用户名: 密码: 验证码:
考虑渗流的盾构隧道掘进面失稳分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法隧道施工技术在世界许多国家不断得到发展,己成为近年来城市地下工程施工对周围地层扰动最小的施工方法,但在推广与应用上出现了大量施工技术方面的事故。其中,由地下水渗流引起的掘进面失稳、塌陷、喷涌、渗漏水等工程事故更是频繁发生。这些事故的发生,影响整个工程的工期,还造成了极大的经济损失和不必要的人员伤亡。在盾构法隧道工程应用较多的国家如英国、日本、德国等,其关于掘进面稳定相关理论研究已经取得不少成果,对施工中由于地下水渗流引起的掘进面失稳的分析方法及理论也在不断发展。与之相比,国内对隧道掘进面失稳和破坏机理研究仍然处于过分依赖工程经验阶段,对复杂地质条件下盾构隧道掘进面稳定机理的研究相对滞后。为此,在国家科技部设立的的关于隧道盾构施工工程的973项目中的第一子课题便是关于盾构掘进面的稳定性研究。本文特别针对渗流引起的掘进面失稳进行研究,主要研究内容如下:
     1.将边坡稳定分析的垂直条分法引入到隧道掘进面稳定性分析中,扩展太沙基松动土压力理论到上覆土层为多层并富含地下水的地质条件,推导了考虑地下水渗流时盾构穿越高地下水位地层隧道掘进面支护压力解析表达式,并用于实际盾构隧道施工的模拟。研究发现,地下水流动引起的渗透力构成了总支护压力的主要部分,随着地下水位的升高,渗透力在总支护压力中的比值呈升高趋势;
     2.泥水盾构是地铁施工中较多采用的盾构类型,本文对泥膜形成及泥浆渗透对泥水盾构隧道掘进面稳定性影响等前沿课题进行了研究,建立了半承压含水层中过量孔隙水压力分布表达式,推导了泥浆渗透的楔形体模型,改进和完善泥水盾构支护压力确定方法。研究结果发现,过量孔隙水压力的产生将导致有效泥水压力的降低和极限支护压力的显著增加;
     3.“超前注浆管棚支护技术”被广泛应用于复杂恶劣地质条件下的盾构施工中,国内施工对注浆管棚条件下掘进面稳定机理认识尚不足。本文使用有限差分数值计算程序计算实施超前注浆管棚支护的隧道掘进面附近水头分布,结合土体极限平衡理论分析了超前注浆管棚对隧道掘进面稳定性的影响。研究发现,采用超前注浆管棚支护技术,开挖面土体失稳后掘进面附近处于塑性区的单元不再急剧扩张,地表沉降得到有效的控制;注浆管棚的长度与隧道直径相关,当管棚长度大于隧道直径2倍以上,注浆管棚的支护效果不明显;
     4.工程监测数据显示,当隧道在低渗透性土壤中以较高的速度开挖时,盾构掘进速度对隧道掘进面水头分布影响明显。目前,对盾构隧道掘进面稳定性分析均未将盾构掘进速度这一重要因素考虑在内,导致低渗透性土壤中以较高速度开挖的盾构掘进面支护压力计算结果存在较大误差。本文基于固定在隧道掘进面上参照坐标系,推导了考虑隧道开挖速度、土体的渗透系数以及土体贮水系数的稳态地下水流动偏微分方程,通过伽辽金有限元法推导考虑盾构掘进速度的三维稳态渗流有限元方程,编写计算程序TME计算地下水参数和盾构掘进速度的变化对隧道掘进面附近水头场改变的影响。结果发现,低渗透性土层中,盾构掘进速度的增加将导致掘进面附近总水头等值线重新分布,水头下降趋势更加明显,作用在隧道掘进面渗透力显著增加。
Shield tunnel method has made rapid progress in many countries, which is becoming the most primary method in underground excavation with the minimum soil disturbance. At the same time, the application of the method has caused many construction accidents such as face instability, collapse, spew and leakage. These accidents lead to the surface collapse, destroy the surrounding environment badly, and cause huge economic losses, hinder the normal operation of the traffic, which have seriously affect people’s lives. Some countries such as England, Germany and Japan have developed the Shield tunnel method to a new stage and made rapid progress in theoretical and experimental research. But the analysis of face stability and collapse at homes mainly depends on practical experience, there has been little research with respect to the stability of tunnel face in hard geological conditions. The paper developed the following work and research:
     (1) Slice method derived from slope stability analysis were used in face stability analysis of shield tunnels. Extend the Terzaghi theory to layered soil, the support pressure at the tunnel face is developed with the consideration of underground seepage flow. It was found that the existence of groundwater seriously affects the stability of a tunnel face, most part of the total support pressure is owing to the seepage pressure acting on tunnel face. The ratio of the seepage force to the total support pressure shows much change with the variation of water level;
     (2) EPB are widely used in tunnel excavation, some advanced problems such as slurry infiltration and filter cake creation were developed in this study. We schematize the soil in front of the tunnel as a one-dimensional semi-confined aquifer, the excess pore pressure distribution in the semi-confined aquifer is established. The wedge stability model with the consideration of slurry infiltration depth and excess pore pressures was proposed, which improved the method to calculate the limit support pressure. The result shows the excess pore pressure has great effect on the stability of tunnel face as they reduce the effectiveness of the support force from the slurry and lower the effective stress in the soil;
     (3) Advanced pipe grouting is now being widely used in hard geologic conditions, while the research of face stability considering the pipe grouting was poor in homes. In this study, a three-dimensional explicit finite-difference program was used to calculate the head distribution around tunnel face with the consideration of advanced pipe grouting, the limit theorem and limit equilibrium are incorporated in face stability analysis to quantify the influence of pipe grouting. It was found that the extent of the plastic zone does not propagate any further with the decrease of support pressure, the magnitude of vertical components of the displacement is well controlled. The support pressure varies with less amplitude when the length of pipe grouting is 2 times larger than the diameter of tunnel in tunnel construction;
     (4) When the tunnel is excavated with high advance velocity, the head distribution around the face is influenced greatly. While the velocity was not included in face stability analysis in many researches, which lead to large error in support pressure results. We derived the three dimensional steady-state saturated groundwater flow equations with the consideration of tunnel advance rate by weighted residual-Galerkin method. A finite element program to analyze the groundwater flow around a tunnel was made. It was found that the head distribution around the face is greatly influenced by the shield advance velocity, the increase of advance velocity lead to the head drops more significant in case of less permeable ground and it means the increase of the seepage pressures at the tunnel face.
引文
[1]刘建航,候学渊,盾构法隧道,中国铁道出版社,1991
    [2]张凤祥,朱合华,傅德明,盾构隧道,北京:人民交通出版社,2004
    [3]周文波,盾构法隧道施工技术及应用,北京:中国建筑工业出版社,2004
    [4]胡胜利,乔世珊,土压平衡式盾构机,建筑机械,2000(1):24~28
    [5]李希元,闫静雅,孙艳萍,盾构隧道施工事故的原因与对策,地下空间与工程学报,2005,1(6):968~971
    [6]朱伟,陈仁俊,盾构施工技术现状及展望,岩土工程界,2008,4(11):19~21
    [7]郭志业,岩土工程中地下水危害防治,人民交通出版社,2009
    [8] Hashimoto T, Kurihara K, Ohstsuka M, et al. Some aspect of round movement during shield tunneling in Japan[A].In :M air,Taylor.Geotechnical Aspects of Underground Construction in Soft Ground[M].Balkema:Roterdam, 1996:693~688
    [9]尹旅超,朱振宏,李玉珍,等译,日本隧道盾构新技术,湖北:华中理工大学出版社,1999
    [10] Maidl B, Herrenknetcht M, Anheuser L. Mechanised Shield Tunnelling[M]. Berlin: Emst&Sohn Verlag fur Architektur and techn, 1996
    [11]陈馈,洪开荣,吴学松,盾构施工技术,人民交通出版社,2009
    [12]钱家欢,殷宗泽,土工原理与计算[M],北京:中国水利水电出版社,1996
    [13] Broms,B.B.,Benermark,H. Stability of clayatvertical openings.ASCE Jounral of Soil Merchanical and Foundation Engineering Division SMI. (93):71~94.
    [14] Peck,R.B..Deep excavations and tunneling in soft ground.Proc. 7th Int. Contsoil Mechanical and Foundation Engineering.Mexico City.State of the Art. 1969 (93): 225~290
    [15] Peck,R.B.,Hendron, A.J.et al..State of the art of soft ground tunneling. Proc.1972 RETC(Chicago). 1972 (l):259~280
    [16] Clough, G.W, Sweeney, S.P. et al.. Measured soil response to EPB shield tunneling. JGeotech.E ngng.D iv.,A m.S oc.C iv.E ngns.19 83, 109(2):131~14
    [17] Peck,R.B.,Hendron, A.J.et al..State of the art of soft ground tunneling. Proc.1972 RETC(Chicago). 1972 (l):259~280
    [18] Davis E H,GunnM J,etal.The stability of shallow tunnels and underground openings in cohesive material[J].Geotechnique,1980,30(4):397~416
    [19] Leca B,Bormieux L.Upper and lower bound solutions for the stability of shallow circular tunnels in frictional material [J].Geotechnique,1990,40(4):581~606
    [20] Abdul H S.Three-dimensional face stability analysis of shallow circular tunnels[C]. In: International Conference on Geotechniacal and Geological Engineering Australlia: Melboume, 2000
    [21] Vermeer P A, Bonnier PG., M611er S C. On a smart use of 3D-FEM in tunneling[A]. In: The 8th Intenrational Symosium on Numerical Models in Geomechanics [C].Itality, 2002
    [22] Abdul-HamidS oubral.T hree-dimensional face stability analysis of shallow circular tunnels [A].In: International Conference on Geotechnical and Geological Engineering[C]. Melbourne, Australia, 2000.
    [23] Atkinson,J.H.,Potts,D.M.. Subsidence above shallow tunnels in soft ground. Proc. ASCE Geotechanical Eng. Div., 1997, 103(4):307~325
    [24] Atkinson,J.H.,Potts,D.M.et a1. Centrifugal model tests on shallow tunnel in sand. Tunnels and Tunneling. 1997, 9(1):59~64.
    [25] W. BROERE. Face Stability Calculation for a Slurry Shield in Heterogeneous Soft Soils[J].Tunnels and Metropolises,1998: 215~218
    [26] Lee, I.M., Nam, S.W. and Ahn, J.H. Effect of seepage forces on tunnel face stability [J]. Canadian Geotechnical Journal, 2004, 19:273-281.
    [27] Anagnostou G, Kov'ari K. The face stability of slury shield driven tunnels. Tunneling and Underground Space Technology, 1994, 9(2):165~174.
    [28] Anagnostou, G. and Kovari, K.Face stability in slurry and EPB shield tunneling. In: Mair R J, Taylor R N .Geotechnical Aspects of Underground Construction in Soft Ground [M], Roterdam:Balkema,1996:453~458
    [29] G.Anagnostou and K.Kovári.Face Stability Conditions with Earth-Pressure- Balanced Shields [J].Tunneling and Underground Space Technology, 1996,11(2): 165~173
    [30] Pierre Chambon, Jean-Francois Corté.Shallow Tunnels in Cohesionless Soil, Stability of Tunnel Face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148~ 1165
    [31] Hisatake M,Eto Murakami. Stability and failure mechanisms of a tunnel face wih a shallow depth[A]. In: T. Fujii. Proceedings of the 8th Congress of theInternational Society for Rock Mechanics[C]. Intenrational Society for Rock Mechanics, 1995:587~591
    [32] Atkinson J H, Pots D M. Stability of a shallow circular tunnel in cohesionless soil [J].Geotechnique,1977, 27(2):203~215
    [33] Mair,R.J..Settlement efects of bored tunnels.Session Report,Proc. Geotechnical Aspects of Underground Construction in Soft Ground.(eds Mair,R,J.& Taylor, R.N).Balkema,pp.43~53
    [34] Komiya, K., Shimizu, E., et al.(2000).Earth pressure exerted on tunnels due to the subsidence of sandy ground. Proc. Geotechnical Aspect of Underground Construction in soft Ground.(eds Kusakabe, Fujita &M iyazaki). Balkema. pp. 397~ 402
    [35] Lee, I.M., Nam, S.W. and Ahn, J.H. Effect of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels. Tunneling and Underground Space Technology, 2001, 16:31-40.
    [36] Argyle D N. An investigation into the collapse of tunnel headings in dense sand [R].England: Cambridge University Engineering Tripos, 1976
    [37] Aspden R. Collapse of unline tunnels with headings in dense sand{R}. England: Cambridge University Engineering Tripos, 1976
    [38] Sharma J S, Bolton M D. A New Technique for Simulation of Collapse of a Tunnel in a Drum Cenrtifuge[R].CUED/D-SoildTRZ86, 1995
    [39] KonigD. An inflight excavator to model a tunneling process[A]. In: ISSMFE Centrifuge 98[M].Roterdam: B alkema, 1998:707~712
    [40] Nomoto T, Ueno K, OKusakabe, et al. centrifuge modeling of construction processes of shield tunnel [A].In: Mair, Taylor. Geotechnical Aspects of Underground Construction in Soft Ground [M].Roterdam: Balkema, 1996: 567~582
    [41] Brassinga H E, Bezuijen A .Modelling the grouting process around a tunnel lining in a geotechnical centrifuge [A].In: Proceeding15th Intemation. Conference on Soil Mechanics and Foundation Engineering [C]. Tokyo: Balkema, 2001:1455~1458
    [42] Nomoto T, Ueno K, OKusakabe, et al. centrifuge modeling of construction processes of shield tunnel [A].In: Mair, Taylor. Geotechnical Aspects of Underground Construction in Soft Ground [M]. Roterdam: Balkema, 1996: 567~572
    [43] Bolton M D, Lu Y C, Sharma J S. Centrifuge models of tunnel construction and compensation Geotechnical Aspects of Underground Construction in Soft Balkema, 1996:471~477
    [44] Taylor R N. Panel contribution: Interplay between physical and numerical models as applied in engineering practice [A]. In: Proceeding 15th Interation. Conference on Soil Mechanics and Foundation Engineering[C].Tokyo: Balkema, 2001: 2207~2208
    [45]徐东,黄广军,上海粘土的成拱能力探讨,上海铁道大学学报,1999,20(6): 49~54
    [46]朱合华,徐前卫,郑七振,等,软土地层土压平衡盾构施工参数的模型试验研究,土木工程学报,2007,40(9):87~94
    [47]程展林,吴忠明,徐言勇,砂基中泥浆盾构法隧道施掘进面稳定性试验研究,长江科学院院报,2001,18(5):53~55
    [48] Bernat S, Cambou B, Dubois P. Assessing a soft soil tunneling numerical model using field[J].Geotechnique,1999(4):427~452
    [49]易宏伟,张庆贺,朱忠隆,静力触探在盾构施工对土体扰动研究中的应用,世界隧道,2000(2):7~10
    [50]易宏伟,孙钧,盾构施工对软粘土的扰动机理分析,同济大学学报,2000,28 (3):277~281
    [51]蒋洪胜,侯学渊,盾构掘进对隧道周围土层扰动的理论与实测分析,岩石力学与工程学报,2003,22(9):1514~1520
    [52]徐永福,陈建山,傅德明,盾构掘进对周围土体力学性质的影响,岩石力学与工程学报,2003,22(7):1174~1179
    [53] Mair R, Setlement effect of bored tunnels, In: Fernandes. Application of Computational Mechanics in Geotechnical Engineering [M].Lisse:Swets& Zeitlinger, 2001:43~53
    [54]况龙川,盾构隧道数值模拟及其受环境施工影响的安全问题研究:[博士后研究工作报告],南京;河海大学,2000
    [55] Chan A H C, Sharpe L, Chapman DN, et al. Prediction of subsurface settlements and lining response due to a new tunnelling operations using finite element analyses [A].In: Proc. 15th Ira.Conf. on Soil Mechanics and Foundation Engineering[C].Tokyo: Balkema,2001:1383~1386
    [56] Alan Graham Bloodworth. Three-dimensional analysis of tunnelling effects on structures to develop design methods [D].Oxford: College of Oxford University,2002
    [57]裴洪军,城市隧道盾构法施工掘进面稳定性研究:[硕士学位论文],南京;河海大学,2005
    [58] Lee K M, Rowe R K. Analysis of three-dimensional ground movements: the Thunder Bay Tunnel [J] .Canadian Geotechnical Jounral, 1991, 28(1):25~41
    [59] Swoboda G, Mansour M. Three dimension numericalling of slury shield tunneling, In Wanger H ,Schulter A .Tu nnel Boring Machines[M].Roterdam: Balkema.1996: 27~41
    [60]朱合华,刘庭金,超浅埋盾构法隧道施工方案三维有限元分析,现代隧道技术,2001,38(6):14~18
    [61]孙钧,刘洪洲,交叠隧道盾构法施工土体变形的三维数值模拟,同济大学学报,2002,30(4):379~385
    [62]裴洪军,孙树林,吴绍明,等,隧道盾构法施工掘进面稳定性研究方法评析,地下空间与工程学报,2005,1(2):117~119
    [63] Komiyak, Soga K, A kagi H, et al .Finite element modeling of excavation and advancement process of a shield tunneling machine[J].Soils and Foundations, 1999,39 (3):37~52
    [64] Wongsaroj J, Soga K ,Mair R J ,et al .Three-dimensional finite element analysis of shield tunneling on ground deformation change in pore pressure and development of lining loads[R].Cambridge: University of Carnbridge,2002
    [65]刘招伟,王梦恕,董新平,地铁隧道盾构法施工引起的地表沉降分析[J].岩石力学与工程学报,2003,22(8): 1297~1301
    [66] P. A. Cundall. Distinct element methods of rock and soil structure, Analytical &Computational Methods in Engineering Rock Mechanics, 1987:129~163
    [67]杨新安,黄宏伟,FLAC程序及其在隧道工程中的应用,上海铁道大学学报,1996,17(4):39~44
    [68]谢和平,周宏伟,王金安,FLAC在煤矿开采沉陷预测中的应用及对比分析,岩石力学与工程学报,1999,18(4):397~401
    [69]刘波,韩彦辉,FLAC原理、实例与应用指南,北京:人民交通出版社,2005
    [70] Itasca Consulting Group,Inc.FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)User Manuals, Version 2.1,Minneapolis,Minnesota,2002,06
    [71]杜守继,职洪涛,高速公路软岩隧道复合支护机理的FLAC解析,中国公路学报,2003,16(2):70~77
    [72] IN-MO LEE, JAE-SUNG LEE, SEOK-WOO NAM. Effect of seepage force ontunnel face stability reinforced with multi-step pipe grouting [J]. Tunnelling and Underground Space Technology, 2004(19):551~565
    [73] Lee, I. M., Park, K. J., Nam, S.W.. Analysis of an underwater tunnel with the consideration of seepage forces. Proceedings, Tunnel and Metropolises. Balkema, Rotterdam, 315~319
    [74] Nam, S.W.. Stability of tunnel face under seepage forces. Ph.D. Thesis, Korea University, Korea, 2002
    [75]王敏强,陈宏胜,盾构推进隧道结构三维非线性有限元仿真,岩石力学与工程学报,2002,21(2):228~232
    [76] Sagaseta C. Analysis of undrained soil deformation due to ground loss, Geotechnique, 1987, 37(3):301~320
    [77]朱忠隆,张庆贺,盾构法施工对地层扰动的试验研究,岩土力学,2000,21(1): 49~52
    [78]朱忠隆,张庆贺,易宏传,软土隧道纵向地表沉降的随机预测方法,岩土力学,2001,22(1):56~59
    [79]施成华,彭立敏,刘宝琛,盾构法施工隧道纵向地层移动与变形预计,岩土工程学报,2003,25(5):585~589
    [80]张冬梅,黄宏伟,地铁盾构推进引起周围土体附加应力分析,地下空间,1999, 19(5):379~382
    [81]张云,殷宗泽,徐永福,盾构法隧道引起的地表变形分析,岩石力学与工程学报,2002,21(3):388~392
    [82]于宁,朱合华,盾构隧道施工地表变形分析与三维有限元模拟,岩土力学, 2004, 25(8):1330~1334
    [83]姜忻良,崔奕,李园,等,天津地铁盾构施工地层变形实测及动态模拟,岩土力学,2005,26(10):1612~1616
    [84] Trckova Jirina, Prochazka Petr. Experimental and numerical modelling of the tunnel face stability[J].Technology Roadmap for Rock Mechanics, 2003(5): 1247~ 1250
    [85] Konishi, Shinji. Evaluation of tunnel face stability by rigid plasticity finite element method [J].Railway Technology Advalanche, 2004(5): 29~29
    [86]秦建设,盾构施工掘进面变形与破坏机理研究:[博士学位论文],南京;河海大学,2005
    [87]黄正荣,朱伟,梁精华,等,浅埋砂土中盾构法隧道掘进面极限支护压力及稳定研究,岩土工程学报,2006, 28(11): 2005~2009
    [88]黄正荣,朱伟,梁精华,等,盾构法隧道掘进面极支护压力研究,土木工程学报,2006,39(10):112~116
    [89]杨洪杰,傅得明,葛修润,盾构周围土压力的试验研究与数值模拟,岩石力学与工程学报,2006,25(8):1652~1657
    [90]杨会军,王梦恕,深埋长大隧道渗流数值模拟,岩石力学与工程学报,2006,25(3):511~519
    [91]李地元,李夕兵,张伟,等,基于流固耦合理论的连拱围岩稳定性分析.岩石力学与工程学报,2007,26(5):1065~1064
    [92]胡广良,李思明,神经网络在结构优化设计中的应用,工程建设与设计,2003,(6):16~17
    [93]王庆利,康清梁,曹平周,人工神经网络与劲性混凝土柱截面设计,河海大学学报,1999,27(6):48~51
    [94] P C Pandey ,S V Barai1 Multilayer perceptron in damage detection of bridge structures[J],Computers and Structures1 1995,94:597~608
    [95]李守巨,刘迎曦,吴玉良,等,基于神经网络的建筑结构节点损伤识别方法,大连理工大学学报,2003,43(3):270~273
    [96]瞿伟廉,陈超,魏文辉,基于应变模态的钢结构构件焊缝损伤定位方法的研究,世界地震工程,2002,18(2):1~7
    [97]瞿伟廉,陈伟,多层及高层框架结构地震损伤诊断的神经网络方法,地震工程与工程振动,2002,22(1):43~48
    [98] Cao X, Sugiyama Y, Mitsui Y,Application of artificial neural networks to load identification[J],Computers &Structures,1998,69:63~78
    [99]吴大宏,赵人达,基于神经网络的混凝土桥梁荷载识别方法研究,中国铁道科学,2002,23(1):25~28
    [100] Yi-cherng Yeh&Yau-Hwaug Kuo, et al, Building KBES for Diagnosing PC Pile with Artificial Neural Network, Journal of Computing in Civil Eng.,1993,7(1).
    [101]冯夏庭,王泳嘉,林韵梅,地下工程力学综合集成智能分析的理论和方法,岩土工程学报,1997,19(1):30~35
    [102]袁金荣,地下工程施工变形的智能预测与控制,博士学位论文,上海:同济大学,2001
    [103]黄修云,曹国安,张清,人工神经网络在地下工程预测中的应用,北方交通大学学报,1988,22(1):39~43
    [104]孙海涛,吴限,深基坑工程变形预报神经网络法的初步研究,岩土力学,1998,19(4):63~68
    [105]袁金荣,池毓蔚,刘学增,深基坑墙体位移的神经网络动态预测,同济大学学报,2000,28(3):282~286
    [106]夏元友,李新平,基于人工神经网络的边坡稳定性工程地质评价方法,岩上力学,1996,17(3):27~33
    [107] C.Y. Kim, G.J. Bae, S.W. Hong, et al, Neural network based prediction of ground surface settlements due to tunneling, Computers and Geotechnics 2001 (28): 517~547
    [108]刘启中,施一萍,白英彩,基于BP神经网络的盾构施工变形预测,计算机应用与软件,2005,22(4):3~5
    [109] Suchatvee Suwansawat, Herbert H. Einstein,Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling,Tunnelling and Underground Space Technology 2006(21):133~150
    [110] Ovidio J. Santos Jr., Tarc?′sio B. Celestino, Artificial neural networks analysis of Sao Paulo subway tunnel settlement data, Tunnelling and Underground Space Technology,2007(7):1~11
    [111] David E. Goldberg. Genetic Algorithm in Search Optimization and Machine Learning. Addision-wesley Publishing Company, Inc. 1989
    [112]赵衍刚,江近仁,一个以遗传算法为基础的钢结构可靠性分析,地震工程与工程震动,1995,15(3):47~56
    [113]陈秋南,张永兴,任伯帜,改进浮点编码遗传算法在非线性地表沉降模型参数优化中的应用,公路交通科技,2005,22(2):75~78
    [114]王黎,马光文,基于遗传算法的水电站优化调度新方法,系统工程理论与实践,1997(4):65~82
    [115]王泽华,孙颖娜,张菊蓉,遗传算法在边坡稳定分析中的应用,东北水利水电,2002,20(11):1~4
    [116]崔茂玉,隧道动态施工增量反演分析与变形预测,岩土工程界,2003,6(6):64~66
    [117]张永兴,陈秋南,任伯帜,基于加速混合遗传算法的非线性地表沉降模型参数优化研究,工程力学,2005(4):43~47
    [118]吴振君,施斌,亓军强,软土大变形固结计算中参数识别的遗传算法,水文地质工程地质,2003(4):35~38
    [119]周文波,胡珉,盾构法隧道施工主要参数控制方法研究,岩石力学与工程学报,2003,22(增1):2430~2433
    [120]夏江,严平,庄一舟,等,基于遗传算法的软土地基沉降预测,岩土力学,2004,25(7):1131~1134
    [121]熊静,喻钢,胡珉,等,遗传算法在双圆隧道工程智能咨询系统DT_DSS中的应用,现代计算机,2006(8):32~34
    [122]姜德义,任松,刘新荣,等,隧道拱顶下沉时序遗传算法神经网络预测模型,地下空间与工程学报,2006,2(4):547~550
    [123]任松,姜德义,杨春和,基于遗传算法的浅埋隧道开挖地表沉降神经网络预测,郑州大学学报(工学版),2006,27(3):46~48
    [124]张向东,刘国明,基于遗传算法的软土施工动态预测,福州大学学报(自然科学版),2006,34(3):745~750
    [125]朱一飞,杨成祥,陈晓梅,遗传算法在建筑物沉降预测中的应用,辽宁工程技术大学学报,2007,26(2):225~227
    [126]李广信,高等土力学,清华大学出版社,2004
    [127]王来贵,黄润秋,张悼元,岩石工程失稳破坏及其研究思路与方法,岩石力学与工程学报,1998,17(5):599~601
    [128] LECA, E., PANET, M. Application du calculàla ruptureàla stabilitédu front de taille d’un tunnel [J]. Revue Francaise de Géotechnique, 1988, 43: 5~19.
    [129] Donald I, Chen Z Y. Slope stability analysis by an upper bound plasticity method. Canadian Geotechnical Journal, 1997, (12): 855~862
    [130]周小文,濮家骝,砂土中隧洞开挖引起的地面沉降试验研究,岩土力学,2002, 23: 559~563.
    [131]周小文,濮家骝,砂土中隧洞掘进面稳定机理及松动土压力研究,长江科学学院学报,1999, 16(4): 9~14.
    [132]韦良文,张庆贺,邓忠义,大型泥水盾构隧道掘进面稳定机理与应用研究,地下空间与工程学报,2007, 3(1): 87~91.
    [133]李昀,张子新,泥浆渗透对盾构掘进面稳定性的影响研究,地下空间与工程学报,2007, 3(4): 720~725.
    [134] Broere .W. Influence of infiltration and groundwater flow on tunnel face stability, Geotechnical Aspects of underground in soft ground, Tokyo, Japan, 2000, 339~344
    [135] Krause T., Schildvortrieb mit flussigkeits-und erdgestutzter ortsbrust. PhD thesis, Technischen Universitat Carolo-Wilhelmina, Braunschweig, 1987
    [136] Kilchert M., Karstedt J.. Schlizwande als tragund Dichtungwande, band 2, Standsicherheitberechnung von Schlitzwanden, berlin, 1984: 28~34
    [137]莫林,长大管棚施工技术,西部探矿工程,2006, 2: 289~290.
    [138]黄长宽,超前注浆管棚法在隧洞开挖支护设计中的应用,云南水力发电,2003, 19: 39~47.
    [139]孙东瑞,城市地铁施工中超前预支护加固施工技术应用,山西建筑,2007, 33(17): 39~47.
    [140] Lee, I.M., Lee, J.S. and Nam, S.W. Effect of seepage force on tunnel face stability reinforced with multi-step grouting. Tunneling and Underground Space Technology, 2004, 19:551~565.
    [141] G. de Marsily. Quantitative Hydrogeology. Ground Hydrology for engineers, Academic Press, London, 1986, 434
    [142] Goodman R.E., Moye D.G., Schalkwyk A., etl. Groundwater inflows during tunnel driving, Engineering Geology, 1965, 2: 39~65
    [143] Schweiger H.F., Pottler R.K., Steiner H.. Effect of seepage forces on the shotcrete lining of a large undersea carvern, Proceedings. Int. Conf. Computer Methods and Advances in Geomechanics. Balkema, Rotterdam, 1991, 1503~1508
    [144] Pottler, Hagemeister A., Schweiger, H.F., Faust P. Influence of tunnel drive on groundwater level, Computer Methods and Advances in Geomechanics. Balkema, Rotterdam, 1994, 1249~1252
    [145] Anagnostou G.. The influence of tunnel excavation on the hydraulic head, International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19: 725~746
    [146]王崧,周坚鑫,王来等译,有限元方法编程,北京:电子工业出版社,2003
    [147] P. De. Buhan, A.Cuvillier, L. Dormieux, etl. Face stability of shallow circular tunnels driven under the water table: a numerical analysis. Int. J. Numer. Anal. Meth. Geomech. 1999,23: 79~95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700