用户名: 密码: 验证码:
近海风机结构体系环境荷载及动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着能源危机和环境问题的凸显,海上新能源的开发和利用受到了世界各国越来越多的关注。2010年我国成功的建设了上海东海大桥近海风力发电场,它的成功建设标志着我国已进入了海上风力发电时代。随着我国近海风力发电场的建设,越来越多的工程问题摆在了我国工程人员和科研人员的面前。目前,我国还没有近海风机结构设计方面专业性的规范,近海风力发电场的建设和技术在我国尚处在起步阶段。因此,系统的研究近海风机结构体系在海洋环境荷载作用下的动力反应问题对于我国兴建大型海上风力发电场是十分有意义的。
     本文从近海风机环境模拟和海洋环境荷载作用下近海风机结构体系的动力反应分析两方面入手,系统的研究了近海风机结构随机风荷载、随机波浪荷载和非线性波流荷载的计算方法,并在时域内分析了近海风机在气动力荷载和水动力荷载作用下的动力反应,在频域内基于虚拟激励法研究了近海风机结构体系随机振动的分析方法。结合新型无网格数值方法-光滑粒子流体动力学方法(SPH)在三维条件下模拟了波浪对风机塔架-基础的冲击过程,基于SPH和FEM耦合算法研究了波浪与近海风机塔架-基础的动力相互作用问题。本文的具体研究工作如下:
     (1)近海风能利用及近海风机结构体系动力反应研究综述。从课题研究背景入手,分析了在我国大力开发近海风能发电背景下,系统研究近海风机结构动力特性的意义和必要性。介绍了目前国内外近海风能发电的利用现状,及其所产生的经济效益和环保效益。从土木工程领域出发,介绍了近海风机结构体系的分类,综述了近海风机结构体系环境荷载计算、近海风机叶片动力反应分析和近海风机塔架-基础动力反应分析国内外的研究现状。
     (2)近海风机叶片气动荷载及叶片动力特性研究。基于叶素动量理论研究了考虑脉动风的风轮气动荷载的计算方法,同时探讨了风机转速对风轮荷载的影响规律,分析了风轮在不同转速下对风机塔架的最不利作用。建立了变截面悬臂梁风机叶片简化模型,通过与实际叶片模态振型和模态频率的对比验证了采用变截面悬臂梁模型进行动力分析的可行性。探讨了叶片离心刚化效应对风机叶片自身动力特性的影响规律,通过引入叶片轴力面和自振频率面直观的分析了叶片自振频率与时间和转速之间的关系,同时通过引入刚化系数的概念定量的研究了旋转叶片的离心刚化效应,并探讨了考虑离心刚化效应的叶片基频修正公式。
     (3)气动荷载作用下近海风机动力反应研究。针对近海风机的体型特征,提出了考虑空间相干效应的近海风机脉动风模拟方法,通过计算谱和目标谱的比较验证了模拟方法的正确性。在时域内研究了考虑叶片-塔架动力耦合效应时塔架的动力响应特性,探讨了叶片-塔架动力耦合效应对塔架风振响应的影响规律。在时域内研究了考虑叶片刚化效应时近海风机叶片和塔架的动力响应特性,探讨了旋转叶片产生离心刚化效应对风机叶片和塔架风振响应的影响规律。
     (4)气动力荷载和水动力荷载联合作用下近海风机动力反应研究。研究了近海风机随机波浪荷载的计算方法,在时域内分析了近海风机在随机风浪联合作用下的动力反应,定量的探讨了波浪荷载组合机制和波面变化等因素对近海风机环境荷载计算和动力响应计算的影响规律。基于流函数理论研究了近海风机非线性波浪荷载的计算方法,在时域内分析了近海风机在风与非线性波浪联合作用下的动力反应,定量的探讨了波面变化、桩径和波浪非线性等因素对近海风机非线性波浪荷载计算和动力响应计算的影响规律。基于流函数理论研究了考虑波流相互作用的近海风机非线性波流荷载计算方法,在时域内分析了近海风机在风与非线性波流荷载联合作用下的动力反应,探讨了不同波流相互作用模型和波流概率组合模型对近海风机非线性波流荷载的影响规律。
     (5)基于虚拟激励法的近海风机随机动力反应研究。分析了虚拟激励法的基本理论,基本计算过程,为研究虚拟激励法在近海风机结构随机振动分析上的应用奠定了基础。提出了基于虚拟激励法的近海风机结构体系随机振动高效算法,针对近海风机结构体型特征提出了近海风机结构体系虚拟激励力的构造方法和位移反应谱的计算方法,并通过空间相关函数考虑了虚拟激励力的空间相干效应。基于本文的计算方法研究了频域内近海风机叶片和塔架在风荷载激励下的随机振动问题,计算叶片和塔架位移反应功率谱和设计基准期内的极值。通过引入虚拟激励法解决了大型近海风机结构的随机振动高效计算问题,可为实际工程提供借鉴和参考。
     (6)基于SPH理论的近海风机结构与波浪动力相互作用研究。提出了基于SPH和FEM耦合算法的近海风机动力反应及波浪-结构动力相互作用的分析方法,其中包括SPH数值波浪槽和近海风机塔架-基础的三维动力分析模型的建立方法,及SPH和FEM耦合算法的计算流程。在三维条件下实现了基于SPH方法的波浪对塔架-基础冲击过程的数值模拟,计算了冲击过程中波浪速度场和压力场的变化情况。基于SPH和FEM耦合算法研究了波浪作用下近海风机塔架-基础的动力反应,并在三维条件下实现了包含波浪-结构的动力相互作用的近海风机塔架-基础的动力反应分析。
In recent years, with energy crisis and environmental problem breaking out, the development and exploitation of marine renewable energy receive more and more attention around the world. China successfully constructed the Shanghai East Sea Bridge offshore wind farm in 2010, which marks that China has entered the offshore wind power times. As China's construction of offshore wind farms, more and more engineering problems are placed in front of our engineers and scientists. At present, our country still has no professional structural design standard of offshore wind turbine. The construction and technology of offshore wind farm in China are still in its initial stage. Therefore, systematically study the dynamic response of offshore wind turbine structural system under marine environmental loads will be very meaningful for our country to construct large offshore wind farms.
     This paper started from two aspects, one is marine environmental loads simulation and the other one is the dynamic response analysis of offshore wind turbine under marine environmental loads. The calculation method of random wind loads, random wave loads and nonlinear wave and currents loads of offshore wind turbine were studied systematically. The dynamic responses of offshore wind turbine under aerodynamic and hydrodynamic loads were studied in time domain. The analysis method of random dynamic response of offshore wind turbine was studied based on pseudo excitation method in frequency domain. The wave impact on the offshore wind turbine tower-foundation process was simulated in three-dimensional based on the new mesh-free method-smooth particle hydrodynamics (SPH). The wave and offshore wind turbine tower-foundation interaction problems were studied based on the SPH and FEM coupling method. Specific studies of this paper are as follows:
     (1) Review of the offshore wind energy utilization and dynamic response analysis of offshore wind turbine structural systems. This paper started from the research background, it is very meaningful and necessary to study the dynamic response of offshore wind turbine structural system systematically under the background that our country are vigorously developing the offshore wind power in current. The current domestic and international offshore wind energy utilization and the resulting economic and environmental benefits were introduced first in the paper. Starting from the field of civil engineering, structural classification of the offshore wind turbine was introduced. And then the current status of the environmental load calculation method of offshore wind turbine structural system and dynamic response analysis of offshore wind turbine blades, tower and foundation were reviewed in the paper.
     (2) Research on the aerodynamic loads of offshore wind turbine blade and dynamic characteristics of blades. The aerodynamic loads of blades were studied based on blade element momentum theory (BEM) with considering the fluctuating wind speed. The blade rotating speed influence on the aerodynamic loads of blade was studied, and then the most adverse action of the blades on the tower was analyzed. The variable cross-section cantilever beam model was built for offshore turbine blade as a simplified model. The feasibility of introducing the variable cross-section cantilever beam model for dynamic analysis was verified by comparison of the modal shapes and modal frequency. The centrifugal stiffening effect influence on the dynamic characteristics of blades were studied, and the axial force plane and natural frequency plan of blade were introduced to analyze the relationship between natural frequency, time and rotating speed directly. By introducing the concept of coefficient, the centrifugal stiffening effect was studied quantitatively.
     (3) The dynamic response study of offshore wind turbine under aerodynamic loads. Contrary to the outline characteristics of offshore wind turbine, the simulation method of fluctuating wind with considering the spatial coherence effect was presented based on the harmonic superposition method. The correctness of the simulation method was validated by comparison of the calculation spectrum and target spectrum. The dynamic response of offshore wind turbine with considering the blade and tower coupling effect was study, and the influence of the blade and tower coupling effect on the wind induced response of tower was discussed. The paper also studied the dynamic response of offshore wind turbine with considering the centrifugal stiffening effects, and the influence of the centrifugal stiffening effects on the wind induced response of blade and tower were also studied in this paper.
     (4) Research on the dynamic response of offshore wind turbine under aerodynamic and hydrodynamic loads. The calculation method of random wave loads was studied, and the dynamic responses of offshore wind turbine under random environmental loads were analyzed in time domain. The influence on the environmental loads results and the dynamic response of offshore wind turbine of loads combination rules and free surface variation were discussed quantitatively. Based on the stream function wave theory, the nonlinear wave loads calculation method of offshore wind turbine was studied, and the influence of wave surface variation and pile diameters on the nonlinear wave loads were discussed quantitatively. Then the dynamic responses of offshore wind turbine under nonlinear wave loads were calculated. The nonlinear wave and currents loads of offshore wind turbine were also studied by the stream function wave theory, and the dynamic responses of offshore wind turbine under nonlinear wave loads were calculated in time domain. The influences of wave and current interaction model and wave-current combination model on the nonlinear wave current loads were investigated.
     (5) Study on random dynamic response of offshore wind turbine based on the pseudo excitation method. The basic theory and calculation process of pseudo excitation method were analyzed first, and it lays a foundation to study the pseudo excitation method application on analyzing the random dynamic of offshore wind turbine. The high performance calculation method of offshore wind turbine random dynamic analysis was presented based on the pseudo excitation method. Based on the structural characteristics of offshore wind turbine, the pseudo excitation load construction method of blade and tower and the calculation method of displacement power spectrum were presented. The spatial coherence of pseudo excitation load was studied by the spatial coherence function.Based on the calculation method presented in this paper, the random vibration response of wind turbine blade and tower under wind loads were analyzed in frequency domain, and the displacement power spectrum of offshore wind turbine blade and tower and the extreme response values in design life period were calculated. By introducing the pseudo excitation method, the random vibration analysis of large scale offshore wind turbine was solved efficiently, and it can provide a reference to the engineering project.
     (6) Study on the offshore wind turbine and wave interaction problem based on SPH method. The analysis method of offshore wind turbine dynamics and wave-structure interaction was presented based on the SPH and FEM coupling method, which includes SPH and FEM coupling method calculation process and the construction methods of numerical wave tank and three dimensional dynamic analysis models of offshore wind turbine tower and foundation. The wave impact process on the tower was simulated based on the SPH method and the velocity field and pressure field of fluid during the impact process were calculated. By combining the SPH and FEM coupling method, the dynamic response of offshore wind turbine tower and foundation and their response with considering the wave-structure interaction effect were studied in three three-dimensional.
引文
[1]李静,陈健云.海上风力发电结构动力研究进展[J].海洋工程,2009,27(2):124-129.
    [2]李晓燕,余志.海上风力发电进展[J].太阳能学报,2004,25(1):78-84.
    [3]张永利,周勇,李杰.东海大桥海上风电场基础设计与分析[J].四川建筑科学研究,2010,36(5):188-191.
    [4]王徽,黄成力.海上风力发电技术[J].上海节能,2007,1:23-26.
    [5]张蓓文,陆斌.欧洲海上风电场建设[J].上海电力,2007,2:129-135.
    [6]杨昌达.海上风能技术[J].新能源,1996,18(10):35-38.
    [7]王徽,黄成力.海上风力发电技术[J].上海节能,2007,1:23-26.
    [8]薛清梅,王金柱.大型海上风力发电的开发[J].发电设备,2007,2:161-163.
    [9]Offshore Center Denmark. Available from:www.offshorecenter.dk/offshorewind farms.asp,2008.
    [10]Offshore Wind Energy Europe. Available from:,28 June 2007.
    [11]European Wind Energy Association. EWEA's response to the European Commission Green Paper towards a future maritime policy for the Union:a European vision for the oceans and seas. Brussels: EWEA; June 2007.
    [12]GAETANO GAUDIOSI. Offshore wind energy prospects [J]. Renewable energy,1999,16:828-834.
    [13]AMARDEEP DHAN, PHILLIP WHITAKER, WILLETT KEMPTON. Assessing offshore wind respurces:an accessible methodology [J]. Renewable energy,2008,33:55-64.
    [14]MEHMET BILGILI, ABDULKADIR YASAR, ERDOGAN SIMSEK. Offshore wind power development in Europe and its comparison with onshore counterpart [J]. Renewable and Sustainable Energy Reviews,2011,15(2):905-915.
    [15]包耳.风力发电技术的发展现状[J].可再生能源,2004,2(114):53-55.
    [16]WANG ZHIXIN, JIANG CHUANWEN, AI QIAN, et al.The key technology of offshore wind farm and its new development in China [J]. Renewable and Suatainable Energy Reviews,2009,13(1):216-222.
    [17]高季章.我国近海风电发展的若干问题探讨[J].水利水电技术,2009,40(9):1-3.
    [18]SIMON PHILIPPE BRETON, GEIR MOE. Status, plans and technologies for offshore wind turbine in Europe and North America [J]. Renewable Energy,2009,34:646-654.
    [19]JONKMAN JM, BUHL JR. ML. Loads analysis of a floating offshore wind turbine using fully coupled simulation [C]. Proceedings of Wind Power 2007 Conference and exhibition. Los Angeles: California,2007.
    [20]SKAARE B, HANSON TD, NIELSEN FG. Importance of control strategies on fatigue life of floating wind turbines [C]. Proceedings of OMAE 2007 26th International conference on offshore mechanics and arctic engineering, SanDiego, CA, June 2007.
    [21]NIELSEN FG, HANSON TD, SKAARE B. Integrated dynamic analysis of floating offshore wind turbines [C]. Proceedings of OMAE 2006 25th international conference on offshore mechanics and arctic engineering, Hamburg, Germany, June 2006.
    [22]WAYMAN EN, SCLAVOUNOS PD, BUTTERFIELD S, et al. Coupled dynamic modeling of floating wind turbine systems [C]. Proceedings of the offshore technolog conference, Texas, U.S., May 2006.
    [23]刘锡良,周颖.风荷载的集中模拟方法[J].工业建筑,2005,35(5):81-84.
    [24]SHINOZUKA M. Simulation of multivariate and multidimensional random process[J].Journal of the Acoustical society of America,1971,49(1):357-367.
    [25]SHINOZUKA M, JAN C M. Digital simulation of random process and its application[J]. Journal of Sound and Vibration,1972,25(1):111-128.
    [26]LANNUZZI A, SPINELLI P. Artiffical wind generation and structural response[J]. Journal of Structural Engineering, ASCE,1987,113(12):2382-2398
    [27]SAMRAS E, SHINOZUKA M,TSURUI A. ARMA representation of random process [J]. Journal of Engineering Mechanics, ASCE,1985,111(3):449-461.
    [28]GRIGORIU M. On the spectral representation method in simulation[J]. Probabilistic Engineering Mechanics,1993,15(8):75-90.
    [29]YANG J. Simulation of random envelope process [J]. Journal of Sound and Vibration,1972,25(1):73-85.
    [30]DEODATIS G. Simulation of ergodic multivariate stochastic process [J]. Journal of Engineering Mechanics, ASCE,1996,122(8):778-787.
    [31]KAREEM A. Nonlinear dynamic analysis of compliant offshore platforms subjected to fluctuating wind [J]. Journal of Wind Engineering and Industrial Aerodynamics,1983(142):345-356.
    [32]PAOLA M. Digital simulation of wind field velocity [J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,23(2):74-76.
    [33]YANG W W, CHANG T Y P, CHANG C C. An efficient wind field simulation technique for bridge [J]. Journal of wind Engineering and Industrial Aerdynamics,1997(67):697-708.
    [34]LI YONGLE, LIAO HAILI, QIANG SHIZHONG. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges [J]. Computers and Structures,2004, (82) 1591-1598.
    [35]ZHANG LINLIN, LI JIE, PENG YONGBO. Dynamic response and reliability analysis of tall buildings subject to wind loading [J]. Journal of Wind Engineering and Industrial Aerdynamics,2008(96):25-40.
    [36]李春祥,都敏,韩兵康.基于AR模型模拟超高层建筑的脉动风速时程[J].地震工程与工程振动,2008,28(3):87-94.
    [37]王扬.风荷载下输电塔体系动力可靠性分析[D].大连:大连理工大学,2008.
    [38]任明月.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学,2007.
    [39]白海峰.输电塔线体系环境荷载致振响应研究[D].大连:大连理工大学,2007.
    [40]李宏男,任明月,白海峰.输电塔体系风雨激励的动力分析模型[J].中国电机工程学报,2007,27(30):43-48.
    [41]白海峰,李宏男.大跨越输电塔线体系随机脉动风场模拟研究[J].工程学学,2007,24(7):146-151.
    [42]洪天华.风荷载作用下点支式玻璃幕墙的动力性能研究[D].大连:大连理工大学,2007.
    [43]陈严,张锦源,王楠,等.风力机风场模型的研究及紊流风场的MATLAB数值模拟[J].太阳能学报,2006,27(9):955-960.
    [44]陈小波,陈健云,李静.海上风力发电塔脉动风速时程数值模拟[J].中国电机工程学报,2008,28(32):111-116.
    [45]陈为飞,陈水福.近海风机塔架风浪荷载及其响应分析[J].低温建筑技术,2010,3(141):44-46.
    [46]陈为飞.近海风机风浪荷载分析[D].杭州:浙江大学,2010.
    [47]王之宏.风荷载的模拟研究[J].建筑结构学报,1994,15(1):44-52.
    [48]EMESTO BENINI, ANDREA TOFFOLO. Optimal design of horizontal aixl wind turbines using blade element theory and evolutionary computation[J]. ASME Joruanl of Solar Energy Engingeering,2002,123:357-363.
    [49]陈法波.海上风机结构动力反应分析[D].大连:大连理工大学,2010.
    [50]MEYER C J,KROGER D G.Numerical simulation of the flow field in the vicinity of an axial fan blade [J]. International Journal for Numerical Methods in Fluids,2001,36:947-69.
    [51]DUQUETTE M M, VISSER K D. Numerical implications of solidity and blade number on rotor performance of horizon-tal-axis wind turbine [J]. Journal Solar Energy Engineering,2003,125(4): 425-432.
    [52]GIGUERE P, SELIG M S, TANGLER J L. Blade design trade offs using low lift airfoil for stall regulated HAWTs [J]. Journal Solar Energy Engineering,1999,121(4):217-223.
    [53]MAALA WI K Y, BADR M A. A practical approach for select-ing optimum wind rotor [J]. Renewable Energy,2003,28:803-22.
    [54]MAALAWI K Y, BADAWY M T S. A direct method for evalu-ating performance of horizontal axis wind turbines [J]. Re-newable Substantial Energy Review,2001,5:175-90.
    [55]VAROL A, ILKILIC C, VAROL Y. Increasing the efficiency of wind turbines [J]. Journal Wind Engineering and Industrial Aerodynamics,2001,89:809-15.
    [56]MORCOS V H. Aerodynamic performance analysis of hori-zontal axis wind turbines [J]. Renewable energy.1994,4(5):505-518.
    [57]CLAUSEN P D, PIDDINGTON D M, WOOD D H. An ex-perimental investigation of blade element theory for wind turbines:Part1. Mean flow results [J]. Journal of wind engi-neering and industrial aerodynamics.1987,25:189-206.
    [58]Wilson R E, Lissaman P B S, Walker S N. Aerodynamic performance of Wind Turbine[M]. Corvallis:Oregon State University,1976.
    [59]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型[J].太阳能学报,2005,26(6):792-800.
    [60]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2000.
    [61]BENDAT J S, PIERSOL A G. Decomposition of wave force into linear and nonlinear components[J]. Journal of sound and vibration,1986,106(3):391-408.
    [62]OVE DITLEVSEN. Stochastic model for joint wave and wind loads on offshore structures [J]. Structural Safety,2002,24, (2-4):139-163.
    [63]陶建华,竺艳蓉,杨明华.海上重力式平台波浪力的数值计算和实验验证[J].天津大学学报,1987,4:85-94.
    [64]OVE T. GUDMESTAD, GEIR MOE. Hydrodynamic coefficients for calculation of hydrodynamic loads on offshore truss structures [J]. Marine Structures,1996,9 (8):745-758.
    [65]TABESHPOUR M R, GOLAFSHANI A A, SEIF M S. Comprehensive study on the resultes of tension leg plateform response in random sea [J]. Journal of Zhejiang University SCIENCE A, 2006,7(8):1305-I3I7.
    [66]林勇刚,李伟,崔宝玲,等.近海风力机组塔架塔基荷载研究[J].太阳能学报,2009,30(7):961-965.
    [67]王湘明,陈亮,邓英,等.海上风力机发电机组塔架波浪荷载的分析[J].沈阳工业大学学报,2008,30(1):42-45.
    [68]蔡安民.近海风力机风波联合作用下的荷载分析研究[D].汕头:汕头大学,2004.
    [69]陈志强.海上风力发电机桩基础波流荷载研究[D].大连:大连理工大学,2008.
    [70]李金宣,柳淑学,Hong Key-yong非线性波浪的数值模拟[J].大连理工大学学报,2008,48(3):430-435.
    [71]任冰,王永学.非线性波浪对结构物的冲击作用[J].大连理工大学学报,1999,39(4):562-566.
    [72]丘大洪,王永学.大直径圆柱体的非线性波浪力[J].海洋学报,1986,8(4):496-509.
    [73]栾茂田,曲鹏,杨庆,等.非线性波浪作用下海底管线-海床动力响应分析[J].岩土力学,2007,28:709-714.
    [74]KRIEBEL D L. Nonlinear wave interaction with a vertical circular cylinder:Wave force [J]. Ocean Engineering,1998,25 (7):597-605.
    [75]BOO S Y. Linear and nonlinear irregular waves and forces in a numerical wave tank [J]. Ocean Engineering,2002,29:475-493.
    [76]YANG C, ERTEKIN R C. Numerical simulation of nonlinear wave diffraction by a vertical cylinder [J]. Journal of Offshore Mechanical and Arctic Engineering,1992,114:36-44.
    [77]DEAN R G. Stream function representation of nonlinear wave force [J]. Journal of Geophysical research.1965,70(18):4651-4572.
    [78]ZHANG H W, SCHAFFER H A. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes [J]. Ocean Engineering,2007,34 (8):1290-1302.
    [79]CHAKRABARTI S K, KRIEBEL D. Wave kinematics for simulated shallow water storm previous waves—Analysis and experiments [J]. Ocean Engineering,1997,42(9):835-865.
    [80]王涛,李家春.波流非线性相互作用对流场和载荷的影响[J].中国科学A辑,1997,27(3):245-254.
    [81]DALRYMPLE R A. A finite amplitude wave on a linear shear current [J]. Journal of Geophysical research.1974,79(30):4498-4504.
    [82]SWAN C, JAMES R L. A simple analytical model for surface water waves on a depth-varying current [J]. Applied Ocean Research,2001,22:331-347.
    [83]IZMAIL KANTARDGI. Effect of depth current profile on wave parameters [J]. Coastal Engineering,1995,26:195-206.
    [84]信伟平.风力机旋转叶片动力特性及响应分析[D].汕头:汕头大学,2002.
    [85]LAVASSAS I, NIKOLAIDIS G, ZERVAS P, et al. Analysis and design of the prototype of a steel 1-MW wind turbine tower [J].Engineering Structures,2003,25:1097-1106.
    [86]HARRISON R, HAU E, SNEL H. Large Wind turbine:design and economics[M]. New York: John wiley and Sons, Ltd,2000,25-48.
    [87]BAUMGAR A.A mathematical model for wind turbine blades[J].Sound Vibration,2002,25(11):1-12.
    [88]FRIEDMANN P P. Formulation and solution of rotary-wing aeroelastic stability and response problems [J]. Vertica,1983,7(2):101-141.
    [89]FRIEDMANN P P. Influence of modeling and blade parameter on the aeroelastic stability of cantilevered rotors [J]. AIAA Journal,1977,15 (2):149-158.
    [90]FRIEDMANN P P, Straub F. Applications of the finite element method to rotary-wing aeroelasticity [J]. Journal of American Helicopter Society,1980,25(1):36-44.
    [91]SIVANERIN T, CHOPRA I. Finite element analysis for bearingless rotor blade aeroelasticity [J], Journal of American Helicopter Society,1984,29 (2):42-51.
    [92]LESAFFRE N, SINOU J J, THOUVEREZ F. Stability analysis of rotating beams rubbing on an elastic circular structure[J].Journal of Sound and Vibration,2007,299:1005-1032.
    [93]包能胜,曹人靖,叶枝全.风力机桨叶结构振动特性有限元分析[J].太阳能学报,2000,21(1):77-81.
    [94]SHOKRIEH MAHMOOD M, RAFIEE ROHAM. Simulation of fatuiage failure in a full composite wind turbine blade [J].Composite Structure,2006,74:332-342.
    [95]NAGULES WARAN S. Lateral vibration of a centrifugally tensioned uniform Euler-Bernoulli beam [J]. Sound Vibration,1994,176(5):613-24.
    [96]CHAZLY NM EL. Static and dynamic analysis of wind turbine blades using the finite element method [J]. Renewable Energy,1993,3(6):705-724.
    [97]KONG C D, BANG J H, JEONG J C, et al. Structural design of medium scale composite wind turbine blade [C]. Proceedings of the the 13th International Conference on Composite Materials, 2001.
    [98]KONG C, KIM J. Structural design of medium scale composite wind turbine blade. KSAS International Journal,2000,1(1):92-102.
    [99]KONG C, JEONG S, JANG B, et al. Design improvement on wind turbine blade of medium scale HAWT by considering fatigue life [J]. Journal of KSPE,2000,4(3):29-37.
    [100]KONG C, BANG J, SUGIYAMA Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life [J]. Energy,2005,30(11):2101-2114.
    [101]宗楠楠,董湘怀.小型风机叶片强度的有限元分析[J].太阳能学报2010,31(6):764-768.
    [102]马昊旻.水平轴风力机桨叶结构动力学特性研究[D].汕头:汕头大学,2001.
    [103]张承东.风力机叶片的动力学特性分析及分形特征研究[D].天津:天津工业大学,2007.
    [104]汪建文,赵志渊,刘博.三叶片风轮动力学特性的分析[J].太阳能学报,2009,30(2):221-225.
    [105]毛火军,石可重,汪仲夏.基于CFD和BEM方法的风电叶片强度分析比较[J].太阳能学报,2009,30(9):1276-1279.
    [106]RYU J, KIM SANG SUP, KIM SUNG SOO. A gerieral approaeh to stress stiffening effents on flexible multibody dynamiec systems [J]. Mechanics of structures and machines,1994,22(2):157-180.
    [107]KANET R, RYAN R R, BANERUEE A K.Dynamics of a cantilever beam attaehed to a moving base[J].Journal of Guidanee, Control and Dynamics,1987,10(2):139-151.
    [108]MURTAGH P J, BASU B, BRODERICK B M. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading [J].Engineering Structure,2005, 27:1209-1219.
    [109]LEE D, HODGES D H, PA TIL M J. Multi-flexible-body dynamic analysis of horizontal axis wind turbines [J]. Wind Energy,2002, (5):281-300.
    [110]LEE CL, AL-SALEM MF, WOEHRLE TG. Natural frequency measurements for rotating span wise uniform cantilever beams [J].Sound Vibration,2001,240(5):57-61.
    [111]蹇开林,殷学刚.旋转梁的有限元动力学方程及其单元矩阵[J].重庆大学学报,1988,21(1):49-56.
    [112]蹇开林,殷学刚.旋转梁的固有频率计算[J].重庆大学学报,2001,24(6):36-39.
    [113]李德源,叶枝全,陈严.风力机旋转叶片的多体动力学数值分析[J].太阳能学报,2005,26(4):473-481.
    [114]李德源,叶枝全,包能胜,等.风力机旋转风轮振动模态分析[J].太阳能学报,2004,25(1):72-77.
    [115]刘雄,李钢强,陈严,等.水平轴风力机叶片动态响应分析[J].太阳能学报,2010,46(12):128-141.
    [116]窦修荣,黄珊秋,宋宪耕.大型水平轴风力机塔架的风诱发振动响应[J].太阳能学报,1997,18(2):94-100.
    [117]陆萍,张俊,黄珊秋.应用有限元分析系统计算风力机塔架结构的动态特性[J].机械设计,1997,12:39-41.
    [118]OSAMU KIYOMIYA, TATSUOMI RIKIJI, PITER H A J M VAN GELDER. Dynamic response analysis of onshore wind energy power units during earthquakes and wind [J]. Proceedings of the twelfth international offshore and polar engineering conference, Kitakyushu, Japan,2002,520-526.
    [119]BAZEOS N, HATZIGEORGIOU G D, HONDROS I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering Structure,2002,24:1015-1025.
    [120]SILKE SCHWARTZ, KIMON ARGYRIADIS.analysis of the fatigue loading of an offshore wind turbine using time and frequency domain method[R].Germanischer Lloyd wind energy Gmbh, Johannis bollwerk,6-9.
    [121]MURTAGH P J, BASU B, BRODERICK B M. Along-wind response of a wind turbine tower with blade coupling suhjected to rotationally sampled wind load [J]. Engineering Structure,2005,27: 1209-1219.
    [122]孟殉,侯金林,于春洁,等.海上风力发电单立柱支撑结构拟静力分析[J].中国海洋大学学报,2010,40(2):89-94.
    [123]刘雄,张宪民,陈严,等.水平轴风力机结构动力响应分析[J].太阳能学报,2009,30(6):804-809.
    [124]ZAAIJER M B. Foundation modeling to assess dynamic behaviour of offshore wind turbine [J]. Applied Ocean Research,2006,28:45-57.
    [125]林毅峰,李健英,沈达,等.东海大桥海上风电场风机地基基础特性及设计[J].上海电力,2007,2:153-157.
    [126]周必成,王永智.风力机塔架动力相似模型的振动分析[J].合肥工业大学学报,1988,11(4):62-70.
    [127]康海贵,李玉刚,彩云.基于可靠度的海上风机基础结构优化设计方法研究[J].太阳能学报,30(12):1602-1607.
    [128]周勃,费朝阳,陈长征.风力机塔架的振动特性研究[J].振动工程学报,2004,17:903-905.
    [129]李炜,郑永明,周永.近海风电基础桩士作用3D有限元模拟[J].水电能源科学,2010,28(8):162-164.
    [130]LUCY L. A numerical approach to the testing of fusion process [J]. Journal of Astronomical,1977, 82,1013-1024.
    [131]GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:Theory and application to nonspherical stars [J]. Monthly Notices of Rayal Astronomical Society,1977,181:375-389.
    [132]MONAGHAN J J. Why particle methods work [J]. SIAM Journal on Scientific and Statistical Computing,1982,3:422-433.
    [133]MONAGHAN J J, GINGOLD R A. Shock simulation by the particle method SPH[J].Journal of Computational Physics,1983,52:374-389.
    [134]MONAGHAN J J. On the problem of penetration in particle methods [J]. Journal of Computational Physics,1989,82:1-15.
    [135]MARTIN JUTZI, BENZ W. Impact simulations with fracture and porosity [J]. I. Methods and tests. Icarus,1994,107:98-116.
    [136]BENZ W, ASPHAUG E. Simulations of brittle solids using smoothed particle hydrodynamics [J]. Comp. Phys.Comm.1995,87:253-263.
    [137]LIU M B, LIU G R, LAM K Y. Constructing smoothing functions in smoothed particle hydrodynamics with application [J]. Journal of Computational and Applied Mathematics,2003, 155(2):263-284.
    [138]MORRIS J P. Simulating surface tension with smoothed particle hydrodynamics [J]. International Journal of Numerical Method in Fluids,200,33(3):333-353.
    [139]DAVID A FULK, DENNIS W QUINN. An analysis of 1-D smooth particle hydrodynamics Kernels [J]. Journal of computational physics,1996,126:165-180.
    [140]MONAGHAN J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994,110:399-406.
    [141]MONAGHAN J J, KOS A. Solitary waves on a Cretan beach [J]. Journal of Waterw., Port, Coastal, Ocean Eng.,1999,125(3):145-154.
    [142]MONAGHAN J J. SPH without tensile instability [J]. Journal of Computational Physics,2000,159: 290-311.
    [143]EDMOND Y M LO, SONGDONG SHAO.Simulation of near-shore solitary wave mechanics by an incompressible SPH method [J]. Applied Ocean Research,2002,24:275-286.
    [144]CRESPO A J C, GOMEZ-GESTEIRA M, CARRACEDO P, et al. Hybridation of generation propagation models and SPH model to study severe sea states in Galician Coast [J]. Journal of Marine System,2008,72:135-144.
    [145]DALRYMPLE R A, ROGERS B D. Numerical modeling of water waves with the SPH mehod [J]. Coastal Engineering,2006,53:141-147.
    [146]GOMEZ-GESTEIRA M, CERQUEIRO D, CRESPO C, et al. Green water overtopping analyzed with a SPH model [J]. Ocean Engineering,2005,32:223-238.
    [147]毛益明,汤文辉.自由表面流动的SPH方法数值模拟[J].解放军理工大学学报,2001,2(5):92-94.
    [148]龚凯.基于光滑质点水动力学(SPH)方法的自由表面流动数值模拟研究[D].上海:上海交通大学,2009.
    [149]郑兴,许国冬,段文洋.自由表面翻卷与破碎流动的SPH数值模拟[J].哈尔滨工程大学学报,2010,31(3):301-306.
    [150]王刚,岳前进,李海,等.基于SPH方法的渤海海冰动力学数值模拟[J].大连理工大学学报,2007, 47(3):322-328.
    [151]李同飞,刘瑛琦,张晨明,等.基于光滑质点流体动力学方法数值波浪水槽研究[J].海洋工程,2009,27(1):96-100.
    [152]陈海舟.不可压缩自由表面流的SPH法数值模拟研究[D].天津:天津大学,2008.
    [153]MORRIS J P.Analysis of SPH with applications [D]:Australia Meblourne:Monash University, 1996.
    [154]BALSARA D S. Neumann stability analysis of smoothed particle hydrodynamics suggestions for optimal algorithms [J]. Journal of Computational Physics,1995,121:357-372
    [155]WEN Y, HICKS D L, SWEGLE J W. Stabilizing SPH with Conservative Smoothing [R]. Sandia Report, SAND94-1932,1994.
    [156]熊赞.基于光滑粒子半隐式方法水流数学模型理论及应用研究[D].天津:天津大学,2006.
    [157]刘洋,李宇红,蒋洪德.风力机风轮非定常气动荷载计算[J].可再生能源,2010,28(6):31-35.
    [158]Clough R,王光远等译.结构动力学[M].北京:高等教育出版社,2006.
    [159]包龙生,刘克同,于玲,等.大跨度桥梁空间脉动风场的数值模拟[J].沈阳建筑大学学报,2010,26(2):238-243.
    [160]周志勇,肖亮,丁泉顺,等.大范围区域复杂地形风场数值模拟研究[J].力学刊,2010,31(1):101-107.
    [161]张玉良,程兆雪,杨从新,等.风力机风轮设计中风速的处理[J].沈阳工业大学学报,2006,28(16):687-689.
    [162]GB 50009-2001,建筑结构荷载规范[S].北京:中华人民共和国建设部,2002.
    [163]TONY BURTON, DAVID SHARPE, NICK JENKINS, ERVIN BOSSANYI. Wind energy handbook [M]. England:John Wiley & Sons, Ltd.,2001.
    [164]欧进萍,肖仪清,段忠东,等.基于风浪联合概率模型的海洋平台结构系统可靠度分析[J].海洋工程,2003,21(4):1-7.
    [165]王景全,陈政清.试析海上风机在强台风下叶片受损风险与对策[J].中国工程科学,2010,12(11):32-34.
    [166]KOTTAPALLI S B R, F RICDMANNT P P. A eroelastic stability and response of ho rizontal axis wind turbine blades [J]. AIAA Journal,1979,17 (12):1381-1389.
    [167]WILLIAM WARMBRODT, PERETZ FRIEDMANN. Coupled roter/tower aeroelastic analysis of large ho rizontal axis wind turbines [J]. AIAA Journal,1980,18 (9):1118-1124.
    [168]NIGAM N C, JENNINGS P C. Digital calculation of response spectra from strong motion earthquake records [R]. Earthquake Engineering Research Laboratory Report. California Institute of Technology,1968.
    [169]竺艳蓉.海燕工程波浪力学[M].天津:天津大学出版社,1991,185-192.
    [170]JTJ 213-98,海港水文规范[S].中华人民共和国交通部,1999.
    [171]Offshore Standad DNV-OS-J101, Design of offshore wind turbine wind turbine structures [S]. DET NORSKE VERITAS,2004
    [172]DEAN R G, DALRYMPLE R A. Water wave mechanics for engineers and scientists [M].Singapore:World Scientifics,1991,295-325.
    [173]陈严,蔡安民,叶枝全,等.近海风力机在极限波浪作用下的初步计算分析[J].太阳能学报, 2008,29(2):180-187
    [174]李玉成Morison方程水动力系数归一化的探讨[J].水动力学研究进展,1998,13(3):329-337.
    [175]WOO YOUNG CHOI. Nonlinear surface waves interacting with a linear shear current [J]. Mathematics and Computer in Simulation,2009,80:29-36.
    [176]CHAKRABARTI S K, COTTER D C, PALO P. Shear current forces on a submerged cylinder [J]. Ocean Engineering,1993,20(2):135-162.
    [177]LIANG BING CHEN, LI HUA JUN. Bottom shear stress under wave-current interaction [J]. Journal of Hydrodynamics,2008,20(1):88-95.
    [178]林家浩,李建俊,郑浩哲.任意相干多激励随机响应[J].应用力学学报,1995,12(1):97-103.
    [179]Gao Q, Lin J H, Zhong W X, et al. Random wave propagation in a viscoelastic layered half space [J]. International Journal of Soil and Structures,2006,43:6453-6471.
    [180]张文首,李建俊,林家浩.多相位激励随机地震响应快速算法[J].计算结构力学及其应用,1994,11(3):241-247.
    [181]林家浩.多相位输入结构随机响应[J].振动工程学报,1992,5(1):73-77.
    [182]孙东科,林家浩,张亚辉,等.复杂结构的风激随机振动分析[J].机械工程学报,2001,37(3):55-61.
    [183]李春林.高耸结构风振响应分析研究[D].广州:广州大学,2004.
    [184]林家浩.剪切梁随机地震响应的李兹法[J].应用力学学报,1994,11(3):73-77.
    [185]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-94.
    [186]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004,40-58.
    [187]LANZAFAME R, MESSINA M. Fluid dynamics wind turbine design:Critical analysis, optimization and application of BEM theory [J]. Renewable Energy,2007,32(14):2291-2305.
    [188]MAHERI ALIREZA, NOROOZI SIAMAK, VINNEY JOHN. Decoupled aerodynamic and structural design of wind turbine adaptive blades [J]. Renewable Energy,2007,32(10):1753-1767.
    [189]WU J R, LIU P F, LI Q S. Effects of amplitude-dependent damping and time constant on wind-induced responses of super tall building [J]. Computers & Structures,2007,85(15-16): 1165-1176.
    [190]HOSSEINI S A A, KHADEM S E. Vibration and reliability of a rotating beam with random properties under random excitation [J]. International Journal of Mechanical Sciences,2007,49(12):1377-1388.
    [191]林家浩,钟万勰,张亚辉.大跨度结构抗震计算的随机振动方法[J].建筑结构学报,2000,21(1):29-36.
    [192]薛素铎,李雄彦(译).结构风荷载作用[M].北京:中国建筑工业出版社,2006,52-56.
    [193]吴浩,孙大鹏,夏志盛.波浪与大开孔消浪结构作用非线性数值模拟[J].海洋工程,2010,28(3):117-122
    [194]陈雪峰,李玉成,孙大鹏,等.波浪与开孔沉箱作用的试验研究[J].中国海洋平台,2001,6(5):1-6.
    [195]ZIENKIEWICZ O C, BETTESS P. Fluid-structure dynamic interaction and wave force. An introduction to numerical treatment [J]. International Journal for Numerical Method in Engineering, 1978,13:1-16.
    [196]SRIRAM V, SANNASIRAJ S A, SUNDAR V, et al. Nonliear wave structure interaction using finite element method based on spring analogy techniques [C]. Proceeding of Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan,2009,926-935.
    [197]IGOR KUKAVICA, AMJAD TUFFAHA, MOHAMMED ZIANE.Strong solution to a nonlinear fuild structure interaction system [J]. Journal of Differential Equations,2009,247:1452-1478.
    [198]张姝慧,汪继文.SPH法中初始时粒子配置的分析[J].计算机技术与发展,2007,17(6):36-38.
    [199]张健,陆利蓬,刘恩洲.SPH方法在溃坝流动模拟中的应用[J].自然科学进展,2006,16(10):1326-1330.
    [200]徐志宏,汤文辉,张若棋.基于黎曼解的一种SPH改进算法[J].计算物理,2006,23(6):713-716.
    [201]韩旭,杨刚,强洪夫[译].光滑粒子流体动力学——一种无网格粒子法[M].长沙:湖南大学出版社,2005,138-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700