用户名: 密码: 验证码:
港口工程波浪传播及水槽设计验证数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸工程建设中,波浪条件是影响工程平面设计、防浪建筑物型式与规模,决定工程造价和安全的重要因素,因此应对波浪传播规律进行深入研究。波浪研究常用的手段有数值模拟和物理模型试验,这些手段已解决了大量工程实际问题,但随着海岸工程的深水化、大型化,出现了一些新的结构物型式,现有的研究成果与水平以及物理模拟设备等难以满足结构设计与验证的需求,大比尺波浪水槽应运而生。大比尺波浪水槽的设计与应用在国内属于空白,其合理的尺度和功能设计有待研究。如何能使数值模拟与物理模型试验相互配合,更好地应用于工程实际,是需要深入研究的。本文包括以下几方面内容:
     1、在查阅大量国内外文献的基础上,围绕Boussinesq方程为基础的平面二维波浪数学模型,对现有近岸波浪数学模型的应用与发展进行综述。对以改进型Boussinesq方程为基础的MIKE21 BW模型和以高阶Boussinesq方程为基础的模型进行了控制方程、数值解法、边界处理等方面的研究分析。
     2、参加“山东LNG天然气码头波浪整体模型试验”的实际工程研究,完成模型设计与制作、多方案试验、数据采集与规律性分析等工作。同时,在物理模型试验基础上,建立平面二维波浪数学模型进行数值计算,对比计算与实测结果,以物理模型试验成果为论证条件,对波浪入射条件和孔隙值参数设置两个方面进行分析,并总结变化规律。
     3、结合交通运输部天津水运工程科学研究院之“大比尺波浪水槽前期研究项目”中“大比尺波浪水槽特征大波模拟技术研究课题”,进行水槽设计的验证工作。通过水槽改造,建立与大比尺波浪水槽设计相同的试验小水槽,缩小比尺为10。在小水槽中进行多组次试验,验证大比尺波浪水槽中造波技术、波浪在水槽中的传播变化以及水槽底坡设计的合理性。
     4、以高阶Boussinesq方程为基础,建立与试验小水槽条件相同的波浪数学模型,针对物理模拟试验中发现的问题进行分项计算分析。
As significant parameter in construction of marine engineering, wave condition is the determinant of the project layout design, type and size of anti-wave structures, construction costs and engineering safety, so it is necessary for us to have an in-depth study on wave propagation. Mathematical simulation and physical model test are the most commonly used in the research. However, there are some new-type structures appearing with the large-scale, deeper-water of the marine engineering, the existing physical simulation equipments and experience can not meet the research needs gradually, so the Large Wave Flume will be structured. And the research about the large flume in China is blank, the structural design and function design should be studied. At the same time, it is worth studying that how to use the physical and numerical simulation company to get more accurate results in engineering applications. The details of this paper are as follows:
     1. Based on thorough study of both domestic and international paper, give a generalization of the offshore mathematical model, especially those including the Boussinesq equation. The paper also analyzes the numerical solution, wave generation, the border condition of a model which is based on advanced Boussinesq equation and higher order Boussinesq equation.
     2. By participate in "Shandong LNG gas terminal 3D wave model test" research, like model design and production, schemes tests, data collection and analysis are completed. A 2D wave mathematical model of finite difference method with the rectangular nets is setup on the basis of 3D test. On the comparison of the numerical and physical simulation results, analysis in wave incidence condition and porosity are carried out, and some discipline is giving.
     3. Combine the research topic of "simulation technique of huge wave in Large Wave Flume" research of Large Wave Flume, a 3D simulation flume with scale of 1:10 is established based on the design of the flume. Multi-group trials are carried out in the simulation flume for the verification of large wave flume design.
     4. A numerical wave model on higher order Boussinesq equation is used to numerical calculation and verification with 3D flume test.
引文
[1]WAMDI Group. The WAM model-a third generation ocean wave prediction model. J. Phys.Ocean,1998,18(12):1775-1810P
    [2]Berkhoff J.C.W. Computation of combined refraction-diffraction. In:Proc.13th Coastal Eng. Conf., Vancouver. ASCE,1972,471-490P
    [3]冯芒.近岸海浪几种数值计算模型的比较.2003年1期.
    [4]Ebersole B.A. Refraction-diffraction model for linear water waves [J]. Wtrwy.Port.Coast. and Oc. Engrg., ASCE,1985,11(6):939-953P
    [5]Booji N. Gravity waves on water with non-uniform depth and current. Report:No.81-1, Delft University of Tech., Dept. Civil Eng.,1981.
    [6]Radder A.C. On the parabolic equation method for water wave propagation [J].Fluid Mech.1979,95:159-176P
    [7]谷汉斌.近岸波浪数学模型的发展.2004年2期.
    [8]Boussinesq J. Theory of wave and Swells propagation in long horizontal rectangular canal and imparting to the liquid contained in this canal. Journal de Mathematics Pures App liquees,1872,17
    [9]Peregrine, D.h. Long wave on a beaeh. J. Fluid Mech.,1976, Vol.27, Part4,815-827.
    [10]McCow an A D. The range of application of Boussinesq-type numerical short wave models. Proc 22nd IAHR Congr,1987, Switzerland.
    [11]刘海成.近岸波浪变形数值模型的比较研究.天津大学硕士学位论文.2008.
    [12]谷汉斌,孙精石,郑宝友,陈汉宝.近岸波浪数学模型的发展.水道港口,2004(2):78-83
    [13]李孟国,王正林,蒋德才.关于波浪Boussinesq方程的研究[J].青岛海洋大学学报.2002,32(2):345-354页.
    [14]Witting J M. A unified model for the evolution of nonlinear water waves [J]. J Computational Phys,1984,56:203-236P
    [15]Madsen P A, Murray R, Sorensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics [J]. Coast Engrg,1991,15:371-388P
    [16]Madsen P A, Sorensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry [J].Coast Engrg, 1992,18:183-204P
    [17]王涛.高阶Boussinesq方程的数值模拟.大连理工大学硕士论文.2002.
    [18]Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation [J]. Wtrwy, Port, Coastand Oc Engrg,1993,119(6):618-638P
    [19]Beji S, Nadaoka K. A formal derivation and numerical modeling of the improved Boussinesq equations forvarying depth [J]. Ocean Engineering,1996,23(8):691-704P
    [20]张永刚.波浪的折射-绕射及反射的数值模拟[D].大连:大连理工大学.1995
    [21]林建国,邱大洪,邹志利.新型Boussinesq方程的进一步改善[J].海洋学报.1998,20(2):113-119页
    [22]Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear Boussinesq model for surface waves. Part Ⅰ. Highly nonlinear unsteady waves[J]. J Fluid Mech,1995,294:71-92
    [23]Madsen P.A.,Bingham H.B,and Hua Liu.A new Boussinesq method for fully nonlinear waves form shallow to deep water[J].J. Fluid Mech.,2002,462:1-30.
    [24]李春颖,李绍武.基于Boussinesq方程的波浪破碎模型的研究综述.港工技术,2003(4)
    [25]刘忠波,孙昭晨,张日向.新型高阶Boussinesq水波方程,水利学报.2004(10):83-88.
    [26]邹志利.高阶Boussinesq水波方程[J].中国科学(E辑),1997,27(5):460-473
    [27]邹志利.水波理论及其应用,北京:科学出版社,2005.
    [28]Madsen P A, Warren IR. Performance of a numerical short-wave model [J]. Coast Engrg, 1984,8:73-93P
    [29]Karambas T V.2DH Non-linear Dispersive Wave Modeling and Sediment Transport in the Nearshore Zone[C]. Proc.26th Intl Conf Coastal Eng. New York:ASCE,1998: 2940-2954P
    [30]Chen Q, Dalrymple R A, Kirby J T. Boussinesq modeling of a rip current system. [J] Geophys Res,1999,104(C9):20617-20637P
    [31]张岩,陶建华.二维短波方程的差分格式研究.[J]水动力学研究与进展.1989,4(3):21-28页
    [32]Kabiling M B, Sato S. A numerical model for nonlinear waves and beach evolution including swash zone. [J]Coastal Engineering in Japan,1994,37(1):67-86.P
    [33]Bayram A,Larson M.Wave transformation in the nearshore zone:comparison between a Boussinesq model and fiele data.Coastal Engineering,2000,39:149-171.
    [34]EldeBerky Y,Battjes J A.Spectral modeling of wave breaking:application to Boussinesq equation.Journal of Geophys Research,1996,101 (C1):1253-1264.
    [35]Schaffer H A,Madsen P A,A Boussinesq model for waves breaking in shallow water.Coastal Engineering,1993,20:185-202.
    [36]丹麦水力学研究所·MIKE21 UserGuider[K].哥本哈根:丹麦水力学研究所,2003.6.
    [37]杨春平.近岸波浪传播变形数值计算方法比较.河海大学硕士论文.2003.
    [38]邹志利.高阶Boussinesq水波方程数值模型及其与实验结果的对比.水动力学研究与进展.2002,10(5):592-603页
    [39]王涛.高阶Boussinesq方程的数值模型.大连理工大学硕士论文.2002.
    [40]谷汉斌.基于完全非线性Boussinesq方程的源函数数值造波,海洋技术,2004(2).
    [41]马小舟.近岸低频波浪的Boussineqs模拟.大连理工大学硕士论文.2006.
    [42]张晓莉.应用高阶Boussinesq方程模拟复杂地形上波浪传播与变形.大连理工大学硕士论文.2001.
    [43]刘海源.青岛董家口LNG码头物模模型试验报告.交通部天津水运工程科学研究院.2010.
    [44]海港水文规范[S].JTJ213-98
    [45]吴宋仁,严以新.海岸动力学,北京:人民交通出版社,1988.
    [46]肖波.孤立波的实验室产生及其理论的有效性.港口工程,1991(2)
    [47]俞聿修,随机波浪及其工程应用,大连:大连理工大学出版社,2000.
    [48]高杰.水槽无反射造波理论的研究和应用,天津大学硕士论文.2006.
    [49]李玉成,腾斌.波浪在永流中传播时的底摩擦损失[J].海洋工程,7(1)1984:1-7
    [50]李绍武,王尚毅.一种近岸区波浪破碎模型[J].海洋学报,1999,21(1):103-110.
    [51]左其华,姚国权,丁炳灿.摩阻地形上的波浪折射和绕射[J].港口工程,1993,1:35-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700