationship with the transverse rigidity in proportion to it. In addition, theupward movement characteristic of shield tunnel in construction was simulated withFEA method.
     Finally, some problems and further studies were discussed.
引文
[1] A.M. Talmon, L. Aanen, A. Bezuijen & W.H. vander Zon, Grout pressures around a tunnel lining. The 3~(rd) - The Netherlands Tunneling Seminar in 2001.November 2,2001,at Kyoto University, Japan.
    
    [2] Akagi H. & Komiya K., Finite Element Simulation of shield Tunneling Process in Soft Ground, Proc. Int. Symp. On Geotech. Aspects of Underground Constr. in Soft Ground, R.J.Mair and R.N.Talor,eds., Balkema, Rotterdam The Netherlands, 1996,22(33):221-242.
    [3] Bezuijen, A., Talmon, A.M., Kaalberg, F.J., et al. Field measurement of grout pressures during tunnelling of the Sophia Rail Tunnel[J]. Soil and Foundations, 2004,44(1): 39-48.
    [4] Brajani B, Robertson P K, Morgensten N R. Simplified design methods for pipelines subject to transverse and longitudinal soil movements[J]. Canadian Geotechnical Journal, 1995, 32(2): 309-323.
    [5] C.B.M.Blom, E. J. vander Horst and P.S.Jovanovic, Three-dimensional Structural Analyses of the Shield-Driven "Green Heart" Tunnel of the High-Speed Line South[J], Tunnelling and Underground Space Technology, 1999,14(2):217-224.
    [6] CHEN BAO, WEN Zhu-yin. Elasto-plastic analysis for the effect of longitudinal uneven settlement[C]// Reclaiming the underground space-Proceedings of the ITA World Tunnelling Congress 2003. Rotterdam: Balkema, 2003.
    [7] Choshiro T, Toshio N. Influence of rigidity of soil surrounding shield tunnel upon equivalent rigidity of the tunnel in axial direction[A]. In: Lifeline Earthquake Engineering[C]. Noguchi, Japan: University of Tokyo, 1990. 1131-1139.
    [8] Design and Construction of Transportation Facilities, Researching Report of ATRB, 2000.
    [9] Dias. D., M. Maghazi, R. Kastner. Three dimension simulation of slurry shield tunneling. Geotechnical Aspects of underground constructions in soft ground. An International Symposium held at Tokyo International Exhibition Center, Tokyo, Japan, 19-21,July 1999.
    [10] Ding W. Q., Yue Z. Q., Tham L. G., Zhu H. H., Lee C. F. & Hashimoto T. Analysis of shield tunnel[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, Vol.28: 57-91.
    
    [11] Ezzeldine, O.Y. .Estimation of the surface displacement field due to construction of Cairl metro line R1 Khalafawy- St. Therese[J]. Tunnelling and Underground Space Technology, 1999,14(3): 267-279.
    
    [12] Graf D D. Compaction grouting technique and observations[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1969, 95(SM5): 1151-1158.
    [13] Hashimoto T., Brinkman J., Konda T., Kano Y. and Feddema. Simultaneous backfill grouting pressure development in construction phase and in the long-term[C]. Proceeding of 30~(th) ITA-AITES World Tunnel Congress, Singapore, 2004: 52-59.
    [14] Hashimoto T., Brinkman J., Konda T., Kano Y. and Feddema. Simultaneous backfill grouting pressure development in construction phase and in the long-term[C]. Proceeding of 30~(th) ITA-AITES World Tunnel Congress, Singapore, 2004: 52-59.
    [15] Hassler L, et al. Simulation of grouting in jointed rock[A]. Proc 6th Int Conf on Rock Mech[C]. 1987.
    [16] K. M. Lee, X. W. Ge. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering, 2001, 38(3): 461-483.
    [17] K. M. Lee, X. Y. Hou, X. W. Ge, et al. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geotechnics, 2001,25(3): 365-390.
    [18] K. Soga, M.D. Bolton, S.K. A. Au and K. Komiya. Development of compensation grouting modeling and control system. An International Symposium held at Tokyo International Exhibition Center, Tokyo, Japan, 19-21, July 1999.
    [19] Komiya K., Soga K., Akagi H., Jafaris M. R. & Bolton M. D. Soil consolidation associated with grouting during shield tunnelling in soft clayey ground[J]. Geotechnique, 2001, Vol. 51 (10): 835-846.
    [20] Komiya. K, Soga K., Akagi H., Hagiwara T. & Bolton M.D. Finite element modeling of excavation and advancement processes of a shield tunneling machine[J]. Soils and Foundations, 1999, Vol. 39 (3): 37-52.
    
    [21] Kuesel T R. Principles of tunnel lining design[J]. Tunnel & Tunnelling, 1987,19(4):25-28.
    [22] LEE K M, GE X W. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure[J]. Journal of Canadian Geotechnical Engineering, 2001(38): 461-483.
    [23] LEE K M, HOU X Y, GE X W, TANG Y. An analytical solution for a jointed shield-driven tunnel liningfJ]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25(4): 365-390.
    [24] Lee K M, Rowe R K, Lo K Y. Subsidence owing to tunneling[J]. Canadian Geotechnical Journal, 1992,29:929-954.
    [25] LEE K. M., HOU X. Y, GE X. W, TANG Y. An analytical solution for a jointed shield-driven tunnel lining[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25(4): 365-390.
    [26] Lee K. M., Kerry Rowe R. & Lo K. Y. Subsidence owing to tunneling. I. Estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, Vol. 29: 929-940.
    [27] Lo K. Y, Ng M. C. & Rowe R. K. Predicting settlement due to tunneling in clays[A]. Tunnelling in Soil and Rock, ASCE Geotech III conference[C], Atlanta, GA, 1984: 46-76.
    [28] Loganathan N, Poulos H G Analytical prediction for tunneling induced ground movement in clays[J]. Jouranl of Geotechnical and Geoenvironmental Engineering, 1998(9): 846-856.
    [29] Luco J E, Anderson J G, Georgevich M. Soil-structure interaction effects on strong motion accelerograms recorded on instrument shelters[J]. Earthquake Engineering and Structure Design, 1990, 19(1):119-131.
    [30] Murakami.H, Koizumi A. Study on load bearing capacity and mechanics of shield segment ring. Proc for the Japan Society for Civil Engineering, 1978, 272(4): 103-115.
    [31] Nomoto T, Imamura S, Hagiwara T, et al. Shield tunnel construction in centrifuge[J]. J Geotech. & Geoenvir. Eng., 1999, 125: 289-300.
    [32] P. M. Donde, J. J. Wang. Shear transfer through bolts in segmental tunnel linings. In: Towards New Worlds in Tunnelling, Balkema, Rotterdam, 1992: 295-301.
    [33] P.P. Oreste, D. Peila, V.Marchionni, R.Sterling, Analysis of the problems connected to the sinking of micro-TBMs in difficult grounds[J], Tunnelling and Underground Space Technology 16 Suppl. 1 (2002)s33-s45.
    [34] R. J Mair, R. N. Taylor. Bored tunneling in the urban environment, Proceedings of The Fourteenth International Conference on Soil Mechanics and Foundation Engineering, 1997: 2353-2380.
    [35] Reilly John,Arrigoni Gianni,Xu Shulin,Grasso Piergiorgio等著.钱七虎,李兴碧译.TBM及其在中国的应用(3)[J],现代隧道技术,2002(6):1-6.
    [36] Resendiz D, Romo M P. Soft-ground tunneling[A]. In: Soft-ground Tunneling-failures and Displacement[C]. Rotterdam: A. A. Balkema, 1981: 65-74.
    [37] Rowe R. K. & Lee K. M. Subsidence owing to tunneling. Ⅱ. Evaluation of a prediction technique[J]. Canadian Geotechnical Journal, 1992, Vol. 29: 941-954.
    [38] Swoboda G. & Mansour M. Three-dimensional numerical modeling of slurry shield tunneling[A]. In: Proceedings of the international lecture series TBM tunneling trends[C], Edited by Harald Wagner & Alfred Schulter, 1996: 27-41.
    [39] Talmon A.M., Aanen L., Bezuijen A. & van der Zon W.H. Grout pressures around atunnel lining[A]. Proc. Int. Symp. On Modern Tunneling Science and Tech[C]., Kyoto, 2001.
    [40] W.H.N.C. wan Empel, R.G.A. de Waal, C. Wan der Veen. Segmental tunnel lining behavior in axial direction. Geotechnical aspects of underground construction in soft ground, Japan, 1999. Preprint volume of proceedings. An International Symposium held at Tokyo International Exhibition Center, Tokyo, Japan.
    [41] Warner J, Chmidt S, Reed N, et al. Recent advances in compaction grouting technology[A], Proc. Grouting, Soil Improvement, and Geosynthetics[C]. New Orleans: [s.n.], 1992. 252-256.
    [42] Warner James, Brown Douglas R. Planning and performing compaction grouting[J]. Journal of the Geotechnical Division, ASCE, 1974, 100(6): 653-666.
    [43] Working Group 2, International Tunnelling Association. Guidelines for the Design of Shield Tunnel Lining[J]. Tunnelling and Underground Space Technology, 2000, 15(3): 303-331.
    [44] Y. Kashima, N. Kondo & M. Inoue. Development and Application of the DPLEX Shield Method: Results of Experiments Using Shield and Segment Models and Application of the Method in Tunnel Construction[J]. Tunnelling and Underground Space Technology, 1996, Vol.11(1): 45-50.
    [45] Y. Koymara. Design method of shield tunnel-present status and subjects, the 3rd Japan-Nehterlands tunneling seminar in 2001, November 2, 2001 at Kyoto University, Japan.
    [46] Yarnagnchi I, Yarnazaki I, Kiritani Y. Study of ground-tunnel interactions of four shield tunnels driven in close proximity, in relation to design and construction of parallel shield tunnels[J]. Tunneling and Underground Space Technology, 1998, 13(3): 289-304.
    [47] Yukinori Koyama, Present status and technology of shield tunneling method in Japan[J], Tunnelling and Underground Space Technology, 2003(18): 145-149.
    [48] Yukinori, K., Yutaka, S., Noriyuki, O. et al. Back-fill grouting model test for shield tunnel[J]. PTRI QR, 1998, 39(1): 35-39.
    [49] Zhu Hehua, Hashimoto T. et al. A new model for simulating the behavior of segments in shield tunnel. Proceedings of the 49th Annual Conference of the JSCE, 1994.
    [50] Zhu Hehua, T. Hashimoto, et al. Back-analysis for Shield Tunnel Using Beam-Joint Model, Geotechnical Aspects of Underground Construction in Soft Ground, London, 1996(4): 15-17.
    [51] 曹催晨.TBM掘进机在引黄工程中的应用[J].科技情报开发与经济,2003(11):232-233.
    [52] 陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2003.
    [53] 陈浚峰,郭永顺.管片与盾构盾尾的间隙及其控制[J].广东土木与建筑,2004(11):49-51.
    [54] 陈三江.盾构法隧道衬砌接头受力机理分析[硕士学位论文][D].上海:同济大学,1986.
    [55] 陈心爽,袁耀良.材料力学[M].上海:同济大学出版社,1996:178-187.
    [56] 陈愈炯.压密和劈裂灌浆加固地基的原理和方法[J].岩土工程学报,1994,16(2):22-28.
    [57] 崔天麟,赵运臣.盾构隧道掘进过程中同步注浆技术的应用[J].探矿工程.岩土钻掘工程,2003(4):59-61.
    [58] 戴小平,郭涛,秦建设.盾构机穿越江河浅覆土层最小厚度的研究[J],岩土力学,2006,27(5):782-786.
    [59] 邓宗伟,冷伍明,陈建平.盾构隧道壁后注浆作用机理的计算研究[J].塑性工程学报,2005,12(6):114-117.
    [60] 丁春林,刘建国,宫全美,等.盾构隧道管片衬砌内力计算方法比较[J].地下空间,2001,21(3):208-214.
    [61] 丁春林,周书明,周顺华.盾构施工对隧道围岩内力和地层变形的影响[J].中国公路学报,2002,15(4):62-65.
    [62] 丁春林,朱世友,周顺华.地应力释放对盾构隧道围岩稳定性和地表沉降变形的影响[J].岩石力学与工程学报,2002,21(11):1633-1638.
    [63] 丁文其,杨林德,朱合华.盾构隧道施工中材料性态的模拟[J].同济大学学报,1999,27(4):468-473.
    [64] 冯卫星 译.模拟盾尾间隙影响的盾构隧道试验研究[J].地铁与轻轨,1993(2):38-42.
    [65] 傅冰骏.建立隧道掘进机产业促进我国地下空间开发[J].探矿工程(岩土钻掘工程),2001(2):1-2.
    [66] 傅德明.隧道盾构掘进机技术和沉管法施工回顾及展望[J].工业技术进步,2001(5):23-26.
    [67] 官林星.考虑盾构隧道施工过程的衬砌内力计算方法研究[硕士学位论文][D].上海:同济大学,2004.
    [68] 何焕雄,曹国金.盾构法施工技术及其在我国的发展和应用[J],建筑技术开发,2004(4):106-108.
    [69] 何英杰,袁江.影响盾构隧道衬砌接头刚度的因素[J].长江科学院院报.2001,18(1):20-23.
    [70] 何英杰,周晓雁.盾构隧道衬砌连接螺栓变形的影响因素分析[J].长江科学院院报,2002,19(1):57-60.
    [71] 洪代玲(译).DPLEX盾构法的开发和利用—模型试验结果及其在隧道施工中的应用[J].世界隧道,1997(4):14-19.
    [72] 胡坚,王军.盾构法隧道的纵向沉降问题[J].上海地质,2000(3):13-18.
    [73] 胡如军,朱伟,谈小龙.盾构隧道管片的设计计算方法[J].河海大学学报,2001,29(增刊):182-185.
    [74] 胡志平,罗丽娟,蔡志勇.盾构隧道管片衬砌的平板壳—弹性铰—地基系统模型[J].岩土力学,2005,26(9):1403-1408.
    [75] 华南理工大学等 四校联编.地基及基础[M],中国建筑工业出版社,1991:40-87.
    [76] 黄宏伟,臧小龙.盾构隧道纵向变形性态研究分析[J].地下空间,2002,22(3):244-251.
    [77] 黄宏伟,刘通剑,谢雄耀.盾构隧道壁后注浆效果的雷达探测研究[J].岩土力学,2003,14(增):353-356.
    [78] 黄宏伟,徐凌,严佳梁,等.盾构隧道横向刚度有效率研究[J].岩土工程学报,2006,28(1):11-18.
    [79] 黄宏伟,严佳梁,徐凌.软土盾构隧道管片环接头的形式及其建议[J].地质与勘探,2003(增刊):17-22.
    [80] 黄威然,竺维彬.施工阶段盾构隧道漂移控制的研究[J].现代隧道技术,2005,42(1):71-76.
    [81] 黄学军,马小汀.高水压下泥水盾构掘进技术[J].隧道建设,2004,24(6):39-40.
    [82] 黄钟晖,廖少明,侯学渊.错缝拼装衬砌纵向螺栓剪切模型的研究[J].岩石力学与工程学报,2004,23(6):952-958.
    [83] 黄钟晖.盾构法隧道错缝拼装衬砌受力机理的研究[博士学位论文][D],上海:同济大学.2001.
    [84] 季亚平.考虑施工过程的盾构隧道地层位移与土压力研究[硕士论文][D].南京:河海大学,2004.
    [85] 姜启元,管攀峰,叶蓉.软土盾构隧道的纵向变形分析[J].地下工程与隧道,1999(4):2-6,21.
    [86] 蒋洪胜,侯学渊.盾构掘进对隧道周围土层扰动的理论与实测分析[J].岩石力学与工 程学报,2003,22(9):1514-1520.
    [87] 蒋洪胜,侯学渊.装配式圆形隧道与软土地层的相对刚度分析[J].岩石力学与工程学报,2004,23(13):2262-2265.
    [88] 蒋洪胜.盾构法隧道管片接头的理论研究及应用[博士学位论文][D].上海:同济大学,2000.
    [89] 蒋建群,卢慈荣,沈林冲.盾构法隧道纵向非线性地震响应特性研究[J].水力发电学报,2005,24(2):10-15.
    [90] 梁精华.盾构隧道壁后注浆材料配比优化及浆液变形特性研究[硕士论文][D].南京:河海大学,2006.
    [91] 廖少明,白廷辉,彭芳乐,等.盾构隧道纵向沉降模式及其结构相应[J].地下空间与工程学报,2006,2(4):566-570.
    [92] 廖少明,侯学渊,彭芳乐.隧道纵向剪切传递效应及其一维解析[J].岩石力学与工程学报,2005,24(7):1110-1116.
    [93] 廖少明,余炎,李文林.地中弹性边界对盾构近距离掘进位移场的影响[J].岩石力学与工程学报,2005,24(19):3534-3540.
    [94] 廖少明.圆形隧道纵向剪切传递效应研究[博士学位论文][D].上海:同济大学,2002.
    [95] 林永国.地铁隧道纵向变形结构性能研究[博士学位论文][D].上海:同济大学,2001.
    [96] 林永国.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-267,289.
    [97] 林志.双线盾构隧道施工过程相互影响三维弹塑性固结耦合研究[博士学位论文][D].上海:同济大学,2004.
    [98] 刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [99] 刘学山.盾构隧道的纵向抗震分析研究[J].地下空间,2003,23(2):166-172.
    [100] 刘学山.盾构隧道管片横向接头刚度对内力影响的研究[J].现代隧道技术,2003,40(4):14-19.
    [101] 刘通剑.软土盾构隧道壁后注浆探测及分析[硕士学位论文][D].上海:同济大学,2003.
    [102] 隆威,尹俊涛,刘永正,等.TBM掘进技术的发展应用及相关工程地质问题探讨[J].探矿工程(岩土钻掘工程),2005(2):55-59.
    [103] 马晓卫,张占刚.泥水盾构施工防水技术[J].隧道建设,2004,24(6):32-34,38.
    [104] 茅承觉,叶定海,张照煌.全断面岩石掘进机概论[J].建筑机械,1998(9):30-34.
    [105] 日本土木学会.隧道标准规范(盾构篇)及解说[M].朱伟,译.北京:中国建筑工业出版社,2001.
    [106] 阮文军.浆液基本性能与岩体裂隙注浆扩散研究[博士学位论文][D].吉林:吉林大学,2003.
    [107] 上海市地基基础设计规范.上海市工程建设标准化办公室,1999.
    [108] 上原精治,三上博,石田智郎,小泉淳.轴方向刚性碓認突验,土木学会输文集,1990:231-237.
    [109] 沈永东,王吉云.上海长江隧道试验段工程技术[C].大直径隧道与城市轨道交通工程技术—2005上海国际隧道工程研讨会文集,2005:33-40.
    [110] 沈征难.盾构掘进过程中隧道管片上浮原因分析及控制[J].现代隧道技术,2004,41(6): 51-56.
    [111] 施成华,彭立敏,刘宝琛.盾构法施工隧道纵向地层移动与变形预计[J].岩土工程学报,2003,25(5):585-589.
    [112] 宋克志,王梦恕.浅谈隧道施工掘进机的选型[J].铁道建筑,2004(8):39-41.
    [113] 苏华友,汪家林.TBM施工中的质量控制与管理[J].岩石力学与工程学报,2004,23(11):1930-1934.
    [114] 苏许斌.盾构法隧道装配式衬砌接头模型研究[硕士学位论文][D].上海:同济大学,1986.
    [115] 唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报,2005,27(1):85-89.
    [116] 田敬学,张庆贺.盾构法隧道的纵向刚度计算方法[J].中国市政工程,2001(3):35-37.
    [117] 万波,潘生根,黄醒春.基于弹性地基模型的大型越江盾构隧道纵向位移分析[J].海洋过程,2005,23(2):98-103.
    [118] 万波.基于弹性地基模型的软土盾构隧道纵向变形分析[硕士学位论文][D].上海:上海交通大学,2004.
    [119] 汪时机.盾构隧道衬砌结构形式和内力计算方法分析[J].矿业科学技术,2002,(4):18-21.
    [120] 王春河.盾构施工中管片壁后注浆类型的比较分析[J].铁道建筑技术,2004(3):15-17.
    [121] 王晖,李火勇,夏广红.盾构机盾尾注浆施工中存在的问题及其对策分析[J].苏州科技学院学报(工程技术版),2004,17(1):40-45.
    [122] 王古生,朱世友.桩基下地铁隧道管片衬砌分析[J].现代隧道技术,2002,39(增刊):271-277.
    [123] 魏纲,徐日庆.软土隧道盾构法施工引起的纵向地表变形预测[J].岩土工程学报,2005,27(9):1077-1081.
    [124] 温竹茵,周质炎.盾构法隧道的纵向受力分析[J].特种结构,2002,19(2):14-16.
    [125] 吴兰婷.盾构隧道管片接头力学行为的有限元分析[硕士学位论文][D].成都:西南交通大学,2005.
    [126] 西野健三,吉田和夫,小泉淳.緃断方向现埸載荷試驗考察,土木学会諭文集,1986:131-140.
    [127] 小泉淳,村上博智,石田智郎,等.急曲線施工用设计法,土木学会输文集,1992:111-120.
    [128] 小泉淳,村上博智,石田智郎,等.急曲缘施工用设计法,土木学会諭文集,1992:111-120.
    [129] 小泉淳,村上博智,西野键三.軸方向特性土木学会諭文集,1988:79-88.
    [130] 徐凌.软土盾构隧道纵向沉降研究[博士学位论文][D].上海:同济大学,2005.
    [131] 徐前卫.盾构施工参数的地层适应性模型试验及其理论研究[博士学位论文][D].上海:同济大学,2006.
    [132] 徐永福,陈建山,傅德明.盾构掘进对周围土体力学性质的影响[J].岩石力学与工程 学报,2002,(22):1174-1179.
    [133] 严佳梁.盾构隧道管片接头性态研究[硕士学位论文][D].上海:同济大学,2006.
    [134] 岩土注浆理论与工程实例协作组.岩土注浆理论与工程实例[M].北京:科学出版社,2001.
    [135] 杨冠天.盾构隧道周围地层位移分析[硕士学位论文][D].北京:北京交通大学,2004.
    [136] 余占奎,黄宏伟,娄宇,等.软土盾构隧道结构理论与模型试验研究[J].特种结构,2006,23(2):74-77.
    [137] 余占奎,黄宏伟,徐凌,等.软土盾构隧道纵向设计综述[J].地下空间与工程学报,2005,1(2):315-318.
    [138] 臧小龙.软土盾构隧道纵向结构变形研究[硕士学位论文][D].上海:同济大学,2003.
    [139] 曾东洋,何川.地铁盾构隧道管片接头抗弯刚度的数值计算.西南交通大学学报.2004,39(6):744—748.
    [140] 曾东洋,胡蔓宁,史彦文.盾构隧道施工地表沉降变位影响因素研究[J].铁道工程学报,2006,4(Sen 94):34-38.
    [141] 张晨明.上海地区盾构施工期及工后土体固结反应特性研究[博士学位论文][D].上海:同济大学,2005.
    [142] 张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [143] 张海波,殷宗泽,朱俊高,等.盾构法隧道衬砌施工阶段受力特性的三维有限元模拟[J].岩土力学,2005,26(6):990-994.
    [144] 张海波,殷宗泽,朱俊高.盾构法隧道施工的精细模拟[J].岩土力学,2004,25(supp.2):280-284.
    [145] 张厚美,傅德明,过迟.盾构隧道管片接头荷载试验研究[J].现代隧道技术,2002,39(6):28-33,41.
    [146] 张厚美,过迟,傅德明.圆形隧道装配式衬砌接头刚度模型研究[J].岩土工程学报,2000,22(3):309-313.
    [147] 张厚美,吕国梁.圆形盾构衬砌计算模型综述[J].世界隧道,2000(2):1-6.
    [148] 张厚美,叶均良,过迟.盾构隧道管片接头抗弯刚度的经验公式[J].现代隧道技术,2002,39(2):12-16.
    [149] 张厚美,张正林,王建华.盾构隧道装配式管片接头三维有限元分析[J].上海交通大学学报,2003,37(4):566-569.
    [150] 张厚美.装配式整体式双层衬砌接头荷载试验与结构设计理论[博士学位论文][D].上海:同济大学,2000.
    [151] 张庆贺,王慎堂,严长征,等.盾构隧道穿越水底浅覆土施工技术对策[J],岩石力学与工程学报,2004,23(5):857-861.
    [152] 张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002,21(2):388-392.
    [153] 张云,殷宗泽.埋管隧道竖向地层压力的研究[J].岩土力学,2001,22(2):184-188.
    [154] 张云.土质隧道土压力和地层位移的离心模型试验及数值模拟研究[博士学位论文][D].南京:河海大学,2000.
    [155] 赵国旭,何川.盾构隧道管片设计的主要影响因素分析[J].铁道建筑,2003,(12):25-28.
    [156] 赵沛 译.盾构开挖圆断面隧道预制衬砌.隧道译丛,1994(5):57-66.
    [157] 赵欣.盾构衬砌管片设计优化及其接头参数的确定[硕士学位论文][D].上海:同济大学,2003.
    [158] 郑心铭.盾构隧道管片结构的理论研究及计算分析[硕士学位论文][D].成都:西南交通大学,2005.
    [159] 郑永米,韩文星,童琪华,等.软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J].岩石力学与工程学报,2005,21(24):4552-4558.
    [160] 志波由纪夫,川島一彦,大日方尚己,加纳尚史.応答变位法耐震設計法.土木技衍资料,1986,vol.28(5):45-50.
    [161] 志波由纪大,川島一彦,大日方尚己,加纳尚史.耐震解析長手方向覆工剛性评价法.土木学会諭文集,1988:319-327.
    [162] 志波由纪大,川島一彦,大日方尚己,加纳尚史.応答变位法地震時断面力算定法.土木学会諭文集,1989:385-394.
    [163] 中华人民共和国国家标准[S],地铁设计规范[GB50157-2003].
    [164] 钟小春,朱伟,季亚平,等.盾构衬砌管片环弯曲等效刚度的一种确定方法[J].地质与勘探,2003(增刊):185-189.
    [165] 钟小春.盾构隧道管片土压力的研究[博士学位论文][D].南京:河海大学,2005.
    [166] 周文波,杨国祥,傅德明.中国越江隧道工程的建设和大直径盾构掘进技术的应用[C].大直径隧道与城市轨道交通工程技术—2005上海国际隧道工程研讨会文集,2005:3-11.
    [167] 周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004:4-17.
    [168] 朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [169] 朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究[J].岩土工程学报,2000,22(2):190-194.
    [170] 朱合华,丁文其,李晓军.盾构隧道施工力学性态模拟及工程应用[J].土木工程学报,2000,33(3):98-103.
    [171] 朱合华,陶履彬.盾构隧道衬砌结构受力分析的梁—弹簧系统模型[J].岩土力学,1998,19(2):26-32.
    [172] 朱合华,吴江斌,潘同燕.曲线顶管的三维力学模型理论分析与应用[J].岩土工程学报,2003,25(4):492-495.
    [173] 朱合华,杨林德,陈清军,等.盾构隧道管片接头衬砌系统的两种受力设计模型[J].工程力学(增刊),1996:395-399.
    [174] 朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究[J].岩土工程学报,2000,22(2):190-194.
    [175] 朱建春,李乐,杜文库.北京地铁盾构同步注浆及其材料研究[J].建筑机械化,2004(11):26-29.
    [176] 朱科峰.盾构法隧道施工背后注浆技术[J].广东土木与建筑,2003(7):19-21.
    [177] 朱世友.国内地铁盾构区间隧道管片结构设计的现状与发展[J].现代隧道技术,2002,39(6):23-28.
    [178] 朱伟,黄正荣,梁精华.盾构衬砌管片的壳—弹簧设计模型研究[J].岩土工程学报,2006,28(8):940-947.
    [179] 朱卫平.盾构法隧道模型试验中的相似关系[J].力学与实践,2005,27(4):35-38.
    [180] 朱忠隆,张庆贺,易宏传.软土隧道纵向地表沉降的随机预测方法[J].岩土力学,2001,22(1):56-59.
    [181] 邹翀.盾构隧道同步注浆技术[J].现代隧道技术.2003,40(1):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700