用户名: 密码: 验证码:
电动拖拉机驱动系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究表明,新型电动拖拉机是解决由农业机械所造成的能源和环保问题的有效途径之一。而在我国,关于电动拖拉机方面的研究几乎是一片空白.因此,深入研究电动拖拉机的电驱动系统设计理论以及电驱动特性,对电动拖拉机的研究与开发具有重要的意义。
     本文基于电动拖拉机实际作业工况对电驱动系统的要求,结合当前国内外在电驱动系统方面的研究现状,研制了一种基于串励直流电动机的电动拖拉机驱动系统。主要研究内容和取得的结论归纳如下:
     1、电动拖拉机电驱动系统设计理论及计算方法研究。根据电动拖拉机作业特点,提出了一种电动机和变速箱相结合的电动拖拉机传动系统结构方案,并给出了电动拖拉机动力性能和经济性能评价指标以及电驱动系统主要参数的设计计算方法,以基于串励直流电动机的某型号小四轮电动拖拉机电驱动系统为设计实例,计算分析了该电动拖拉机的驱动力-行驶阻力平衡图、不同挡位下的爬坡度以及连续作业时间.研究结果表明:基于串励直流电动机的电动拖拉机电驱动系统的驱动力特性场接近理想驱动力特性场,其各挡下的驱动力特性是一组下凹的曲线,低速恒转矩,高速恒功率;同一行驶速度下所对应高挡驱动力大于低挡驱动力,这是由电机的调速特性决定的;电动拖拉机各个挡位下具有较广的稳定作业速度范围,但是各个挡位之间速度重合的范围较多,说明所用变速箱变速比与电动机匹配不合理;电动拖拉机最大爬坡度达到30%以上,并且各挡爬坡度变化范围较广,作业过程中不需要频繁换挡;影响电动拖拉机连续作业时间的因素较多,其中作业行驶速度和作业负荷影响最为明显,作业负荷越大,连续作业时间就越短,作业速度越快,连续作业时间就越短。
     2、电动拖拉机驱动特性仿真研究。从电动拖拉机牵引作业受力分析入手,建立其行驶平衡方程式以及驱动系统的仿真模型和控制策略,基于ADVISOR开发了电动拖拉机仿真系统,分别以低速EUDC工况和一匀速工况作为循环测试工况的输入,对电动拖拉机驱动特性与驱动系统各部件动力学特性进行了仿真研究,研究结果表明:仿真速度能够很好地跟踪目标速度,说明电驱动系统正常工作;驱动轮输出转矩主要受作业负荷的影响,匀速作业时,输出转矩不变,而在加减速或负荷有变化时,输出转矩也跟着变化;蓄电池输出电流受作业负荷和行驶速度的影响较大,随着作业负荷或行驶速度的增加,蓄电池输出电流也跟着增大;蓄电池SOC的大小反映了剩余电量的多少,SOC越小,剩余电量越少;电动拖拉机具有较强的抗过载能力,能够承受的最大突加载荷可达到额定载荷的1.4倍,并且具有自适应负荷能力,随着作业负荷的增加,作业速度降低,但仍能继续作业。
     3、电动拖拉机电驱动系统试验台研究.建立了模块化的电驱动系统试验台,开发了基于LabVIEW的试验台测控系统,对试验台所用传感器进行了标定.所得结论如下:所开发的电驱动系统试验台不仅能够完成整车性能试验,还能对单个部件的性能进行测试,并且具有较好的可扩展性;通过数据采集卡输出电压直接控制磁粉制动器制动力矩,可以方便的模拟不同作业工况的负荷。
     4、电动拖拉机电驱动系统驱动特性试验研究。试验研究了驱动轮驱动特性、功率特性、蓄电池电压、电流特性、电驱动系统传动效率、电机控制效率以及最高行驶速度、最大爬坡度等。研究结果表明:驱动轮各挡驱动特性与理论分析一致,受电动机外特性影响,是一组近似双曲线,随着转速增加,驱动转矩下降;蓄电池剩余电量的多少不影响驱动特性,只影响一次充电连续作业时间;不同挡位下电动拖拉机的驱动转矩和传动效率差别较大,在Ⅴ、Ⅵ两挡作业时,它的动力性和经济性最好;不同挡位的驱动力特性曲线适合不同类型作业工况,应为某些常用作业工况设计与之匹配的作业挡;蓄电池电压、电流特性与仿真研究结果一致;电机控制器具有较高的工作效率,正常工作时的效率都在90%以上,对电动拖拉机的传动效率影响不大。
     5、电动拖拉机模拟作业试验研究。试验研究了电动拖拉机不同作业工况下传动系统各部件的输出特性以及抗突加载荷的能力.研究结果表明:电动拖拉机在不同作业工况时,蓄电池的输出电压、电流变化趋势基本相同,载荷越大,电压下降越多,而在行驶速度波动时,输出电压波动不大,作业结束后,蓄电池电压有所回升,电压下降的多少反映了蓄电池输出能量的多少,电压下降越多,蓄电池输出的能量就越多;蓄电池电流則随着速度、载荷的波动而上下波动,速度、载荷越大,输出的电流就越大;犁耕作业的平均传动效率大于运输作业时的传动效率,这说明传动系统所用变速箱的适合重载作业工况;电动拖拉机在波动载荷比为1.57的最大突变载荷下从事犁耕作业时,作业速度有微小的波动,但不影响正常作业。
     通过本课题的研究,以期为电动拖拉机电驱动系统的研究及开发提供理论基础和技术支持。
Researches show that the new type of electric tractor is one of the effective ways to solve the problems of energy and environmental protection caused by agriculture machinery. But in our country, there are few researches about the electric tractor. Therefore, carrying on an in-depth study on the design theory and drive characteristics of electric drive system has great significance to the development of agriculture electric tractor.
     Based on the requirements of the agriculture electric tractors for the electric drive system, and the nowadays study actualities of electric drive system home and abroad, a new type of electric tractor drive system based on series DC motor was deveoped. The finished work and achieved results are generalized as follows:
     1. Researches of the design theory and calculation method of electric tractor drive system. Based on the working condition of the tractor, a new type of electric tractor drive system which combines a motor and a gear, and the evaluation index and the calculation method for dynamic performance of electric tractor are suggested; taking an electric tractor drive system as design object, the balance graph of drive-resistance force, climbable gradient under different shifts, and continuous working time are calculation analyzed. Researches show that the drive force characteristics of the electric tractor drive system based on series DC motor is close the ideal characteristics, the curves are concave, low speed with constant power, and high speed with constant torque; the electric tractor has large working speed under different shifts, but the extensive coincidence speed shows that the variable ratio of the gear is unreasonable; the maximum climbable gradient of this electric tractor is more than 30%, and does not need frequent shift when working for its extensive climbable gradient; there are many influence factors of continuous working time, which the more obvious factors are working speed and working load, the working time increases with the increase of the working speed and working load.
     2. Simulation researches on the drive characteristic of the electric tractor. Begin with the traction force analysis of the electric tractor, the drive equilibrium equation, simulation model and control strategy of the drive system were established, and the simulation system of the electric tractor was developed based on the ADVISOR; taking the low speed EUDC cycle and a uniform speed cycle as the drive cycle input, some simulation were carrying on about the traction force and the dynamic characteristics of the drive system. Researches show that the electric drive system work normally because the simulation speed tracking the target speed exactly; the torque is related to the working conditions, it is constant under uniform speed condition and change under accelerating or decelerating condition; the current of the battery is affected by the working load and running speed, and increases with the increase of the working load or running speed; the SOC of the battery indicates the residual capacity, the smaller the SOC, the fewer the residual capacity; the electric tractor based on series DC motor has a strong anti-overload ability, and the maximum sudden load is more than 1.4 times of the rated load under normal working condition; and the electric tractor also has an adaptive load ability, it can still work under lower speed when the working load increasing.
     3. Researches of the electric drive system test-bed. Analysis was made on the advantages and disadvantages of different test study methods, and the researches on electric tractor drive system was carried on using indoor simulation test-bed; the test-bed of the electric tractor drive system was established with modularization, and a measurement and control system of the test-bed was developed based on LabVIEW; in addition, the static calibration of sensors used in the test was carried on. Research results show that the test-bed with good expansibility can used to finish the performance test not only the whole vehicle but also some components; the test-bed can control the braking torque of the magnetic powder brake by the output voltage of the data acquisition card, and simulates the resistance load of different conditions conveniently.
     4. Experimental researches on the drive characteristics of the electric tractor drive system. A series of test researches were carried on about the drive characteristics and power characteristics of the drive wheel researches, the voltage and current characteristics of the battery research, the transmission efficiency of the electric drive system research, the motor controller efficiency characteristics research, the maximum speed and maximum climbable gradient researches, etc. Research results show that the drive characteristics are consistent with the theoretical analysis, it is approximate hyperbola and affected by the external characteristics of the DC motor, the torque will increase with the speed decreasing; the battery SOC has no effect on the drive characteristics unless its voltage below the minimum voltage of the motor, but it can affects the continuous working time; the drive torque and transmission efficiency under different shifts have great difference, and the electric tractor has better power performance and fuel economy when working underⅤ、Ⅵshifts; in order to obtain higher transmission efficiency, we should design different gear ratios for different working conditions because the drive characteristics under different shifts is suitable for different working conditions; the voltage and current of the battery are consistent with the theoretical analysis; the efficiency of the motor controller has little effect on the transmission efficiency, because it is more than 90% under normal condition.
     5. Simulation working researches of the electric tractor. The output characteristics of the drive system under different working conditions were experimentally studied. Research results show that change trends of the battery voltage and current under different working conditions are almost uniform, the voltage decreases more with the working load increasing, and it has small fluctuation with the changing of the working speed; the voltage will increase after finish the working, and the voltage difference between initial voltage and terminal voltage can indicate how much power used; the battery current will be upper and lower with the fluctuation of the speed and load, and increases with the speed and load increasing; the gear is suitable for heavy load condition because the average transmission efficiency under plowing condition is higher than that under transport working condition; the electric tractor can work stably under fluctuation loading 1.57 times of rated load besides the slight fluctuation of the speed.
     Research on this subject is expected to provide theoretical and technological support for the study and development of electric drive system.
引文
1 交通运输行业成为我国能源消耗增长最快的行业[J].节能与环保,2007,(08):07
    2 蔡凤田,刘莉,韩立波.公路运输能源消耗现状及其节能降耗对策[J].交通世界,2007,(06):98-101
    3 林芝,季令,施其洲.交通运输业能源短缺问题及应对措施[J].铁路运输与经济,2006,28(05):84-86
    4 孙湘海,刘潭秋.中国交通运输发展的实证研究[J].统计与信息论坛,2007,22(02):54-68
    5 王成.电动汽车发展对能源与环境影响研究[D].吉林大学,2007
    6 王利芳.道路运输对国民经济发展的适应性评价方法与模型研究[D].吉林大学,2005
    7 中国汽车工程学会组编.世界汽车技术发展跟踪研究[M].北京:北京理工大学出版社,2006
    8 郭国胜.柴油汽车排放控制技术[J].企业技术开发,2006,25(01):14-16
    9 简晓春,杜仕武.现代汽车技术及应用[M].北京:人民交通出版社,2004
    10 王长宇,黄英,葛蕴珊等.汽车排放法规的发展历程和技术对策[J].车辆与动力技术,2000,(04):58-62
    11 胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2003
    12 陈全世,仇斌,谢起成等.燃料电池电动汽车[M].北京:清华大学出版社,2005
    13 孙逢春.电动汽车:21世纪的重要交通工具[M].北京:北京理工大学出版社,1997
    14 万沛霖.电动汽车的关键技术[M].北京:北京理工大学,1998
    15 孙逢春.电动汽车:21世纪的重要交通工具[M].北京:北京理工大学出版社,1997
    16 Xiao Fang,Jiqiang Zhang,Hailing Tu.Electric Vehicles-Clean Driving that Presages the 21~(st) Century[M].Beijing:Metallurgical Industry Press,2002
    17 P.Van den Bossche,The Electric Vehicle:raising the standards[D].VUB,PhD thesis,2003
    18 Larry Oswald.The Future of Green Vehicles:How We Get ThereFrom Here[A].In:NREL,Joint ADVISOR and PSAT Vehicle Systems Modeling User Conference.Michigan:U.S.Department of Energy 2001:328-355
    19 Bob Larsen,Keith Hardy,Aymeric Rousseau,etc.Argonne's Hybrid Electric Vehicle Technology Development Program[C].In:NREL,Joint ADVISOR and PSAT Vehicle Systems Modeling User Conference.Michigan:US.Department of Energy 2001:175-206
    20 Patil.P.G.Prospects for Electric Vehicles[J].Aerospace and Electronic Systems Magazine,1900:15-19
    21 C.C.Chan.The Challenges and Opportunity in the New Century Clean,Efficient and Intelligent Electric Vehicles[J].Electrical Machines and Systems.2003,(1):9-11
    22 Kaushik Rajashekara,Senior Member.History of Electric Vehicles in General Motors[J].IEEE Transactions on Industry Applications,1994,30(4):897-902
    23 Naunin.D.Electric Vehicles[M].Industrial Electronics,1996,(1):17-20
    24 Chan C.C.The State of the Art of Electric Vehicles[C].Proceedings of IEEE,2004,(1):46-57
    25 徐毓龙.空气污染、电动汽车和燃料电池[J].电子世界,2002,(02):79-81
    26 胡安生.汽车新动力的发展趋势研究(上)[J].汽车工业研究。2005,(08):2-9
    27 纯电动汽车[EB/OL].[2008-04-15].http://www.qyev.com/index.asp
    28 未来产品[EB/OL].[2008-04-15].http://www.dfev.com/publish/product22.jsp
    29 燃料电池汽车系列[EB/OL].[2008-04-15].http://www.fcv-sh.com/ProductShow.asp?ArticleID=73
    30 超越三号[EB/OL].[2008-04-15].http://www.fcv-sh.com/ProductShow.asp?ArtrieleID=74
    31 范健文,吴彤峰,金国栋.电动汽车电驱动系统结构方案分析[J].机械制造,2003,41(471):38-40
    32 宋慧,胡骅.电动汽车的现状和发展(Ⅵ)[J].汽车电器,2000,(6):42-46
    33 陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002
    34 城市客车发动机[EB/OL].[2008-04-15].http://www.sl-power.com/motor.html
    35 张承宁,孙逢春,赵宏杰等.电动汽车储能电池组管理系统的研制(英文)[J].北京理工大学学报(英文版),2001(01):94-100
    36 张承宁,朱正,张玉璞等.电动汽车动力电池组管理系统设计[J].计算机工程与应用,2006(25):220-222
    37 白中浩,王耀南,曹立波.混合动力电动汽车能量自适应模糊控制研究[J].汽车工程,2005(04):389-403
    38 袁方伟,陈思思.电动汽车电池管理系统的研究[J].汽车研究与开发,2003(03):41-44
    39 Cerruto E,Consoli A,Raciti A,et al.Fuzzy logic based efficiency improvement of an urban electric vehicle[C].The 20~(th) International Conference on Industrial Electronics,Control and Instrumentation,1994(02):1304-1309
    40 Chan-chiao Lin,Jun-mo Kuang,J.W.Grizzle,et al.Energy management strategy for a parallel hybrid electric truck[C].Proceedings of the American Control Conference,2001(06):2878-2883
    41 刘剑雄,管前新.当前世界电动汽车发展概况(Ⅱ)[J].汽车技术,1997(05):56-59
    42 雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997
    43 王仲范,刘成.电动轿车的性能计算[J].世界汽车,1996,(1):30-37
    44 杨超.电动车动力学建模与仿真研究[D].武汉理工大学,2007
    45 张翔.电动汽车建模与仿真的研究[D].合肥工业大学,2004
    46 范影乐.MATLAB仿真应用详解[M].北京:人民邮电出版社,2001
    47 姚俊,马松辉.SIMULINK建模与仿真[M].西安:西安电子科技大学出版社,2002
    1 M.米奇克.汽车动力学(A卷)[M].陈荫三,译.北京:人民交通出版社,1992.
    2 何洪文,余晓江,孙逢春等.电动汽车电机驱动系统动力特性分析[J].中国电机工程学报,2006,26(6):136-140
    3 周一鸣主编.汽车拖拉机学:汽车拖拉机理论[M].北京:中国农业大学出版社,2000.7.
    4 机械工业洛阳拖拉机研究所主编.拖拉机设计手册[M].北京:机械工业出版社,1994.
    5 余志生.汽车理论[M].北京:机械工业出版社,2000.
    6 王德志主编.蓄电池-原理及使用[M].北京:中国铁道出版社,1989
    7 M.A.达索扬,H.A.阿古夫.铅蓄电池现代理论[M].华寿南,朱德庄译.北京:机械工业出版社,1981
    8 李国良,初亮,鲁和安.电动汽车续驶里程的影响因素[J].吉林工业大学自然科学学报,2000,30(3):20-24
    9 陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005,(3):1-5
    10 V.H.Johnson.Battery performance models in ADVISOR[J].Journal of Power Sources,2002,(110):321-329
    11 Massimo Ceraolo,Giovanni Pede.Techniques for Estimation the Residual Range of an Electric Vehicle[J].IEEE Transactions on vehicular technology,2001,50(1):109-115
    12 Bumby J R,Clarke P H.Forster I,U of Druham(UK).Computer Modelling of the Automotive Energy Requirements for Internal Combustion Engine and Battery Electric-Powered Vehicle[C].IEE Proceedings,1985,132(5):265-279
    13 Salameh Z M,Casacca M A,Lynch W A.A Mathematical Model for Lead-Acid Batteries[J].IEEE Transactions on Energy Conversions,1992,7(1):93-97
    14 Eckhard Karden,Peter Mauracher,Friedhelm Schope.Electrochemical Modelling of lead/acid batteries under operating conditions of electric vehicles[J].Journal of Power Sources,1997,(64):175-180
    15 杨祖元.电动汽车能量和传动系统性能仿真研究[D].重庆大学,2002
    16 徐德淦.电机学[M].北京:机械工业出版社,2004
    17 余志生.汽车理论[M].北京:机械工业出版社,2004
    18 何洪文,余晓江,孙逢春.电动车辆设计中的匹配理论研究[J].北京理工大学学报,2002,22(6):705-707
    19 王庆年,何洪文,李幼德等.并联混合动力汽传动系参数匹配[J].吉林工业大学自然科学学报,2000,30(1):72-75
    20 何洪文,孙逢春,李幼德.混合动力轻型客车动力传动系的设计研究[J].车辆与动力技术,2001,(84):18-23
    21 万耀青,杨磊,马彪.车辆动力传动系的耦合与匹配研究[J].机械设计,2006,23(4):3-6
    22 Mehrdad Ehsani,Khwaja Rahman M.Propulsion system design of electric and hybrid vehicles[J].IEEE Transactions on Industrial Electronics,1997,44(1)
    23 西安交通大学电机系编.牵引电机[M].北京:中国铁道出版社,1981
    24 王书林,赵茜,吴刚等.电力牵引控制系统[M].北京:中国电力出版社,2005
    25 蔡方耀.电动机应用计算指南[M].北京:中国计划出版社,1998
    26 机械工业洛阳拖拉机研究所主编.拖拉机设计手册[M].北京:机械工业出版社,1994
    1 陈全世,仇斌,谢起成等.燃料电池电动汽车[M].北京:清华大学出版社,2005
    2 何洪文,孙逢春,余晓江.车辆动力-传动系性能仿真的方法研究[J].北京理工大学学报,2002,22(5):582-586
    3 张翔,钱立军,张炳力等.电动汽车仿真软件进展[J].系统仿真学报,2004
    4 张翔.电动汽车建模与仿真的研究[D].合肥工业大学,2004
    5 陈飚.电动汽车前向仿真研究[D].武汉理工大学,2005
    6 杨为琛,孙逢春.混合电动汽车的技术现状[J].车辆与动力技术,2001,(84):41-46
    7 Butler K L,Ehsani M,Kamath P.A Matlab Based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design[J].IEEE Transaction on Vehicular Technology,1999,48(6):1770-177
    8 Wipke K B,Cuddy M R,Burch S D.ADVISOR 2.1:A User-friendly Advanced Powertrain Simulation Using a Combine Backward/Forward Approach[J].IEEE Transaction on Vehicular Technology,1999,48(6):1751-1761
    9 T.Markel,A.Brooker,T.Hendricks,et al.ADVISOR:a systems analysis tool for advanced vehicle modeling[J].Journal of Power Sources,2002,(110):255-266
    10 Kenneth J.Kelly,Matthew Zolot,Gerard Glinsky,et al.Test Results and Modeling of the Honda Insight using ADVISOR[C].SAE Future Transportation Technologies Conference,Costa Mesa,CA August,2001:1-12
    11 程莺,冯能莲,李克强等.ADVISOR混合动力电动汽车仿真系统的二次开发及应用[J].汽车工程,2004,26(3):249-252
    12 陈晓东,何仁,杨正林.混合动力电动汽车性能仿真软件研究与开发[J].交通运输工程学报,2002,2(1):114-117
    13 于远彬,王庆年.基于ADVISOR的仿真软件的二次开发及其在复合电源混合动力汽车上的应用[J].吉林大学学报(工学版),2005,35(4):353-357
    14 邹广才,罗禹贡,杨殿阁.基于ADVISOR二次开发的混合动力越野车仿真分析[J].汽车工程,2007.29(5):404-408
    15 Aaron Brooker,Kristina Haraldsson,Terry Hendricks,et al.ADVISOR Documentation[M].US:National Renewable Energy Laboratory,2002
    16 周一鸣主编.汽车拖拉机学:汽车拖拉机理论[M].北京:中国农业大学出版社,2000
    17 V.H.Johnson.Battery performance models in ADVISOR[J].Journal of Power Sources,2002,(110):321-329
    18 王德志主编.蓄电池-原理及使用[M].北京:中国铁道出版社,1989
    19 闻新,周露,李东江.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2001
    20 苏金明.MATLAB工具箱应用[J].北京:电子工业出版社,2004
    21 钟飞,钟毓宁.Mamdani与Sugeno型模糊推理的应用研究[J].湖北工业大学学报,2005,20(2):28-30
    22 刘清.船舶操纵运动模糊神经网络控制系统研究[D].武汉理工大学,2002
    23 汪光阳.模糊控制系统计算机仿真[J].安徽工业大学学报,2001,18(1):57-61
    24 薛定宇,陈阳泉.基于MATLAB/Sinmul ink的系统仿真技术与应用[M].北京:清华大学出版社,2002
    25 沈辉.精通SIMULINK系统仿真与控制[M].北京:北京大学出版社,2003
    26 王沫然.Simulink4建模及动态仿真[M].北京:电子工业出版社,2002
    27 包文娟.基于Fuzzy_control的工业温度控制器的研究[D].苏州大学,2007
    28 刘明辉,赵子亮,李骏等.北京城市公交客车循环工况开发[J].汽车工程,2005,27(6):687-690
    29 李孟良,李洧,方茂东等.道路车辆实际行驶工况解析方法研究[J].武汉理工大学学报(交通科学与工程版),2003,27(1):69-72
    30 罗玉涛,胡红斐,沈继军.混合动力电动汽车行驶工况分析与识别[J].华南理工大学学报(自然科学版),2007,35(6):8-20
    1 GB/T 18385-2001中华人民共和国国家标准:电动汽车动力性能试验方法.中国标准出版社,2001-7-12
    2 GB/T 18386-2001中华人民共和国国家标准:电动汽车能量消耗和续驶里程试验方法.中国标准出版社,2001
    3 廖权来,罗玉涛.电动汽车试验研究[J].机械工程学报,1997,33(5):71-76
    4 陈全世,仇斌,谢起成等.燃料电池电动汽车[M].北京:清华大学出版社,2005.05
    5 黄坤雄,谢飞,王璟琳.电动汽车整车运行性能检测试验技术研究[J].汽车研究与开发,2004,(9):17-19
    6 黄妙华,金国栋,邓亚东等.混合动力电动汽车性能试验与仿真[J].汽车技术,2004,(9):20-23
    7 张卫钢,蹇小平,耿莉敏等.基于燃油汽车改制的电动汽车试验[J].长安大学学报(自然科学版),2006,26(5):74-78
    8 谢起成,王冬,田光宇.混合动力电动汽车(HEV)动力系统试验台的模块化设计研究[J].交通运输工程学报,2001,1(2):33-36
    9 孙善辉,夏超英.电动汽车电机及驱动系统试验平台的设计与开发[J].电气传动,2006,36(2):42-44
    10 任礼维,张杰官.电机与拖动实验[M].杭州:浙江大学出版社,1997.6
    11 湘仪动力测试仪器有限公司.JC型转矩转速传感器使用说明书[M]
    12 闻岩,亓家祥,杨盛福等.JC-2转矩转速传感器二次仪表的研制[J].实验技术与管理,1999, 16(6):46-48
    13 魏彦.发动机测功系统转速检测研究[J].中国测试技术,2005,(6):84-86
    14 齐长远,康雪艳,王爱明.一种非接触高精度的转速测量方法[J].微型计算机与应用,2000,(12):21-23
    15 汤德源.传感器的静态标定及程序[J].仪表技术与传感器,1989,(5):26-28
    16 National Instruments Corporation.M Series Help[M].August 2004
    17 李明辉,刘连生,曲培树.基于虚拟仪器的自动测试系统研究[J].电子测试,2008,(3):37-42
    18 于家明,何礼高.基于虚拟仪器的电机转矩转速测试系统[J].电机与控制应用,2008,35(1):36-40
    1 杨乐平,李海涛,肖凯等.虚拟仪器技术概述[M].北京:电子工业出版社,2003
    2 张易知,肖啸,张喜斌等.虚拟仪器的设计与实现[M].西安:西安电子科技大学出版社,2002
    3 秦树人.虚拟仪器[M].北京:中国计量出版社,2004
    4 崔红梅.面向测试系统的虚拟仪器设计与应用研究[D].内蒙古农业大学,2007
    5 孙仁敬.基于LabVIEW的多传感器信息采集平台[D].北京交通大学,2006
    6 王海宝,吴光杰,谭泽富等.LabVIEW虚拟仪器程序设计与应用[M].成都:西南交通大学出版社,2005
    7 刘君华,贾惠芹,丁晖等.虚拟仪器图形化编程语言LabVIEW教程[M].西安:西安电子科技大学出版社,2001
    8 刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003
    9 石博强,赵德永,李畅等.LabVIEW6.1编程技术实用教程[M].北京:中国铁道出版社,2002
    10 汪敏生等.LabVIEW基础教程[M].北京:电子工业出版社,2002
    11(美)Robert H.Bishop.LabVIEW 6i实用教程[M].北京:电子工业出版社,2003
    12 侯国屏,王砷,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005
    13 陈鍊.数据采集方法[M].北京:中国审计出版社,2001
    14 肖忠祥.数据采集原理[M].西安:西北工业大学出版社,2001
    15 郭虹,艾延延,盛元生.数据采集与处理[M].北京:航空工业出版社,1999
    16 周振安,范良龙,王秀英等.数据采集系统的设计与实践[M].北京:地震出版社,2005
    17 林顺应,卫狲华.基于LabVIEW的虚拟频谱分析法测量相位差的实现[J].北京石油化工学院,2006,14(3):13-15
    18 曾璐,杨蓓.基于LabVIEW的虚拟相关法测量相位差仿真仪设计[J].仪器仪表与分析检测,2004,(4):18-20
    19 刘倩,王玉柱,沈晓东等.基于LabVIEW的虚拟相位差计的研制[J].微计算机信息,2005,21(4):168-169
    20 庄源昌.基于虚拟仪器的模糊PID控制系统设计[D].南京理工大学,2007
    21 魏东.基于预测控制和LabVIEW的中央空调控制系统的研究[D].大连理工大学,2007
    22 李明辉,刘连生,曲培树.基于虚拟仪器的自动测试系统研究[J].电子测试,2008,(3):37-42
    1 刘伏萍,陈燕涛,苏茂辉等.我国电动汽车标准的现状和发展[J].上海汽车,2006,(04):37-40
    2 吴卫.我国混合动力电动汽车标准的研究和制定[J].交通标准化,2005,(07):8-11
    3 张红卫,孙惠,赵静炜.中国电动汽车整标准的制定、验证及发展思路[J].世界汽车,2000,(11):27-31
    4 M.米奇克.汽车动力学(A卷)[M].陈荫三,译.北京:人民交通出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700