用户名: 密码: 验证码:
高强度薄板拉深模具结构分析关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻量化的要求使汽车用钢板的强度等级越来越高,高强度钢板的广泛应用给冲压生产带来一系列问题:高强度钢冲压模具非正常损毁频繁,高强度钢冲压模具安装调试困难,冲压生产对工艺参数波动敏感。
     针对困扰企业的问题,本文围绕改进的冲压模具设计流程,在目前模面设计的基础上,将模具结构分析加入流程,并且在进行板料成形分析和模具结构分析时,考虑冲压生产中常见的噪声因素和波动,尝试从冲压模具结构分析的角度,对高强度钢冲压生产中困扰企业的问题进行分析。论文取得的研究成果如下:
     在目前软硬件水平下,针对结构复杂的冲压成形模具,提出了一种基于板料成形数值模拟的冲压模具结构分析方法,有效地解决了有限元求解精度和求解规模之间的矛盾,可以求解整个冲压过程中模具上的应力、变形以及部件之间接触作用的演化规律。系统推导了实现该方法的关键技术——载荷映射算法,将板料成形数值模拟获得的,整个成形过程中,变形板料和模面之间的接触力准确高效地映射移置到模具结构分析有限元模型上。
     针对板料成形数值模拟获得的变形板料和模面之间的接触力存在明显波动问题,分析了波动产生的原因和波动的特点,针对性地使用数字信号处理领域的滤波技术对此波动接触力进行处理。对比了数字信号处理领域的几种滤波器,发现FFT低通滤波器处理此波动接触力效果好、鲁棒性强。采用滤波后的接触力进行模具结构分析,获得的模具应力和变形等结果与实际吻合更好,而且模具结构分析有限元求解时间大大缩短。
     在理论研究的基础上,开发了冲压模具结构分析载荷映射和建模辅助工具,设计开发了冲压模具动态应力应变采集系统。分析了高强度钢DP600双曲底面盒形件拉深过程中模具上的应力和变形情况,利用冲压模具动态应力应变采集系统进行了实验验证。进一步分析了高强度钢DP600阶梯底面盒形件冲压模具导板对成形过程中偏载的吸收作用,设计加工模具进行了实验验证。针对某高强度钢DP600轿车侧底板件拉深模具,实现了大型复杂冲压模具的结构分析,分析出的模具危险部位与实际模具破裂位置一致,证明了所提方法的有效性和实际应用价值。
     针对高强度钢冲压生产对工艺条件敏感、冲压模具安装调试困难的问题,分析了压边力压边(BHF)和间隙压边(BHG)两种压边方式下、两类典型冲压件(第一类以拉深为主,第二类以胀形为主)的成形性和模具结构受力特点,发现:①第二类冲压件对压边力波动不敏感,②第一类冲压件的成形性对压边间隙很敏感;③BHF压边方式下,一定范围内变化的压边力对两类冲压件凸模成形载荷的影响都不太显著;④BHG压边方式下,稍大或稍小的压边间隙都使凸模成形载荷升高;⑤BHF压边方式下,压边力越大,压边力在压料面上的分布越均匀,但压边力变化对凸模成形载荷在成形模面上的分布影响很小;⑥BHG压边方式下,稍大或稍小的压边间隙都使压边力在压料面上的分布更不均匀,但压边间隙变化对凸模载荷在成形模面上的分布影响很小;⑦压边圈上的最大等效应力出现在法兰增厚最严重部位,比按照名义单位压边力计算出的值要大的多,凸模上的最大等效应力出现在凸模圆角处,但并不一定在凸模成形载荷最大的时刻;⑧BHF压边方式下改变压边力,或者BHG压边方式下改变压边间隙,两类冲压件模具凸模和凹模上的最大等效应力变化不大,但是压边圈上的最大等效应力变化显著。
     针对高强度钢冲压生产对噪声因素敏感、冲压件质量不稳定的问题,分析了坯料初始厚度波动、压边力变化、坯料定位误差以及模具安装定位误差对DP600双曲底面盒形件拉深模具成形载荷、变形和应力的影响,发现:①凸模安装定位绕X(Y)轴转动误差对凸模沿Y(X)方向偏载影响最显著;②在较小变动范围内,凸模沿Z方向的最大成形载荷基本与坯料初始厚度成正比,凸模沿Z方向的最大成形载荷随压边力增大而增大,但是显著性较坯料初始厚度波动引起的小的多;③凸模上的最大应力不仅取决于成形过程中的凸模最大载荷,还取决于载荷在凸模成形模面上的分布;④偏载对凸模的变形影响很显著。
     利用本文提出的基于板料成形数值模拟的冲压模具结构分析方法,可以在模具制造前,对其进行强度刚度校核和寿命预测,并使进一步的模具结构优化和成形质量控制成为可能。研究结果可为高强度钢冲压模具设计、安装调试和冲压生产工艺控制提供有益指导。
To develop lighter, safer and cheaper vehicles, High-Strength Steel (HSS) is more and more widely used in automotive industry. The load on die structure for HSS stamping increases sharply, die failure becomes key issue, die tryout is hard and HSS stamping is more sensitive to process variations.
     In the improved stamping die design process, the die structure analysis procedure is added into the current design process, and common parameter variations are considered when the sheet metal forming and the die structure analysis numerical simulation are performed. The strength and stiffness of the die are verified, die life is predicted and further the die structure can be optimized before the real die construction.
     A method for die structure FEA analysis based on sheet metal forming numerical simulation is proposed. The interaction force between the forming blank and the die faces are calculated based on the simulation result of the HSS formability, and then are applied onto the die faces to serve as load boundary conditions for the following die structure analysis. By separating the blank forming simulation process and the die structure analysis process, the method enormously reduces the computational cost and significantly simplifies the model complexity, thus makes the structure analysis of shape-complex and size-large die feasible within the current hardware and software infrastructures. The key technology to realize the proposed method—load mapping algorithm, is deduced systematically, which is used to map the load gotten from the sheet metal numerical simulation to the die structure analysis FEM model.
     It is founded that the contact forces between the forming blank and the die faces gotten in sheet metal forming numerical simulation contain severe fluctuation. The fluctuation is introduced by FEM. To reduce the amplitude of the fluctuation by FEM technology is computational costly, and theoretically, the fluctuation cannot be removed completely only by FEM technology. Filtering technology is introduced to deal with this problem. Sliding points filtering algorithm in time domain and FFT analysis algorithm in frequency domain are discussed, and the filtering effects of these algorithms are compared. It is found that FFT low-pass filter is effective and parameter robust to deal with this problem. Using the filtered load, the precision of the die structure analysis results increases and the FEM computing time decreases markedly. So, Filtering technology is added to the proposed die structure analysis procedure to further perfect the proposed die structure analysis method.
     Based on the aforementioned theories, a die structure analysis toolkit is developed and a dynamic stamping die stress/strain data acquisition system is developed. The toolkit is applied to analyze the stress distribution on a die for a DP600 hyperbolic bottomed box drawing and to simulate the unbalanced load absorption by the wear plates set on the die for a DP600 step-like bottomed box drawing, which are both verified by experiments using the developed dynamic stamping die stress/strain data acquisition system. The toolkit is successfully applied in finding the reason for the failure of a real stamping die used in a certain stamping plant, which verifies the proposed methods’effectiveness for its industrial applications.
     Blank holding force (BHF) and blank holding gap (BHG) are two modes usually used in complex sheet forming process to control formability. There are two common classes of stamping parts in automotive industrial. The formability of the two classes of part under BHF and BHG are different and the forces applied on the die faces are different too. The characteristic of their formability and die stress under BHF and BHG are studied, which disclosures the reason why HSS stamping is sensitive to forming equipments.
     During stamping process, the material properties, the process design parameters and the production environments inevitably have variation and noisy factors, which will possibly affect the sheet metal formability and the deformation of the die structure. The effect related with initial blank thickness, blank holder force, blank positioning error and die alignment error variations to a DP600 hyperbolic bottomed cup drawing die’s forming loads, deformation and stress is studied numerically. The influence level of these variations to the die’s forming loads, deformation and stress is disclosed.
     These findings can guide die design, die tryout and process control for HSS stamping with increased forming load and decreased sheet metal formability.
引文
[1]李万里,对我国汽车产业发展目标及政策导向的思考[J],汽车工程2007,29(1):1-7
    [2]国家发展和改革委员会产业政策司,“我国汽车产业中长期发展趋势及对策研究”课题研究成果汇编[M], 2006
    [3] http://www.ulsab.org/
    [4] http://www.pngv.org/
    [5] http://www.superlightcar.com/
    [6]王利,杨雄飞,陆匠心,汽车轻量化用高强度钢板的发展[J],钢铁2006,41(9):1-8
    [7]《汽车工程手册》编辑委员会,汽车工程手册——制造篇[M],北京:人民交通出版社,2001
    [8]李玉光,孙忠明,汽车用钢国家标准体系框架的研究,上海标准化,2002, p. 19-22.
    [9] Takita M ,Ohashi H, Application of High Strength Steel Sheets for Automobiles in Japan [J], La Revue De Metallurgies-CIT ,2001, (10) :899-909.
    [10]张译中,宝钢组团赴日产汽车公司进行技术交流,上海金属, 25(2003), p. 47.
    [11] B Krause, E Severson, Stamping tools for UHSS get tougher: new automotive materials force tool material to shift into high gear, Fabricator.2004,34(4): 40-43
    [12] INTERNATIONAL IRON & STEEL INSTITUTE Committee on Automotive Applications, ADVANCED HIGH STRENGTH STEEL (AHSS) APPLICATION GUIDELINES, 2005.
    [13] Stuart Keeler, FORMING CHARACTERISTICS OF ADVANCED HIGH-STRENGTH STEELS, http://www.autosteel.org
    [14] S.P. Keeler, Determination of forming limits in automotive stampings, Sheet Met Ind 1965; 42:683–91.
    [15] Goodwin GM, Application of strain analysis to sheet metal forming problems in the press shop, Metall Italiana 1968;60:764–74.
    [16] Hecker SS, Simple technique for determining forming limit curves, Sheet Met Ind 1975,53:671–5.
    [17] S.P. Keeler, W.G. Brazier, Relationship between laboratory material characterization and press shop formability. In:Proc. Of Microalloying 75. New York,1977.517-528
    [18] Chuantao Wang, An Industrial Outlook for Springback Predictability, Measurement Reliability, and Compensation Technology[C] , Processings of NUMISHEET’2002, 2002: 597~604
    [19] L. Papeleux,J.P. Ponthot, Finite element simulation of springback in sheet metal forming, Journal of Materials Processing Technology, 125-126(9),2002: 785-791
    [20] J. Yanagimoto, K. Oyamada and T. Nakagawa, Springback of High-Strength Steel after Hot and Warm Sheet Formings, CIRP Annals - Manufacturing Technology, 54(1), 2005:213-216
    [21] C. Gomes, O. Onipede, M. Lovell, Investigation of springback in high strength anisotropic steels, Journal of Materials Processing Technology, 159(1), 2005:91-98
    [22] A.X.Wang, F.A.Conle, J.J.Bonnen, etc., An Experimental Study on the key Factors to Stamping Die Durability, Technique report in Ford Company,2007.
    [23] Weilong Hu,Amber Wang,Advanced Tools and Methods to Improve Durability, Stability and Tryout Robustness of Stamping Die System,Ford technical reports,2007
    [24]约瑟夫,计算机模拟与模具应力分析[J] ,紧固件技术,2000,(3):22-26
    [25] L. Cser, M. Geiger, K. Lange, Tool life and tool quality in bulk metal forming, Proc. Inst. Mech. Engrs. 207 (1993) 223-239.
    [26] Gantar Gasper., Pepelnjak Tomaz.,Kuzman Karl., Optimization of sheet metal forming processes by the use of numerical simulations, Journal of Materials Processing Technology. 2002, 130-131(1): 54-59.
    [27] Schenk O.,Hillmann M., Optimal design of metal forming die surfaces with evolution strategies, Computers and Structures. 2004, 82(20-21): 1695-1705.
    [28] Costanzo P., Paolo L.,Elisabetta A, Application of robust design techniques to sheet metal forming process, NUMISHEET'96, 1996, Dearborn, USA, P165-172.
    [29] Venkat Aitharaju, Malcolm Liu, Jennifer Dong, etc., Integrated forming simulations and die structural analysis for optimal die designs, Numisheet 2005.
    [30] Arthur Tang, Wing C Lee, Shawn St Pierre, etc., CAE based die face engineering development to contribute to the revitalization of the tool & die industry, Numisheet 2005.
    [31] Y. Kojima, H. Morikawa, T. Misuno, Measurement of pressure distribution in drawing of bars, J. JSPE 26 (295) (1985) 855–861.
    [32] S. Matsubara, H. Kudo, Devising and calibration of a simple sensor for determining pressure distribution on tool–workpiece interfaces, J. JSTP 32 (364) (1991) 589–596.
    [33] S. Matsubara, H. Kudo, Contact pressure characteristics on tool–workpiece interface during plane-strain extrusion of pure aluminium, J. JSTP 32 (366) (1991) 862–867.
    [34] S. Matsubara, H. Kudo, Distribution of contact pressure on tool–workpiece interface in axisymmetric backward extrusion of aluminium cans, J. JSTP 32 (366) (1991) 868–873.
    [35] S. Matsubara, H. Kudo, Nonuniform pressure distribution on punch nose surface in axisymmetric cold forging processes, J. JSTP 32 (366) (1991) 874–879.
    [36] Y. Murata, Y. Yabuki, Measurement of die deformation in forging by capacitive displacement transducer, in: Proceedings of the Fourth International Conference on Technology of Plasticity, 1993, pp. 1216–1221.
    [37] M.T. Hillery, S. Griffin, An embedded-strain-gauge technique of stress analysis in rod drawing, J. Mater. Process. Technol. 47 (1994) 1–12.
    [38] S. Takshashi, C.A. Brebbia, Forging die stress analysis using boundary element method, Adv. Technol. Plast. 1 (1990) 203–210.
    [39] M.H. Sadeghi, T.A. Dean, Analysis of dimensional accuracy of precision forged axisymmetric components, Proc. Inst. Mech. Eng. B 205 (4) (1991) 171–178.
    [40] H. Kim, T. Yagi, Estimation of dimensional differences between cold forging and tools in backward cup extrusion of steels, in: Proceedings of the Fifth International Conference on Technology of Plasticity, 1996, pp. 433–436.
    [41] T. Kawabe, T. Kato, T. Wada, Dimensional accuracy of products during repeated backward cold extrusion, in: Proceedings of the Fifth International Conference on Technology of Plasticity, 1996, pp. 259–262.
    [42] G.-A. Lee, Y.-T. Im, Finite-element investigation of the wear and elastic deformation of dies in metal forming, J. Mater. Process. Technol. 89–90 (1999) 123–127.
    [43] K. Kuzman, Problems of accuracy control in cold forming, J. Mater. Process. Technol. 113 (2001) 10–15.
    [44] R. Balendra, Y. Qin, Die-elasticity errors during net-forming of engineering components, in: D. Stockton,C. Wainwright (Eds.), Advances in Manufacturing Technology, vol. IX, Taylor & Francis, London, 1995, pp. 204–208.
    [45] R. Balendra, Y. Qin, X. Lu, Analysis, evaluation and compensation of component-errors in the net-forming of engineering components, J. Mater. Process. Technol. 106 (2000) 204–211.
    [46] R. Balendra, Nett-shape forming state-of-the-art, J. Mater. Process. Technol. 115 (2001) 172–179.
    [47] R. Balendra, Overview of“Die-cavity elasticity considerations for nett-forming (DICAVITY)”, J. Mater. Process. Technol. 115 (2001) 180–186.
    [48] R. Balendra, Research dedicated to the development of advanced metal-forming technologies, J. Mater. Process. Technol. 145 (2004) 144–152.
    [49] BRITE/EuRam Project BE-4129, Die-cavity Elasticity Considerations for Nett-forming, Programme 1992–1996.
    [50] BRITE/EuRam Project BE-5819, Design-support-system for nett-forming (NETTFORM), Programme 1994–1998.
    [51] BRITE/EuRam Project BE-96-3644, Die-cavity design for high-precision nett-forming of engineering component (PRECIS4M), Programme 1997–2001.
    [52] X. Lu, R. Balendra, Evaluation of FE models for the calculation of die-cavity compensation, J. Mater. Process. Technol. 58 (2–3) (1996) 212–216.
    [53] Y. Qin, R. Balendra, FE Simulation of the influence of die-elasticity on component dimensions in forward extrusion, Int. J. Mach. Tools Manuf. 37 (2) (1997) 183–192.
    [54] X. Lu, R. Balendra, Pressure contours on forming dies. Part II. Finite element simulation, J. Mater. Process. Technol. 115 (2001) 220–226.
    [55] X. Lu, R. Balendra, Finite element simulation for die-cavity compensation, J. Mater. Process. Technol. 115 (2001) 227–232.
    [56] Y. Lee, J. Lee, J.-U. Choi, T. Ishikawa, Experimental and analytical evaluation for elastic deformation behaviours of cold forging tool, J. Mater. Process. Technol. 127 (2002) 73–82.
    [57] Y. Lee, J. Lee, T. Ishikawa, Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy, J. Mater. Process. Technol. 130–131 (2002) 532–539.
    [58] Y. Lee, J. Lee, Y. Kwon, T. Ishikawa, Analysis of the elastic characteristics at die and workpiece to improve the dimensional accuracy for cold forged part, J. Mater. Process. Technol. 153–154 (2004) 1081–1088.
    [59] Y. Lee, J. Lee, Y. Kwon, T. Ishikawa, Modeling approach to estimate the elastic characteristics of workpiece and shrink-fitted die for cold forging, J. Mater. Process. Technol. 147 (2004) 102–110.
    [1]约瑟夫,计算机模拟与模具应力分析[J],紧固件技术, 2000,(3):22-25.
    [2] Livermore Software Technology Corporation, LS-DYNA Theoretical Manual [M] ,1998
    [3]王勖成,有限单元法[M ],北京:清华大学出版社,2003
    [4]印雄飞,何丹农,叶又等,虚拟速度对板料成形数值模拟影响的实验研究[J],机械科学与技术, 2000,(03)
    [5] BURANATHITI T, CAO J, Benchmark Simulation Results: Automotive Underbody Cross Member (Benchmark 2) [C], Numisheet 2005, Detroit-US, 2005
    [6] http://www.mscsoftware.com/products/marc_support.cfm
    [7]张向,金属体积成形过程有限元模拟中六面体网格生成技术[D],上海交通大学博士学位论文, 2002 .
    [8] SE Benzley, E Perry, K Merkley, etc., A Comparison of All Hexagonal and All Tetrahedral Finite Element Meshes for Elastic and Elasto-plastic Analysis, Proceedings, 4th International Meshing Roundtable, 1995
    [9]肖景容,姜奎华,冲压工艺学[M],北京:机械工业出版社, 2000
    [1] A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry, 1964, 36: 1627-1639
    [2] P. Marchand, L. Marmet, Binomial smoothing filter: A way to avoid some pitfalls of least square polynomial smoothing, Rev. Sci. Instrum., 1983, 54:1034-41
    [3] J. W. Cooley, J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 1965, 19:297-301
    [1]马良,冯仁贤,应变电测与传感技术,中国计量出版社, 1993
    [2] Advantech Co., Ltd., PCI-1710 series User’s Manual, www.advantech.com, 2001
    [3]上海市机械工程学会,简明实用机械手册,机械工业出版社, 1987
    [1]龚红英,车用热镀锌钢板拉深成形特性研究[D],上海:上海交通大学, 2005
    [2] Schuler, ed, Metal Forming Handbook [M] , New York: Springer-Verlag, 1998
    [3]张贵宝,陈军,肖华等,两种压边方式下板料拉深成形性能及载荷分析,上海交通大学学报, 2008, 42(1): 51-56
    [4]肖景容,姜奎华,冲压工艺学[M],北京:机械工业出版社, 2000
    [1] Gantar Gasper., Pepelnjak Tomaz.,Kuzman Karl., Optimization of sheet metal forming processes by the use of numerical simulations, Journal of Materials Processing Technology. 2002, 130-131(1): 54-59.
    [2] Schenk O.,Hillmann M., Optimal design of metal forming die surfaces with evolution strategies, Computers and Structures. 2004, 82(20-21): 1695-1705.
    [3] Costanzo P., Paolo L.,Elisabetta A, Application of robust design techniques to sheet metal forming process, NUMISHEET'96, 1996, Dearborn, USA, P165-172.
    [4] Auto/Steel Partnership Program Body Systems Analysis Project Team, Automotive Sheet Steel Stamping Process Variation: An Analysis of Stamping Process Capability and Implications for Design, Die Tryout and Process Control, 2000
    [5] Taguchi. G, Introduction to Quality Engineering, Quality Press, 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700