用户名: 密码: 验证码:
基于麦克风阵列的语音增强算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
和单个孤立麦克风相比,麦克风阵列在时频域的基础上增加了一个空间域,对来自空间不同方位的信号进行空时频联合处理。因此,它可以弥补单个孤立的麦克风在噪声处理、声源定位跟踪、语音提取分离等方面存在的不足,能够广泛应用于各种具有嘈杂背景的语音通信环境(如会场、多媒体教室、助听器,车载免提电话、战场等),以提高语音通信质量。麦克风阵列研究是阵列信号处理的新方向,具有广阔的市场应用前景。
     本论文结合阵列信号处理和语音信号处理的特点,研究了如何利用自适应波束形成技术进行语音增强。即自适应的形成一个波束指向目标声源,并且在干扰源的方位形成零点,达到语音增强的目的。其中,主要研究如何克服阵列模型误差(如声源定位误差,阵列拓扑误差,通道响应误差等)对波束性能的影响,即提高波束的鲁棒性。
     论文的第一章是引言,介绍了该领域的研究背景、研究现状和待解决的问题、以及本文的研究内容和创新点等等。
     第二章以球面波动方程为基础,建立了基于麦克风阵列的语音信号处理通用模型(the General Signal Model of Microphone Arrays,GSMMA)。和传统的阵列模型相比,GSMMA不再使用窄带和远场假设,将语音信号看作是宽带非平稳信号,并且考虑了各通道由于传播路径的不同引起的幅度衰减差异。传统的阵列模型可以看作是GSMMA的一个特例。
     第三章从降低目标声源定位误差出发,研究如何保证自适应波束形成算法的性能,提出了一种基于双重加权的宽带MUSIC声源定位算法(Doubly WeightedBroadband MUSIC,DWB-MUSIC)。DWB-MUSIC以宽带MUSIC算法为基础,在各频点利用子空间分解原理对声源进行定位。算法首先对各频点噪声子空间进行加权,降低单频点定位误差的方差。其次,再利用各频点的信噪比信息,对各频点的定位结果进行二次加权,得到最终的宽带声源定位结果。
     第四章提出了一种利用阵列旋转不变性的宽带盲波束算法(BroadbandDeterministic Blind Beamforming,B-DBBF),避开了声源定位问题,在阵列满足旋转不变性的假设下,进行语音增强。针对宽带波束各频点分离序列可能出现的通道互换和幅度模糊,提出了一种基于相邻频点分离序列相关性的通道重排方案,确保分离序列的频域一致性。另外,通过调整权矩阵的模,消除了幅度模糊,使分离的序列没有幅度失真。
     第五章研究如何处理一般的方向矢量(或导向矢量steering vector)误差,重点研究了基于对角加载的鲁棒自适应波束形成算法(robust adaptive beamforming,RABF)。本章解决了该类算法的关键问题,即如何选择对角加载因子。在引入一系列假设后,本章推导出了最优对角加载因子的近似解析解。和迭代求解的方法相比,该结果不但降低了运算量,还揭示了哪些因素可以影响最优加载因子,以及如何影响。在此基础上,对该算法进行了性能分析。
     第六章提出了一种基于联合最坏情况性能优化的RABF算法(Joint Worst-CaseRABF,JW-RABF)。针对语音信号非平稳以及算法处理的实时性要求,提出的JW-RABF算法具有对有限样本数效应(finite sample effect)和方向矢量误差的双重鲁棒性。该算法也属于对角加载类算法,和W-RABF不同,JW-RABF通过对目标函数以及限制条件进行联合最坏情况性能优化来确定最优加载因子。本章同样推导出了其最优加载因子的近似解析解。在此基础上,结合频率聚焦技术,提出了宽带JW-RABF算法。该算法在相应频带上形成一个宽带波束,满足波束图随频率的变化在最小二乘意义下最小,并且,还可以有效处理宽带相干干扰源。
     第七章对全文进行了总结,比较了提出的各算法的优缺点,分析了存在的不足,提出了相应的解决方案,并且对后期的研究工作进行了展望。
The signals received by Microphone Arrays (MA) can be processed not only in time-and-frequency domain, but also in spatial domain, compared with those received by singular or isolated microphones. Consequently, MA possesses capabilities of strong interference suppression, speech sources localization, tracking and separation, etc. For this reason, it has been proposed as a promising solution to excellent quality of speech communication in such applications as teleconference, hands-free mobile telephone and hearing aids. MA will definitely replace conventional desktop and head microphones in near future.
     The topic of this paper is how to enhance the desired speech sources via adaptive beamforming (ABF) techniques in MA. Since the performance of ABF is very sensitive to steering vector mismatches (e.g., look direction errors, imperfect array calibration, source local scattering and wavefront distortions), the problem of how to improve the algorithm's robustness is discussed in detial.
     In Section I, the background of this field is presented, including the theoretical architecture, the current researching status as well as the existing problems in this field. The organization and main contributions of this paper are presented also.
     In Section II, the General Signal Model of Microphone Arrays (GSMMA) is proposed, based on the spheric wavefront propagation equation. Compared with the conventional model, GSMMA no longer takes the narrowband assumption and the far field assumption for granted. Since there is no carrier in MA systems, speech should be treated as a very wide band signal. Moreover, since the speech sources may be very close to the array, i.e., within the near field of the array, the differences of the amplitude attenuation between adjacent channels should be taken into consideration. Obviously, the conventional model is a special case of GSMMA.
     In Section III, an approach of Doubly Weighted Broadband MUSIC algorithm (DWB-MUSIC) is presented, aiming at minimizing the variance of speech source localization errors. In this section, the traditonal 1-dimensional and narrowband MUSIC is extened to the multi-dimensional and broadband version first, making it suitable for MA systems. Then two sequential weighting operations are applied to improve the performance. (1) A weight matrix is imposed on the noise subspace when implementing MUSIC at each frequency bin. (2) Another SNR based weight vector is imposed on the original estimates at each bin, in order to calculate the final broadband source location. The former decreases the standard deviation of the narrowband estimates at each bin, which is usually caused by array perturbations. The latter weakens the negative effect of those estimates at low SNR bins on the final broadband estimation. The two weighting operations together improve the robustness of broadband speech source localization dramatically. A more precise localization will reduce the steering vector mismatch definitely.
     In Section IV, the robustness against source localization errors is ensured via a blind way and an approach of Broadband Deterministic Blind Beamforming (B-DBBF) is presented. It is based on the conventional narrowband DBBF algorithm via rotational invariance techniques. Utilizing the nonstationarity of broadband speech sources, the narrowband DBBF is extended to broadband scenarios and implemented in frequency domain. The nonstationarity of speech plays a key role in this extension. A special correlation-based channel rearranging (CR) operation is performed to cope with the problem of channel swap. Moreover, the problem of scale ambiguity is eliminated also by normalizing the norm of the weight matrices. As a result, the desired sources can be recovered without any scale distortion.
     In Section V, the methods with robustness against general steering vector mismatches is investigated. For the sake of simplicity, the robust adaptive beamforming (RABF) based on worst-case performance optimization (Worst-case RABF, W-RABF) is emphasized especially. It belongs to the class of diagonal loading approaches with the loading level determined based on worst-case performance optimization. A closed-form solution to the optimal loading is derived after some approximations. Besides reducing the computational complexity, it shows how different factors affect the optimal loading. Based on this solution, a performance analysis of the beamformer is carried out. As a consequence, approximated closed-form expressions of source-of-interest (SOI) power estimation and the output signal-to-interference-plus-noise ratio (SINR) are presented to predict its performance.
     In Section VI, a novel approach of RABF based on joint worst-case performance optimization (Joint Worst-case RABF, JW-RABF) is presented, aiming at robustness against both finite-sample effects and steering vector mismatches. JW-RABF is distinquished from W-RABF by taking the finite-sample effect into account and appling the worst-case performance optimization to not only the constraints, but also the objective of the constrained quadratic equation. Using the approximations similar to those in Section V, simple closed-form solutions to the optimal loading as well as the optimal weight vector are also presented. Compared with W-RABF, it achieves better robustness in the case of small sample data size. Moreover, combined with Frequency Focusing (FF) techniques, an approach of broadband JW-RABF is presented. Besides ensuring the frequency invariance of broadband beampattern, it possesses the capability of suppressing both correlated and uncorrelated interferences effectively.
     In Section VII, the work of this paper is summarized and a few important conlusions are drawn. At the end of this paper, a discssion about some possible future research work is also presented.
引文
[1] M. Brandstein and D. Ward, editors. Microphone Arrays: Signal Processing Techniques and Applications. Digital Signal Processing. Springer-Verlag, Berlin, 2001
    [2] John E. Adcock. Optimal filtering and speech recognition with microphone arrays. Ph.D. dissertation, Brown University, May, 2001
    [3] J.L. Flanagan, A. Surendran, and E. Jan. Spatially selective sound capture for speech and audio processing. Speech Communication, 1993, 13(1-2): 207-222
    [4] Y. Grenier. A microphone array for car environments. International Conference on Acoustics, Speech and Signal Processing (ICASSP-92). San Francisco: IEEE press, 1992. 305-309.
    [5] W. Kellerman. A self-steering digital microphone array. International Conference on Acoustics, Speech and Signal Processing (ICASSP-91). Toronto: IEEE press, 1991. 3581-3584
    [6] J. Meyer and K.U. Simmer. Multi-channel speech enhancement in a car environment using Wiener filtering and spectral subtraction. Intemational Conference on Acoustics, Speech and Signal Processing (ICASSP-97). Munich: IEEE press, 1997.1167-1171
    [7] P. Aarabi and S. Zaky. Robust sound localization using multi-source audiovisual information fusion. Inform. Fusion, 2001, 2(3): 209-223
    [8] D. Rabinkin, R.J. Renomeron and A. Dahl, et al. A DSP implementation of source location using microphone arrays. J. Acoust. Soc. Amer., 1996, 99(4): 2503
    [9] Yamada, S. Nakamura, and K. Shikano. Distant-talking speech recognition based on a 3-D Viterbi search using a microphone array. IEEE Trans. Speech Audio Processing, 2002, 10(2): 48-56
    [10] M. Brandstein and D. Ward. Cell-based beamforming (CE-BABE) for speech acquisition with microphone arrays. IEEE Trans. Speech and Audio Processing, 2000, 8(6): 738-743
    [11] C. Choi, D. Kong and J. Kim, et al. Speech enhancement and recognition using circular microphone array for service robots. International Conference on Intelligent Robots and Systems. Las Vegas: IEEE press, 2003.3516-3521
    [12] 杨毅,杨宇,余达太.麦克风阵列及其消噪性能研究.计算机工程,2006,32(2):191-193
    [13] 洪鸥.麦克风阵列语音增强技术及其应用.传感器与仪器仪表,2006,22(1):142-145
    [14] 何成林,杜利民,马昕.基于子带广义旁瓣相消器的麦克风阵列语音增强.计算机应用研究,2006,4:208-210
    [15] R.A. Monzingo and T.W. Miller. Introduction to Adaptive Arrays. New York: Wiley, 1980
    [16] S.R. Saunders. Antennas and Propagation for Wireless Communication Systems. John Willey Sons, Ltd, 1999
    [17] Van Trees, H. L. Detection, Estimation and Modulation Theory, Part Ⅳ, Optimum Array Processing, New York, Willey, 2002
    [18] S. Haykin. Adaptive Filter Theory, Fourth Edidtion. Beijing: Publishing House of Electronic Industry, 2002
    [19] 王永良,陈辉,彭应宁,等.空间谱估计理论与算法.北京:清华大学出版社,2004
    [20] 张贤达.现代信号处理.清华大学出版社,2003
    [21] A. Papoulis and S.U. Pillai. Probability, Random Variables and Stochastic Processes, Fourth Edition. Boston, Me Graw Hill, 2002
    [22] 张贤达.矩阵分析及应用.清华大学出版社,2004
    [23] 赵力.语言信号处理.北京,机械工业出版社,2003
    [24] 胡航.语音信号处理.哈尔滨工业大学出版社,2000
    [25] S. Bruhl and A. Roder. Acoustic noise source modeling based on microphone army measurements. Journal of Sound and Vibration, 2000, 231 (3): 611-617
    [26] F. Asano, H. Asoh and T. Matsui. Sound source localization and separation in near field. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, 2000, E83-A(11): 2286-2294
    [27] R. Kennedy. Broadband nearfield beamforming using a radial beampattem transformation. IEEE Trans. Signal Process, 1998, 46(8): 2147-2156
    [28] V. Katkovnik and A.B. Gershman. A local polynomial approximation based beamforming for source localization and tracking in nonstationary environments. IEEE Signal Processing Letters, 2000, 7(1): 3-5
    [29] T. Skeiya and T. Kobayashi. Speech enhancement based on multiple directivity patterns using a microphone array. International Conference on Acoustics, Speech and Signal Processing (ICASSP-04). IEEE press, 2004. I877-880
    [30] 陶智,葛良.基于减谱法的语音增强和噪声消除研究.苏州大学学报,2002,18(3):58-61
    [31] 杨秋成.应用谱减法及其改进型算法进行语音增强.无线电工程,2003,33(8):43-45
    [32] 王让定,柴佩琪.一种基于改进谱减法的语音增强方法.模式识别与人工智能,2003,16(2):247-251
    [33] J.S. Lim and A.V. Oppenheim. Enhancement and bandwidth compression of noisy speech. Proceedings of IEEE, 1979, 67(12): 1586-1604
    [34] R. Zelinski. A microphone array with adaptive post-filtering for noise reduction in reverberant rooms. International Conference on Acoustics, Speech and Signal Processing (ICASSP-88). New York: IEEE press, 1988. 2578-2580
    [35] C. Marro, Y. Mahieux, and K.U. Simmer. Analysis of noise reduction and dereverberation techniques based on microphone arrays with postfiltering. IEEE Transactions on Speech and Audio Processing, 1998, 6(3): 240-259
    [36] D.A. Florencio and H.S. Malvar. Multichannel filtering for optimum noise reduction in microphone arrays. International Conference on Acoustic Speech, and Signal Processing (ICASSP-01). Salt Lake City: IEEE press, 2001. 197-120
    [37] I.A. McCowan and H. Bourlard. Microphone array post-filter based on noise field coherence. IEEE Trans. Speech and Audio Processing, 2003, 11(6): 709-716
    [38] S. Cannot and I. Cohen. Speech enhancement based on the general transfer function GSC and postfiltering. IEEE Trans. Speech and Audio Processing, 2004, 12(6): 561-571
    [39] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995
    [40] I. Urazghildiiev. MUSIC with outlier rejection: a new tool for improving the estimation performance at the threshold region of the SNR. First European Radar Conference. IEEE press, 2004. 41-44
    [41] A.L. Swindlehurst and T. Kailath. A performance analysis of subspace-based methods in the presence of model errors, Part I: the MUSIC algorithm. IEEE Trans. Signal Processing, 1992, 40(7): 1758-1774
    [42] B. Friedlander. A sensitivity analysis of the MUSIC algorithm. IEEE Trans. Acoustic, Speech and Signal Processing, 1990, 38(10): 1740-1751
    [43] C.D. Richmond. The Capon-MVDR algorithm: threshold SNR prediction and the probability of resolution. International Conference on Acoustics, Speech and Signal Processing (ICASSP-04). IEEE press, 2004. 11217-220
    [44] S. Kagami, H. Mizoguchi and Y. Tamai, et al. Microphone array for 2D sound localization and capture. International Conference on Robotics & Automation. New Orleans: IEEE press, 2004. 703-708
    [45] T.L. Ju, Y.L. Xu and Q.C. Peng, Speech source localization in near field. ICCCAS-04. Chengdu: IEEE press, 2004. 769-772
    [46] J.C. Chen, R.E. Hudson and K. Yao. Maximum-likelihood source localization and unknown sensor localization estimation for wideband signal in the near-field. IEEE Trans. Signal Processing, 2002, 50(8): 1843-1854
    [47] J.C. Chen, K. Yao and R.E. Hudson. Acoustic source localization and beamforming: theory and practice. EURASIP Journal on Applied Signal Processing, 2003, 4:359-370
    [48] H.K. Tabrikian and J.L. Krolik. Relationships between adaptive minimum variance beamforming and optimal source localization. IEEE Trans. Signal Processing, 2000, 48(1): 1-12
    [49] I. Potamitis, H. Chen and G. Tremoulis. Tracking of multiple moving speakers with multiple microphone arrays. IEEE Trans. Speech and Audio Processing, 2004, 12(5): 520-529
    [50] D.-H. Tuan, F. Demmel and P. Russer. Wideband direction-of-arrival estimation using frequency-domain frequency-invariant beamformers: an analysis of performance. IEEE Microwave and Wireless Components Letters, 2004, 14(8): 383-385
    [51] H. Saltzman and G. Stavis. A dual beam planar antenna for Janus type Doppler navigation systems. IRE International Convention Record, 1958, 6:240-247
    [52] 吴云韬,廖桂生,陈建峰.一种色噪声环境下的DOA估计新算法.电子学报,2001,29(12):1605-1607
    [53] 林静然,彭启琮,邵怀宗,等.一种基于能量加权的阵列宽带信号定位算法.仪器仪表学报增刊,2005,26(8):123-124
    [54] 林静然,彭启琮,邵怀宗.基于麦克风阵列的双波束近场定位及语音分离.仪器仪表学报增刊,2005,25(4):1000-1002
    [55] 林静然,彭启琮,邵怀宗.基于麦克风均匀园阵的近场声源定位及分离.2004年全国博士生学术论坛论文集.成都,2004,73-76
    [56] J.R. Lin, Q.C. Peng and H.Z. Shao. Doubly weighted MUSIC algorithm for broadband DOA estimation using microphone arrays. International Conference on Space Information Technology (ICSIT-05). Wuhan: SPIE, 2005.211-5. (EI indexed with No. 06109739722)
    [57] 居太亮,彭启琮,邵怀宗,林静然.基于任意麦克风阵列的声源二维DOA估计算法研究.通信学报,2005(8):129-133
    [58] 居太亮.基于麦克风阵列的声源定位算法研究:[博士学位论文].成都:电子科技大学,2006
    [59] 邵怀宗,居太亮,林静然,彭启琮.一种声源定位方法,中国,发明专利,2005,申请号:200510051313.0
    [60] J. Capon. High-resolution for frequency-wavenumber spectrum analysis, Proc. IEEE, 1969, 57(8): 1408-1418
    [61] J.G. Ryan, R.A. Goubran. Array optimization applied in the near field of a microphone array. IEEE Trans. Speech and Audio Processing, 2000, 8(2): 173-176
    [62] F. Asano, S. Hayamizu and T. Yamada, et al. Speech Enhancement based on the subspaee method. IEEE Trans. Speech and Audio Processing, 2000, 8(5): 497-507
    [63] E.D. Di Claudio and R. Parisi. Robust ML wideband beamforming in reverberant fields. IEEE Trans. Signal Processing, 2003, 51(2): 338-349
    [64] D.W. Rieken and D.R. Fuhrmann. Generalizing MUSIC and MVDR for multiple noncoherent arrays. IEEE Trans. Signal Processing, 2004, 52(9): 2396-2406
    [65] Y.-H. Li, K.C. Ho and C. Kwan. A novel partial adaptive broad-band beamformer using concentric ring array. International Conference on Acoustics, Speech and Signal Processing (ICASSP-04). IEEE press, 2004. 177-180
    [66] W.-C. Lee and S. Choi. Adaptive beamforming algorithm based on eigen-space method for smart antennas. IEEE Communications Letters, 2005, 9(10): 888-890
    [67] M. Gert Cauwenberghs, G. Zweig. Gradient flow adaptive beamforming and signal separation in a miniature microphone array. International Conference on Acoustic Speech, and Signal Processing (ICASSP-02). IEEE press, 2002. Ⅳ 4016-4019
    [68] S. Doclo. Multi-microphone noise reduction and dereverberation techniques for speech applications. Ph.D. dissertation, Katholieke Universiteit, Departement Elektroteehniek Kasteelpark Arenberg 10, 3001 Leuven (Heverlee), Belgium, 2003
    [69] F. Pirz. Design of a wideband, constant beamwidth array microphone for use in the near-field. International Conference on Acoustic Speech, and Signal Processing (ICASSP-79). IEEE press, 1979. 318-321
    [70] D. Ward, R. Kennedy and R. Williamson. FIR filter design for frequency invariant beamformers. IEEE Signal Processing letters, 1996, 3(3): 69-71
    [71] B. Zrnic, A. Zejak and A. Petrovic, et al. Range sidelobe suppression for pulse compression radars utilizing modified RLS algorithm. International Symposium on Spread spectrum Techniques and Applications. Sun City: IEEE press, 1998. 1008-1011
    [72] I.D. Dotlic and A.J. Zejak. Arbitrary antenna array pattern synthesis using minimax algorithm. Electronic Letters, 2001, 37(4): 206-208
    [73] I.D. Dotlic. Minimax frequency invariant beamforming. Electronic Letters, 2004, 40(19): 1230-1231
    [74] B.K. Lau, Y.H. Leung and K.L. Teo, et al. Minimax filters for microphone arrays. IEEE Trans. Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 1999, 46(12): 1522-1525
    [75] W. Liu and S. Weiss. A new class of broadband arrays with frequency invariant beam patterns. International Conference on Acoustics, Speech and Signal Processing (ICASSP-04). IEEE press, 2004. Ⅱ-185-188
    [76] H. Hung and M. Kaven. Focusing matrices for coherent signal-subspace processing. IEEE Trans. Acoustics, Speech and Signal Processing, 1988, 36(8): 1272-1281
    [77] Y.X. Yang, CH. Sun and CH. Wan. Theoretical and experimental studies on broadband constant beamwidth beamforming for circular arrays. Proceedings of OCEANS 2003. IEEE press, 2003.1647-1653
    [78] H.W. Chen and J.W. Zhao. Wideband MVDR beamforming for acoustic vector sensor linear array, IEE Proc.-Radar Sonar Navig., 2004, 151(3): 158-162
    [79] 林静然,彭启琮,邵怀宗,等.频率不变波束形成技术研究.2005年通信理论与信号处理年会论文集.桂林,2005,170-174
    [80] 林静然,彭启琮,邵怀宗,等.基于麦克风阵列的宽带鲁棒自适应波束形成算法.通信学报,2006,27(12):132-138
    [81] J.R. Lin, Q.C. Peng and H.Z. Shao. Wideband robust adaptive beamforming based on diagonal loading. International Symposium on Test Automation and Instrumentation (ISTAI-06). Beijing: CIS, 2006. 226-230
    [82] 居太亮,邵怀宗,林静然,彭启琮.一种基于麦克风阵列的宽带波束形成技术,中国,发明专利,2005,申请号:20051009074.X
    [83] S.J. Yu and F.B. Ueng. Blind adaptive beamforming based on generalized sidelobe canceller. Signal Processing, 2000, 80:2497-2506
    [84] M.Z. Ikram and D.R. Morgan. A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation. International Conference on Acoustics, Speech and Signal Processing (ICASSP-02). Orlando: IEEE press, 2002. I881-884
    [85] H.-S. Hung and Y.-M. Wei. Blind adaptive beamforming based on inverse QRD-RLS. International Symposium on Underwater Technology. IEEE press, 2004. 121-124
    [86] K. Yao, R.E. Hudson and CH.W. Reed, et al. Blind beamforming on a randomly distributed sensor array system. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1555-1567
    [87] H. Cox. Resolving power and sensitivity to mismatch of optimum array processors. J. Acoust. Soc. Amer., 1973, 54(3): 771-758
    [88] A.B. Gershman. Robust adaptive beamforming in sensor arrays. Int. J. Electron. Commun., 1999, 53(6): 305-314
    [89] L.C. Godara. Error analysis of the optimal antenna array processors. IEEE Trans. Aerosp. Eletron. Syst. 1986, AES-22(2): 395-409
    [90] K.L. Bell, Y. Ephraim and H.L. Van Trees. A Bayesian approach to robust adaptive beamforming. IEEE Trans. Signal Processing, 2000, 48(2): 386-398
    [91] Van Der Veen, A. J. Algebraic methods for deterministic blind beamforming. Proceedings of the IEEE, 1998, 86(10): 1987-2008
    [92] Coviello, C. M. and Sibul, L. H. Blind source separation and beamforming: algebraic technique analysis. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 221-235
    [93] 林静然,彭启琮,邵怀宗,等.一种用于宽带非平稳信源分离的盲波束算法.电子科技大学学报.已录用
    [94] J.R. Lin and Q.C. Peng. Broadband deterministic blind beamforming for speech separation using microphone arrays via rotational invariance techniques. International Conference on Communications, Circuits and Systems Proceedings (ICCCAS-06). Guilin: IEEE press, 2006. I271-275
    [95] 汪晋宽,宋昕,王晗.鲁棒RLS波束形成算法.东北大学学报(自然科学版),2005,26(1):233-235
    [96] 刘东红,杨立明.对消除入射信号偏差的鲁棒波束成形算法的改进.传感技术学报,2004,4:607-610
    [97] D.D. Feldman and L.J. Griffths. A projection approach for robust adaptive beamforming. IEEE Trans. Signal Processing, 1994, 42(4): 867-876
    [98] L. Chang and C.C. Yeh. Performance of DMI and eigenspace-based beamformers. IEEE Trans. Antennas Propagation, 1992, 40(11): 1336-1347
    [99] J. Riba, J. Goldberg and G. Vazquez. Robust beamforming for interference rejection in mobile communications. IEEE Trans. Signal Processing, 1997, 45(1): 271-275
    [100] J.R. Guerci. Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. Signal Processing, 14999, 47(4): 997-985
    [101] S. Doclo and M. Moonen. Design of broadband speech beamformers robust against errors in the microphone array characteristics. International Conference on Acoustic Speech, and Signal Processing (ICASSP-03). Hong Kong: IEEE press, 2003.473-476
    [102] S. Doclo and M. Moonen. Design of broadband beamformers robust against gain and phase errors in the microphone array characteristics. IEEE Trans. Signal Processing, 2003, 51(10): 2511-2526
    [103] S. Doclo and M. Moonen. Design of far-field and near-field broadband beamformers using eigenfilters. Signal Processing, 2003, 83:2641-2673
    [104] J.-H. Lee and C.-L. Cho. GSC-based adaptive beamforming with multiple-beam constraints under random array position errors. Signal Processing, 2004, 84:341-350
    [105] J.-H. Lee and K.-P. Cheng. Adaptive array beamforming with robust capabilities under random phase perturbations. IEEE Trans. Signal Processing, 2005, 53(1): 365-371
    [106] M.H. Er and A.Cantoni. Derivative constraints for broad-band element space antenna array processors. IEEE Trans. Acoustics, Speech and Signal Processing, 1983, ASSP-31(6): 1378-1393
    [107] Z.-L. Yu, Q.-Y. Zou and M.H. Er. A new approach to robust beamforming against generalized phase errors. IEEE 6th CAS Symp. on Emerging Technologies: Mobile and Wireless Comm. Shanghai: IEEE press, 2004.775-778
    [108] O. Hoshuyama, A. Sugiyama and A. Hirano. A robust adaptive beamforming for microphone arrays with a blocking matrix using constrained adaptive filters. IEEE Trans. Signal Processing, 1999, 47(10): 2677-2684
    [109] S.M. Kogon. Eigenvectors, diagonal loading and white noise gain constraints for robust adaptive beamforming. Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers. IEEE press, 2003.1853-1857
    [110] Z. Tian, K.L. Bell and H.L. Van Trees. A recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Trans. Signal Processing, 2001, 49(6): 1138-1145
    [111] Q.-Y. Zou, Z.-L. Yu and Z.-P. Lin. A robust algorithm for linearly constrained adaptive beamforming. IEEE Signal Processing Letters, 2004, 11 (1): 26-29
    [112] A. EI-Keyi, T. Kirubarajan and A.B. Gershman. Robust adaptive beamforming based on the Kalman filter. IEEE Trans. Signal Processing, 2005, 53(8): 3032-3041
    [113] Y.R. Zheng, R.A. Goubran and M. EI-Tannay. Robust near-field adaptive beamforming with distance discrimination. IEEE Trans. Speech and Audio Processing, 2004, 12(5): 478-488
    [114] I. Tashev and H.S. Malvar. A new beamformer design algorithm for microphone arrays.International Conference on Acoustics, Speech and Signal Processing (ICASSP-05). IEEE press, 2005. III101-104
    [115] J. Ward, H. Cox and S.M. Kogon. A comparison of robust adaptive beamforming algorithms. Conference Record of the 37~(th) Asilomar Conference on Signals, Systems and Computers. IEEE press, 2003. 1340-1344
    [116] X. Mestre and M.A. Lagunas. Finite sample size effect on minimum variance beamformers: optimal diagonal loading factor for large arrays. IEEE Trans. Signal Processing, 2006, 54(1):69-82
    
    [117] J. Gu. Robust beamforming based on variable loading. Electronic Letters, 2005,41(2): 55-56
    [118] A.B. Gershman. Robust adaptive beamforming: an overview of recent trends and advances in the field. International Conference on Antenna Theory and Techniques. Sevastopol: IEEE press, 2003. 30-35
    [119] A.B. Gershman, Z.-Q. Luo and S. Shahbazpanahi, et al. Robust adaptive beamforming using worst-case performance optimization. Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers. IEEE press, 2003. 1353-1357
    [120] S.A. Voroyov, A.B. Gershman and Z.-Q. Luo. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Processing, 2003, 51(2): 313-324
    [121] S. Vorobyov, A.B. Gershman and Z.-Q. Luo, et al. Adaptive beamforming with joint robustness against signal steering vector errors and interference nonstationarity. International Conference on Acoustics, Speech and Signal Processing (ICASSP-03). IEEE press, 2003.345-348
    [122] R.G Lorenz and S.P. Boyd. Robust minimum variance beamforming. Conference Record of the 37~(th) Asilomar Conference on Signals, Systems and Computers. IEEE press, 2003.9-12
    [123] R.G Lorenz and S.P. Boyd. Robust minimum variance beamforming. IEEE Trans. Signal Processing, 2005, 53(5): 1684-1696
    [124] P. Stoica, Z.-S. Wang and J. Li. Robust Capon beamforming. IEEE Signal Processing Letters, 2003, 10(6): 172-175
    [125] J. Li, P. Stoica and Z.-S. Wang. Doubly constrained robust Capon beamformer. Conference Record of the 37~(th) Asilomar Conference on Signals, Systems and Computers. IEEE press, 2003. 1335-1339
    [126] J. Li, P. Stoica and Z.-S. Wang. Doubly constrained robust Capon beamformer. IEEE Trans.Signal Processing, 2004. 52(9): 2407-2423
    [127] J. Li, P. Stoica and Z.-S. Wang. On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Processing, 2003, 51(7): 1702-1715
    [128] J. Li, P. Stoica and Z.-S. Wang. On robust Capon beamforming and diagonal loading. International Conference on Acoustics, Speech and Signal Processing (ICASSP-03). IEEE press, 2003. 337-340
    [129] S. Shahbazpanahi, A.B. Gershman and Z.-Q. Luo, et al. Robust adaptive beamforming for general-rank signal models using worst-case performance optimization. Sensor Array and Multichannel Signal Processing Workshop Proceedings. IEEE press, 2002.13-17
    [130] S. Shahbzpanahi, A.B. Gershman and Z.-Q. Luo, et al. Robust adaptive beamforming using worst-case SINR optimization: a new diagonal loading-type solution for general-rank signal models. International Conference on Acoustics, Speech and Signal Processing (ICASSP-03).IEEE press, 2003. 333-336
    [131] S. Shahbazpanahi, A.B. Gershman and Z.Q. Luo, et al. Robust adaptive beamforming for general-rank signal models. IEEE Trans. Signal Processing, 2003, 51(9): 2257-2269
    [132] B. Jiang, Y. Zhu and CH.-Y. Sun. Robust beamforming with array shape distortion dependent diagonal loading. International Symposium on Multi-Dimensional Mobile Communications Proceedings. IEEE press, 2004. 305-308
    [133] F. Vincent and O. Besson. Steering vector errors and diagonal loading. IEE Proc. -Radar Sonar Navig., 2004, 151(6): 337-343
    [134] O. Besson and F. Vincent. Performance analysis of beamformers using generalized loading of the covariance matrix in the presence of random steering vector errors. IEEE Trans. Signal Processing, 2005, 53(2): 452-459
    [135] R.R. Nadakuditi and A. Edelman. The bias of the MVDR beamformer outputs under diagonal loading. International Conference on Acoustics, Speech and Signal Processing (ICASSP-05).IEEE press, 2005. IV 793-796
    [136] B.D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerospace and Electronic Systems, 1988, 24(4): 397-401
    [137] Y.C. Eidar, A. Neborai and P.S. La Rosa. An expected least-squares beamforming approach to signal estimation with steering vector uncertainties. IEEE Signal Processing Letters, 2006, 1-4
    [138] J.R. Lin, Q.C. Peng and H.Z. Shao. On diagonal loading for robust adaptive beamforming based on worst case performance optimization. ETRI Journal, 2007, 29(1): 50-58
    [139] 林静然,彭启琮,邵怀宗,等.最坏情况下的鲁棒自适应波束形成算法性能分析.电子学报,2006,34(12):2161-2166
    [140] 林静然,彭启琮,邵怀宗.一种空间色噪声环境下的鲁棒自适应波束.电子与信息学报.已录用
    [141] J.R. Lin, Q.C. Peng and H.Z. Shao. Near-field robust adaptive beamforming based on worst-case performance optimization. International Journal of Intelligent Technology (IJIT), 2006, 1(2): 176-182
    [142] J.R. Lin and Q.C. Peng. The optimal loading of robust adaptive beamforming based on worst-case performance optimization. International Conference on ITS Telecommunications Proceedings (ITST-06). Chengdu: IEEE press, 2006. 353-357
    [143] 林静然,彭启琮,邵怀宗,等.基于自适应对角加载的鲁棒波束形成算法.2006通信理论与信号处理年会.天津,2006,119-124
    [144] J.R. Lin, Q.C. Peng and Q.SH. Huang. Adaptive beamforming with robustness against both finite-sample errors and steering vector mismatches. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences, 2006, E89-A(9): 2356-2362 (SCIE, EI indexed with No. 063910129348)
    [145] 林静然,彭启琮,邵怀宗.一种具有双重鲁棒性的自适应波束形成算法.电子测量与仪器学报.已录用
    [146] B.B. Madan and S.R. Parker. Adaptive beamforming in correlated interference environment. International Conference on Acoustics, Speech and Signal Processing (ICASSP-85). US: IEEE press, 1985.1792-1795
    [147] T.-J. Shan and T. Kailath. Adaptive beamforming for coherent signals and interference. IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-33(3): 527-536
    [148] Y.R. Zheng, R.A. Goubran and E.T. Mahamed. Coherent interference suppression with an adaptive array using spatial affine projection algorithm. Vehicular Technology Conference. Boston: IEEE press, 2000. 105-109
    [149] D.H. Yun, S.H. Moon and D.S. Han. Adaptive array algorithm using spatial interpolation for the cancellation of coherent interferences. International Conference on Communications (ICC-01). Helsinki: IEEE press, 2001.915-919
    [150] Y.H. Choi. Improved adaptive nulling of coherent interference without spatial smoothing.IEEE Trans. Signal Processing, 2004, 52(12): 3464-3469
    [151] A. Zeria and B. Friedlander. Interpolated array minimum variance beamforming for correlated interference rejection. International Conference on Acoustics, Speech and Signal Processing (ICASSP-96). Atlanta: IEEE press, 1996. 3165-3168
    [152] M.A. Doron, E. Doron and A.J. Weiss. Coherent wide-band processing for arbitrary array geometry. IEEE Trans. Signal Processing, 1993,41(1): 414-417
    [153] D.B. Ward. Techniques for broadband correlated interference rejection in microphone Arrays.IEEE Trans. Speech and Audio Processing, 1998, 6(4): 414-417
    [154] M. Agrawal and S. Prasad. Optimum broadband beamforming for coherent broadband signals and interferences. Signal Processing, 1999, 77: 21-36
    [155] J.R. Lin, Q.C. Peng, H.Z. Shao and T.L. Ju. Broadband robust adaptive beamforming in the presence of correlated interferences and DOA uncertainties. International Symposium on Antennas, Propagation, and EM Theory (ISAPE2006). Guilin: IEEE press, 2006.146-149.
    [156] Hyvarinen, A., Oja, E. Independent component analysis: algorithms and applications. Neural Networks, 2000, 13: 411-430
    [157] C. Jutten and J. Herault. Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991,24(1): 1-10
    [158] C. Jutten and J. Herault. Blind separation of sources, Part II: Problems statement. Signal Processing, 1991,24(1): 11-20
    [159] W.-K. Ma and P.C. Ching. Robust interference suppression and blind speech beamforming in room reverberant environments. International Conference on Acoustics, Speech and Signal Processing (ICASSP-03). IEEE press, 2003. 493-496
    [160] T. Takatani, T. Nishikawa and H. Saruwatari, et al. High-fidelity blind separation of Acoustic signals using SIMO-model-based ICA with information-geometric learning. International Workshop on Acoustic Echo and Noise Control (IWAENC-03). Kyoto: IEEE press, 2003.251-254
    [161] S. Ukai, H. Saruwatari and T. Takatani, et al. Multistage SIMO-model-based blind source separation combining frequency-domain ICA and time-domain ICA. International Conference on Acoustics, Speech and Signal Processing(ICASSP-04). IEEE press, 2004,109-112
    [162] S. Ukai, T. Takatani and T. Nishikawa, et al. Blind source separation combining SIMO-model-based ICA and adaptive beamforming. International Conference on Acoustics, Speech and Signal Processing (ICASSP-05). IEEE press, 2005,III85-88
    [163] W. Baumann, B.U. Kohler and D. Kolossa, et al. Real time separation of convolutive mixtures. In Proceedings of ICA'2000. San Diego, USA, 2001. 65-69
    [164] Y.L. Xu, L. Yang, Q.C. Peng and J.R. Lin. Innovation enhanced infomax for separating linear instantaneous mixtures. 2004 International Conference on Communications, Circuits and Systems (ICCCAS-04). IEEE press, Chengdu, 2004. 1018-1021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700