用户名: 密码: 验证码:
辛基-[ω-烷氧基-聚(氧乙烯)]基—苯磺酸钠的合成及理化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂分子设计对于表面活性剂在特定领域的应用研究具有重要的理论价值和实践意义。大量研究表明,具有支链结构的表面活性剂可以大大降低水溶液的表面张力,而离子型表面活性剂结构中引入EO基团能大大改善其表面活性,这为设计三次采油用表面活性剂开辟了新的思路。支链含EO基团的双链烷基苯磺酸盐阴离子表面活性剂研究得较少,人们对于位于疏水支链上的EO基团对表面活性剂性质的影响亦缺乏系统认识。已有的少量研究显示,引入EO基团的烷基苯磺酸盐阴非离子表面活性剂表现出更优的界面活性和耐温耐盐性能,在三次采油中具有广泛的应用前景。本论文选择支链含EO基的双链烷基苯磺酸盐阴离子表面活性剂—辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠为模型化合物,制备并系统研究了它们的理化性能。主要研究内容和结果如下:
     以正辛酸、苯酚、多缩乙二醇和溴代烷烃为原料,经酰化、酯化、Fries重排、催化加氢、威廉逊醚化及磺化等反应,首次合成出8种辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠表面活性剂,用FT-IR、1H NMR、ESI-MS等测试手段对其结构进行了鉴定,所合成的表面活性剂结构明确,纯度较高。
     采用Wilhelmy吊片法和旋转滴法测定了辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠水溶液的表/界面张力,系统研究了EO及烷基链长改变对其表/界面性能的影响。我们发现辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠具有优异的表面活性,临界胶团浓度(CMC)达10-5mol/L数量级,γCMC在25.79-31.62mN/m之间,降低表面张力的能力和效率出众。在纯水溶液中,随EO数的增加,CMC先减小后变化不大,而饱和吸附量则先增加后降低,相应地,γCMC先减小后增加,合适的EO链长度是辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠达到最优性能的关键因素;固定EO数为4,支链烷基链长的增加,CMC降低,饱和吸附量增加,γCMC降低。EO数对界面张力影响显著,含辛基-[ω-辛氧基-二氧乙烯]基-苯磺酸钠(EO=2)0.05wt%的弱碱驱油体系即可与胜利原油产生超低界面张力,体现出高效的降低油水界面张力的能力和效率。
     采用Langmuir槽法利用小幅周期振荡和界面张力弛豫法研究了辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠表面活性剂的表面扩张粘弹性质。结果表明,辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠的表面扩张性质随频率和表面活性剂浓度的变化均呈现规律性的变化:频率增加,扩张模量增加,粘性增强;浓度增加,扩张模量在CMC之前通过最大值后降低;辛基-[ω-辛氧基-聚(氧乙烯)]基-苯磺酸钠随EO数的增加,0.1Hz模量最大值先增加后降低,在EO=2时最大,而烷基链长的增加则使得扩张模量增强。界面张力弛豫研究表明辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠可能主要存在三个驰豫过程:体相与表面间的扩散交换过程,分子疏水支链的构象变化,表面吸附膜大量分子的重排过程。
     采用气流法测定了辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠表面活性剂的泡沫性能,并考察了不同物化条件及结构对泡沫性质的影响。实验发现,随着表面活性剂浓度的升高,其起泡能力和泡沫稳定性均逐渐增强,达到一定的浓度后泡沫性能趋于稳定;EO链增加,起泡性能先增加,EO数大于2后变化不大,而泡沫稳定性随EO数的增加显著增强;烷基链长增加,起泡性能降低而泡沫稳定性增加;温度升高,辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠的起泡能力有所增强,但泡沫稳定性变差;电解质的加入显著降低辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠水溶液的泡沫稳定性,但EO的引入能降低电解质的对表面活性剂稳定性的影响,表现出一定的非离子表面活性剂的性质。
     采用自发射荧光法及荧光自猝灭技术测定了辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠的胶团聚集性质,我们发现,辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠含有苯氧基荧光生色基团,利用其自发射荧光可用来测定CMC,所得结果精确度较高且与表面张力法结果吻合;利用甲基紫精(MV2+)猝灭辛基-[ω-烷氧基-聚(氧乙烯)]基-苯磺酸钠分子发射的荧光可用来测定胶团平均聚集数N,辛基-[ω-辛氧基-聚(氧乙烯)]基-苯磺酸钠随着EO数的增加,从0到1胶束聚集数N先减小,而从1到4则变化不大。
It is valuable in theory and practice to design surfactants for special application fields. Many researches had shown that surfactants with branches can reduce surface tension obviously and the anionic surfactants with oxyethylene can also highly improve the surface property, which may break a new path to design surfactants for Enhanced Oil Recovery (EOR). The studies on anionic surfactants with oxyethylene in the branches are rarely reported, which leads to lacking systematical knowledge in the relationship of the molecular structure and performance of this kind of surfactants. The few researches have indicated that the anionic-nonionic arylalkyl sulfonates, containing oxyethylene in the branches, performed better interfacial properties, which made them potential candidates for a wide variety of surfactant applications in EOR. In the dissertation, the anionic arylalkyl sulfonated surfactants with oxyethylene in the branches, sodium octyl-[ω-octyloxy-poly(oxyethylene)]yl-benzene sulfonates ,have been synthesized and their properties have been studied systematically. The experiments and results are as following:
     The sodium octyl-[ω-octyloxy-poly(oxyethylene)]yl-benzene sulfonates were synthesized from fatty , phenol ,multiethylene glycol and alkyl bromide through several processes, including acylation, esterification, Fries rearrangement, Pd-catalyzed hydrogenation, Williamson ether synthesis and sulfonation. The structures were characterized by FT-IR, 1H NMR, and ESI-MS methods. The results suggested that the structures of the compounds with high purity are definite.
     The surface and interfacial tensions of sodium octyl-[ω-octyloxy-poly(oxyethylene)] -yl-benzene sulfonates in aqueous solutions have been investigated by Wilhelmy plate method and spinning drop method respectively to study the effect of the length of hydrophobic group and the number of EO units on their properties. It was discovered that the surface performance of these surfactants is greatly outstanding: the values of critical micelle concentration reached to be of the order of magnitude of 10-5 mol/L, the values of theγCMC is between 25 to 31 mN/m.and the efficiency of surface tension reduction is excellent. With the increasing in EO chain length, the CMC slightly changed after the first decrease, On the other hand, theΓmax decreased after the first increase andγCMC increased after the first decrease accordingly.The appropriate EO chain length is the key facter to get the best physicochemical properties.The carbon number of alkyl increased with 4 EO units in octyl-[ω-octyloxy-poly(oxyethylene)]-yl -benzene sulfonate ,however, the CMC andγCMC decreased and theΓmax increased.The interfacial tension is greatly affected on the EO chain length and the ultra low interfacial tension could be achieved in the water-crude oil weak alkali system with 0.05wt% sodium octyl-[ω-octyloxy-poly(oxyethylene)]-yl-benzene sulfonate containing 2 EO units,which proved its excellent effectiveness and efficiency of interfacial tension reduction.
     The dilational viscoelastic properties of sodium octyl-[ω-octyloxy-poly(oxyethylene)] -yl-benzene sulfonates at air-water were investigated by means of two methods: the interfacial tension response to sinusoidal area variations and interfacial tension relaxation method respectively. The dilational modulus and phase angle changed regularly with changing of concentration and frequency: the dilational modulus and viscosity increased with the frequency increasing as well as the surface dilational modulus passes through a maximum value with the increasing concentration. The max dilational modulus values of sodium octyl-[ω-octyloxy-poly(oxyethylene)]yl-benzene sulfonates at 0.1Hz passes through a maximum value (EO=2) with the increasing of EO chain and continue increase with length of alkyl group increasing. The results of interfacial tension relaxation showed that there will be three relaxed process: the exchange between surface and bulk, the conformational change of hydrophobic branch, the rearrangement of surface adsorbed film.
     The foam properties of sodium octyl-[ω-octyloxy-poly(oxyethylene)]yl-benzene sulfonates in the aqueous solution at different physicochemical condition were measured by air flowing method. It was found that the foam ability and foaming stability increase sharply with increasing surfactant concentration and then generally reached a plateau. The foam ability increased first and slightly changed (EO=2) while the foam ability continues increased with increasing of EO chain length.The foam ability decreased with the increasing of alkyl chain length,. however, the foam stability is on the contrary way. The foaming ability increased with the temperature increasing, while the foaming stability showed opposite tendency. The foaming stability was greatly decreased when NaCl was added, while the effect can improved by the introducing of the EO chian to the surfactant molecular.
     The micellezation and aggregation properties of sodium octyl-[ω-octyloxy-poly(oxy -ethylene)]yl-benzene sulfonates in aqueous solutions were investigated by fluorescence spectra of intrinsic probe. It’s shown the CMC got by fluorescence spectra of intrinsic probe method is accordance with the CMC measured by surface tension method. The aggregation number N, characterized by quenching the fluorescence spectra with methyl viologen (MV2+) as the extrinsic quencher, gradually decreased first(from 0 to1) and then slight changed (from 1 to 4)with increasing of EO chain length.
引文
1.俞稼镛,宋万超,李之平,等.化学复合驱基础及进展[M].北京:中国石化出版社,2002.
    2. Albert Boykiw, Dimitra Katsuris. J. Canadian Petroleum Tech [J]. 1997, 40: 1386.
    3.沈平平,俞稼镛.大幅度提高石油采收率的基础研究[M].北京:中国石化出版社,2001.
    4.刘翔鹗,王浦潭.采油工程技术的发展与展望[J].石油钻采工艺,2000,22(3):42-49.
    5.波特曼.化学驱原理[M].北京:石油工业出版社,1998.
    6.李枚.表面活性剂在强化采油中的应用[J].精细化工,1994,11(5):4-7.
    7.刘玉章,吕西辉.胜利油田用化学法提高原油采收率的探索与实践[J].油气采收率技术,1994,1(1):25-28.
    8.廖广志,李立众,孔繁华.常规泡沫驱油技术[M].北京:石油工业出版社,1999.
    9.张思富,廖广志,张彦庆,等.大庆油田泡沫复合驱油先导性矿场试验[J].石油学报,2001,22(1):49-53.
    10.李干佐,徐健.国内三次采油情况介绍[J].日用化学工业信息,2001,13:1-18.
    11. Degroot M. Flooding processes for recovering oil from subterranean oil bearing strata [P]. US Patent 1823439, Sept. 15, 1931.
    12. Degroot M, Monson L T. Flooding process for recovering fixed oil from subterranean oil bearing strata [P]. US Patent 1823440, Sept. 15, 1931.
    13. Blair C M, Groves W, Lehmann S. Process for increasing productivity of subterranean oil-bearing strata [P]. US. Patent , 1944.
    14. Holbrook O C. Surfactant-water secondary recovery process [P]. US. Pat., 1961
    15. Reisberg J, Doscher T M. Producer Monthly [J], 1956,21(1):43-51.
    16. Nelson R C, Lawson T B. SPE/DOE, 12672.
    17. Martin M D, Oxley J C. SPE, 13575.
    18. Clark S R, Smith S M. SPE, 17538.
    19. Lin F F J, Besserer G J, Pitts M J. Can. Petrol. [J], 1987, 26: 54-65.
    20.曹绪龙. ASP相性质的研究.油田化学[J],1991,4:357-361.
    21.卡斯特T P,索默尔顿W H,凯利J F.杨普华译.化学驱提高石油采收率[M].北京:石油工业出版社,1988.
    22.李干佐,林元,王秀文,等. Tween 80表面活性剂复合驱油体系研究[J].油田化学,1994,11(2):152-156.
    23.李干佐,林元,徐桂英,等.天然混合羧酸盐的复合体系的研究[J].日用化学工业,1994,24(1):1-6.
    24.李干佐,隋卫平,徐桂英,等.表面活性剂与高分子化合物的相互作用[J].日用化学工业,1996,25(5):27-31.
    25.王宝瑜,曹绪龙,王其伟,等.孤东小井距三元复合驱采出液相态变化及相分浓度测定[J].油田化学,1994,11(4):327-330.
    26.朱友益,沈平平.三次采油复合驱用表面活性剂:合成、性能及应用[M].北京,石油工业出版社,2002.
    27.彭朴.采油用表面活性剂[M].北京,化学工业出版社,2002.
    28.李宗石,徐明新.表面活性剂合成与工艺[M].北京,轻工业出版社,1990.
    29.王兴,高玉华.苯-长链烯烃烷基化制直链烷基苯:I.含氟Y型分子筛催化剂的研究[J].石油化工,1998,27(4):231-236.
    30.崔哲.TH-06催化剂合成长链烷基苯:Ⅰ.工艺条件的研究[J].石油化工,1999,28(10):657-660.
    31. D B Sarney, H. Kapper, G Fregapane, E N Vulfson. Chemo-enzymatic synthesis of disaccharide fatty acid esters[J]. J. Am. Oil Chem. Soc., 1994, 71: 711-714.
    32. B. Cambon, A.M. Klibanov. J. Am. Oil Chem. Soc., 1984, 61: 2687.
    33.刘程,张万福,陈长明.表面活性剂应用手册[M].北京,化学工业出版社,1996.
    34. P D Berger, C H Lee. New anionic alkylaryl surfactants based on olefin sulfonic acids [J]. Journal of Surfactants and Detergents, 2002, 5: 39-43.
    35.肖进新,赵振国.表面活性剂应用原理[M].北京,化学工业出版社,2003.
    36. F Tokiwa , K Ohki. Micellar properties of a series of sodium dodecylpolyoxyethylene sulfates from hydrodynamic data [J]. J. Phys. Chem., 1967, 71: 1343.-1347.
    37.杨秀全,徐长卿,黄海.一类新型多功能性表面活性剂:烷基醚羧酸及其盐[J].日用化学工业,1998(1):26-33.
    38. W Binana Limble, R Zaza, E Platone. Micellar properties of ethoxylated sodium alkylcarboxylates [J]. J. Colloid Interface Sci. 1988, 124, 647.
    39. G H Billy. Oil recovery by surfactant-alcohol waterflooding [P].US: 4629000, 1986.
    40. D S Kirk. Two-tailed surfactants having one aromatic containing tail and their use in chemicalwaterflooding [P].US: 4545912, 1985.
    41.靳志强.双尾表面活性剂的合成及其超分子结构的研究[D].北京:中国科学院研究生院,2002.
    42. F Tokiwa. Solubilization Behavior of a polyoxyethylene sulfate type of surfactant in connection with the micellar charge [J]. J. Phys. Chem., 1968, 72: 4332.
    43.祝荣先.Guerbet醇聚氧乙烯醚乙酸钠的合成及性质研究[D].北京:中国科学院研究生院,博士学位论文,2006.
    44.王业飞,赵福麟.非离子-阴离子型表面活性剂的耐盐性能[J].油田化学,1999,16(4):336-340.
    45.刘璞.用于强化采油的表面活性剂的一些进展[J].油田化学,1985,2(1):1.
    46.王业飞,黄建滨.氧乙烯化十二醇醚丙撑磺酸钠的合成及表面活性[J].物理化学学报,2001,17(6):488-490.
    47. A M Klibanov. Enzymatic catalysis in anhydrous organic solvents [J]. Trends Biochem. Sci., 1989, 14: 141.
    48. M Therisod, A M Klibanov. Facile enzymatic preparation of monoacylated sugars in pyridine [J]. J. Am. Chem. Soc., 1986, 108: 5638-8640.
    49. G P Mirjana, G J Eryka, L Ardre, A G Saskia, M J Daniel. J. Chem. Soc. Perkin Trans, 1996, 1: 277.
    50. R Zana, H Levy ,K Kwetkat. Mixed micellization of dimeric (Gemini) surfactants and conventional surfactants (Ⅰ): mixtures of an anionic dimeric surfactants and of the nonionic surfactants C12E5 and C12E8 [J].J. Colloid and Interface Sci., 1998, 197: 370-376.
    51.王海峰,杨勇,张国印,伍晓林.新型Gemini表面活性剂在三次采油中的应用前景[J].油气地质与采收率,2003,10:59-61.
    52.谭中良,韩冬,杨普华.孪连表面活性剂的性质和三次采油中应用前景[J].油田化学,2003, 20:187-191.
    53.田兴国,黄正鹏.“三采后”进一步提高采收率的驱替剂-Gemini型表面活性剂[J].国外油田工程,2001,17:11-12.
    54. T Yoshimura ,K Esumi. Synthesis and surface properties of anionic gemini surfactants with amide groups [J]. J. Colloid and Interface Sci., 2004, 276: 231-238.
    55. Y P Zhu, A Masuyama, Y I Kirto. Preparation and properties of glycerol-based double- ortriple- chain surfactants with two hydrophilic ionic groups [J]. J. Am. Oil. Chem. Soc., 1992, 69, 626-632.
    56.柴金岭,李干佐,张高勇,张越.绿色表面活性剂-烷基(聚)葡糖苷缔合结构体系[J].化学通报,2002,8,506-515.
    57. Rosen M J. Preparation and properties of glycerol-based double or triple-chain surfactants with two hydrophilic ionic groups [J]. J. Am. Oil Chem. Soc., 1993, 69(7): 626-632.
    58. Rosen M J. Selection of surfactant pairs for optimization of interfacial properties [J]. J. Am. Oil Chem. Soc., 1989, 66(12): 1840-1843.
    59. Doe P H, Schechter R S, Wade W H. Alkyl benzene sulfonates for producing low interfacial tension between hydrocarbon and water [J]. J. Colloid Interface Sci., 1977, 59: 525.
    60. Rosen M J, Cohen A W, Dahanayake M, Hua X Y. Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethen- oxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution [J]. J. Phys. Chem. 1982, 86: 541.
    61. Rosen M J, Aronson S. Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration [J]. Colloids Surf. 1981, 3: 201.
    62. Dahanayake M, Cohen A W, Rosen M J. Relationship of structure to properties in surfactants.
    13. Surface and thermodynamic properties of some oxyethylenated sulfates and sulfonates [J]. J. Phys. Chem., 1986, 90: 2413.
    63. Dahanayake M, Rosen M J. In relationship between structure and performance in surfactants; Rosen M J. Ed.; Americain Chemical Society: Washington, DC, 1984; ACS Symp, Ser. No. 253: 49.
    64.崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999.
    65.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    66.肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003.
    67. Alami El-O, Holmberg K. Heterogemini surfactants [J]. Advances in Colloid and Interface. 2003, 100-102: 13-46.
    68. Masahiko Abe. Synthesis and application of surfactants containing fluorine [J]. Current Opinion in Colloid and Interface Science. 1999, 4(5): 354-356.
    69. Menger F M, Littalu C A. Gemini surfactant: a new class of self-assembling molecules [J]. JAm Chem Soc, 1993, 115: 10083-10090.
    70. Pabon M, Corpent J M. Fluorinated surfactants: Synthesis, properties, effluent treatment [J]. Journal of Fluorine Chemistry, 2002, 114(2): 149-156.
    71. Chernik G G. Phase studies of surfactant-water system [J]. Current Opinion in Colloid and Interface Science, 1999, 4(6): 381-390.
    72.柴金岭,徐军,李干佐,等.烷基聚葡糖苷溶液的表面吸附平衡与动力学,高等学校化学学报[J],2002,23:1915-1920.
    73. Shigeyoshi Miyagishi, Kumiko Okada, Tsuyoshi Asakawa. Salt effect on critical micelle concentrations of nonionic surfactants, N-acyl-N-methyl glucamides(MeGA-n) [J]. Journal of Colloid and Interface Science, 2001, 238(1): 91-95.
    74. Dahanayake M D, Coben A W, Rosen M J. Relationship of structure to properties of surfactants. 13. Surface and Thermodynamic properties of some oxyethylenated sulfates and sulfonates [J]. J. Phys. Chem., 1986, 90: 2413-2418.
    75. Rosen M J.The relationship of structure to properties in surfactants IV. Effectiveness in surface or interfacial tension reduction [J]. J. Colloid Interface Sci., 1976, 56: 320-327.
    76.刘纲勇,王军.碳链长度对阴阳离子表面活性剂体系性质的影响[J],日用化学工业,2001,6:10-14.
    77. Rosen M J. The relationship of structure to propertyes in surfactants II. Efficiency in surface or interfacical tension reduction [J]. J. Am. Oil Chem. Soc., 1974, 51: 461-465.
    78. Oh S G , Shah D O .Relationship between micellar lifetime and foamability of sodium dodecyl sulfate and sodium dodecyl sulfate/1-hexanol mixtures [J]. Langmuir, 1991, 7: 1316-1318.
    79. Patel S S , Kumar K , Shah D O , Delfino J J .Effect of Surfactant Concentration and Film Area on the Stability of Films of Surfactant Solutions [J]. Journal of Colloid and Interface Science, 1996, 183: 603-606.
    80. Patist A., Huibers P D T , Deneka B , Shah D O .Effect of Tetraalkylammonium Chlorides on Foaming Properties of Sodium Dodecyl Sulfate Solutions [J]. Langmuir, 1998,14: 4471-4474.
    81. Patist A , Axelberd T , Shah D O .Effect of Long Chain Alcohols on Micellar Relaxation Time and Foaming Properties of Sodium Dodecyl Sulfate Solutions [J]. Journal of Colloid and Interface Science, 1998, 208: 259-265.
    82. Patist A , Oh S G , Leung R , Shah D O. Kinetics of micellization: its significance to technological processes [J].Colloid Surf. A, 2000, 176: 3-16.
    83. Patist A , Kanicky J R , Shukla P K , Shah D O. Importance of Micellar Kinetics in Relation to Technological Processes [J]. Journal of Colloid and Interface Science, 2002, 245: 1–15.
    84. Rosen M J. Surfactants and interfacial phenomena [M], Third edition, John Wiley & Sons, Hoboken, New Jersey, U.S.A. 2004, Chapter 7: 277-302.
    85.王增林,王其伟.强化泡沫驱油体系性能研究[J].石油大学学报(自然科学版).2004,28(3):49-51.
    86. Exerowa D, Kolarov T, Esipova NE, et al. Foam and Wetting Films from Aqueous Cetyltrimethylammonium Bromide Solutions: Electrostatic Stability [J]. Colloid Journal, 2001,63 (1):45-52.
    87.李作锋,谭惠民.表面活性剂混合体系的起泡性和泡沫稳定性[J].油气田地面工程,2003,22(4):13-14.
    88. R Cohen, D Exerowa, T Yamanaka. Interaction Forces in Foam Films Stabilized with Lysophosphatidylethanolamine in the Presence of Na+ and Ca2+ [J]. Langmuir, 1996,12:5419-5424.
    89.张雪勤,蔡怡,杨亚江.两性离子/阴离子表面活性剂复配体系协同作用的研究[J].胶体与聚合物,2002,20(3):1-4.
    90. Angarska J K , Tachev K D , Kralchevsky P A , Mehreteab A , Broze G ,Effects of Counterions and Co-ions on the Drainage and Stability of Liquid Films and Foams[J].Journal of Colloid and Interface Science. 1998,200:31-45.
    91.赵晓东,江琳,孟英峰,贾朝霞.钻井用耐盐抗高温发泡剂的制备和性能研究[J].西南石油学院学报,2001,23(4):46-48.
    92. Yun Peng Zhu, Araki Masuyama, Yusaku Kabata, Yohji Nakatsuji, Mitsuo Okahara, Rosen M J. Double-chain surfactants with two carboxylate groups and their relation to similar double-chain compounds [J]. J. Colloid Interface Sci., 1993, 158(1): 40-45.
    93. Rosen M J. Preparation and properties of glycerol-based double or triple-chain surfactants with two hydrophilic ionic groups [J]. J. Am. Oil Chem. Soc., 1993, 69 (7): 626-632.
    94. Rosen M J. Selection of surfactant pairs for optimization of interfacial properties [J]. J. Am. Oil Chem. Soc., 1989, 66(12): 1840-1843.
    95. Peltonen L, Hirvonen J, Yliruusi J. The behavior of sorbitan surfactants at the water-oil interface: straight-chained hydrocarbons from pentane to dodecane as an oil phase [J]. J. Colloid and Interface Sci., 2001, 240: 272-276.
    96.张军,管小军.分子结构与泡沫剂性能[J].山东建材,1998,2:8-10.
    97. Tamura T, Takeuchi Y, Kaneko Y. Influence of Surfactant Structure on the Drainage of Nonionic Surfactant Foam Films [J].Journal of Colloid and Interface Science, 1998,206: 112–121.
    98. Beneventi D, Carre B, Gandini A. Role of surfactant structure on surface and foaming properties [J]. Colloids and Surfaces A., 2001, 189: 65–73.
    99.赵晓东,孟英锋,冯林.茶皂素与脂肪醇复配体系的泡沫性能研究[J].日用化学工业,1999, 29(5):18-21.
    100. Martin A H , Grolle K , Bos M A , Cohen Stuart M A , Vliet Tvan.Network Forming Properties of Various Proteins Adsorbed at the Air/Water Interface in Relation to Foam Stability [J]. Journal of Colloid and Interface Science, 2002, 254: 175-183.
    101.葛虹,傅鹏立,王军,朱冬梅.脂肪醇聚氧乙烯-3-醚琥珀酸单酯磺酸盐泡沫性能研究[J].应用化工,2003, 32 (3):16-18.
    102. A Saint Jalmes, A Sonin, M Delsanti, et al. Disjoining Pressures and Ordering in Thin Liquid Films Containing Charged Diblock Copolymers Adsorbed at the Interfaces [J]. Langmuir, 2002, 18:2103-2110.
    103. Buhaenko M R, Goodwin J W, Richardson R M. Surface rheology of spread monolayers [J]. Thin Solid Films, 1988, 159: 171-189.
    104. Hak Ok Lee, Tsung-Shann Jiang, Kostas S Avramidis. Measurements of interfacial shear viscoelasticity with an oscillatory torsional viscometer [J]. J. Colloid Interface Sci., 1991, 146(1): 90-122.
    105. Graham D E, Philips M C. Proteins at liquid interfaces. IV. Dilatational properties [J]. J. Colloid Interface Sci., 1980, 76(1): 227-239.
    106. Miyano K, Abramham B M, Li T, Wasan D T. Longitudinal surface waves for the study of dynamic properties of surfactant systems: I. Instrumentation [J]. J. Colloid Interface Sci., 1983, 92(2): 297-302.
    107. Stenvot C, Langevin D. Study of viscoelasticity of soluble monolayers using analysis ofpropagation of excited capillary waves [J]. Langmuir, 1988, 4(5): 1179-1183.
    108. Cardenas-Valera A E, Bailey A I. The interfacial rheological behaviour of monolayers of PEO/PMMA graft copolymers spread at the air/water and oil/water interfaces [J]. Colloids Surf. A, 1993, 79(1): 115-127.
    109. Brent S Murry. Equilibrium and dynamic surface pressure-area measurements on protein films at air-water and oil-water interfaces [J]. Colloid Surf. A, 1997, 125(1): 73-83.
    110. Lucassen J, Tempel MVanDen. Longitudinal waves on visco-elastic surfaces [J]. J. Colloid Interface Sci. 1972, 41: 491-498.
    111. Kao R L, Edwards D A, Wasan D T, Chen E. Measurement of interfacial dilatational viscosity at high rates of interface expansion using the maximum bubble pressure method. I. Gas-liquid surface [J]. J. Colloid Interface Sci., 1992, 148(1): 247-256.
    112. Young-Ho Kim, Kalman Koczo, Wasan D T. Dynamic Film and Interfacial Tensions in Emulsion and Foam Systems [J]. J. Colloid Interface Sci., 1997, 187(1): 29-44.
    113. Thodoris D Karapantsios, Margaritis Kostoglou. Investigation of the oscillating bubble technique for the determination of interfacial dilatational properties [J]. Colloids Surf. A, 1999, 156: 49-64.
    114. Tommy Horozov, Luben Arnaudov. A Novel Fast Technique for measuring dynamic surface and interfacial tension of surfactant solutions at constant interfacial area [J]. J. Colloid Interface Sci., 1999, 219(1): 99-109.
    115. Voost Vader van F, Erkens Th F, van den Tempel M. Tran. Faraday Soc., 1964, 60: 1170-1175.
    116. Jacob Lucassen, Dennis Diles. J. Chem. Soc. Faraday Tran., 1975, 71(1): 217-232.
    117. Benjamins J, Cagna A, Lucassen-Reynders E H. Viscoelastic properties of triacylglycerol /water interfaces covered by proteins [J]. Colloids Surf. A, 1996, 114: 245-254.
    118. Bonfillon A, Langevin D. Electrostatic Model for the viscoelasticity of ionic surfactant monolayers [J]. Langnuir, 1994, 10(9): 2965-2971.
    119. Lucassen Reynders E H. Surface elasticity and viscosity in compression/dilation, in Anionic Surfactants, Lucassen-Reynders E H ed., New York and Basel, 1981.
    120.孙涛垒.界面扩张粘弹性测定仪的设计制作及其在实际体系中的应用[D].北京:中国科学院研究生院,2002.
    121.孙涛垒,张路,王宜阳,赵濉,俞稼镛.界面张力弛豫法研究不同分子量原油活性组分界面扩张粘弹性[J].高等学校化学学报,2003,24(12):2243-2247.
    122. Brent S Murry, Anne Ventura, Cendrine Lallemant. Dilatational rheology of protein+non-ionic surfactant films at air–water and oil–water interfaces [J]. Colloids Surf. A, 1998, 143: 211-219.
    123. Anil Bhardwaj, Stanley Harland. J. Dispersion Sci. Technol., 1998, 19(4): 456-473.
    124. Miller R, Kretzschmar G. Adsorption kinetics of surfactants at fluid interfaces [J]. Adv. Colloid Interface Sci., 1991, 37: 97-121.
    125. M van den Tempel, Lucassen Reynders E H. Relaxation processes at fluid interfaces [J]. Adv. Colloid Interface Sci., 1983, 18: 281-301.
    126. Jacob Lucassen. Faraday Discuss. Chem. Soc., 1975, 59: 76-87.
    127. Dushkin C D, Ivanov I B, Kralchevsky P A. The kinetics of the surface tension of micellar surfactant solutions [J]. Colloids Surf, 1991, 60, 235-237.
    128. Veer F A, M. van den Tempel. Surface tension relaxation in a surface containing surfactant particles [J]. J. Colloid Interface Sci., 1973, 42(2): 418-426.
    129. Yuan H Z, Tan X L, Cheng G Z, Zhao S, Zhang L, Mao S Z, An J Y, Yu J Y, Du Y R. Micellization of Sodium Decyl Naphthalene Sulfonate Studied by 1H NMR [J]. J. Phys. Chem. B., 2003, 107(15): 3644-3649.
    130. Bratt J P, Kevan L. Electron spin resonance line-shape analysis of x-doxylstearic acid spin probes in dihexadecyl phosphate vesicles and effects of cholesterol addition [J]. J. Phys. Chem., 1993, 97: 7371-7374.
    131. Li F, Li G Z, Wang H Q, Xue Q J. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 127: 89-96.
    132. Watkins D M, Klimash Y J W, Turro N J, Tomalia D A. Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies [J]. Langmuir. 1997, 13: 3136-3141.
    133. Doi M, Edwards F. Dynamics of rod-like macromolecules in concentrated solution, Part 2 [J]. J. Chem. Soc. Faraday Trans . 1978, 74: 918-932.
    134. Danino D, Talomn Y, Zana R. Aggregation and Microstructure in Aqueous Solutions of the Nonionic Surfactant C12E8 [J]. J. Colloid Interface Science, 1997, 186: 170.
    135. Moha Quchane M, Peyrelasse J, Boned C. Percolation transition in microemulsions: effect of water-surfactant ratio, temperature, and salinity [J]. Phys. Rev. A, 1987, 35: 3027-3032.
    136. Aliotta E, Migliardo P, Donato D I, Liveri V T. Microstructure and dynamics of water in oil microemulsions [J]. Ind. J. Chem., 1992, 31A: 630-632.
    137. Ekwall P, Setala K, Sjoblom L. Acta Chem. Scand., 1951, 5: 175.
    138. Ruiz C C, Aguiar J. Interaction, stabilly, and microenvironmental properties of mixed micelles of Triton X 100 and n-alkyltrimethylammonium bromides: influence of alkyl chain length [J]. Langmuir, 2000, 16: 7946-7953.
    139. Chattopadhyay A, Mukherjee S, Raghuraman H. Reverse micellar organization and dynamics: a wavelegth-selective fluorescence approach [J]. J. Phys. Chem. B, 2002, 106: 13002-13009.
    140. Huang J B, Zhao G X, Jiang Y C, Wu S K. Fluorescence probe study on the self-organized assemblies of mixed catanionic surfactants [J]. Acta.Phys. Chim. Sin., 1993, 9(5): 577-580.
    141. Thomas J. K. Radiation-Induced Reaction in Organized Assemblies [J]. Chem. Rev., 1980, 80(4): 283-299.
    142.李方,李干佐,郑立强,等.荧光探针研究阴离子表面活性剂胶束的物化性能[J].科学通报,1994,39(1):39-42.
    143. ZhaoYu, Li Pengfei, Li Zongshi, Qiao Weihong, Cheng Lvbo, Yang Jie. Structural effect on surface properties of alkylbenzenesulfonates having branched-chain [J]. Petroleum Sci. Technology, 2005, 9.
    144. Yang Jie, Qiao Weihong, Li Zongshi, Cheng Lvbo. Effect of branching in hexadecylbenzene sulfonate isomers on interfacial tension behavior in oil/alkali system [J]. Fuel, 2005, 84(12-13): 1607-1611.
    145.朱友益,沈平平,曲景奎,王国房.三次采油用烷基苯磺酸盐结构与性能的关系研究[J].石油勘探与开发,2004,31(B11):9-12.
    146.于涛,刘先军,丁伟,等.阴离子表面活性剂HLB值与结构关系的拓扑化学研究[J].日用化学工业,2004,34(6):341-343.
    147.史福强.表面活性剂分子设计-支链烷基苯磺酸钠表/界面性质的研究[D].北京:中国科学院研究生院,2005.
    148.王琳,张路,楚艳苹,赵濉,俞稼镛.多支链烷基苯磺酸钠水溶液的表面性质[J].物理化学学报,2004,20(12):1451-1454.
    149.宫清涛,姜小明,王琳,张路,赵濉,俞稼镛.三取代直链烷基苯磺酸钠的合成及其表面活性的研究[J].石油化工,2005,34(2):122-127.
    150.姜小明,张路,安静仪,赵濉,俞稼镛.多烷基苯磺酸钠水溶液的表面性质[J].物理化学学报,2005,21(12):1426-1430.
    151.黄玉萍,严峰,曹绪龙,等.2-羟基-3-辛基-5-长链烷基苯磺酸的合成及表面活性[J].精细化工,2007,24(2):185-189.
    152. Xianguang Wang, Feng Yan, Zhenquan Li, Lu Zhang, Sui Zhao, Jingyi An, Jiayong Yu. Synthesis and surface properties of several nonionic-anionic surfactants with straight chain alkyl-benzyl hydrophobic group [J]. Colloid and Surface, 2007, 302: 532-539.
    153. Nikas Y J, Puvvada S, Blankschtein D. Surface tensions of aqueous nonionic surfactant mixtures [J]. Langmuir, 1992, 8: 2680-2689.
    154. Mulqueen M. Blankschtein D. Prediction of equilibrium surface tension and surface adsorption of aqueous surfactant mixtures containing ionic surfactants [J]. Langmuir, 1999, 16: 8832-8848.
    155. Mulqueen M, Blankschtein D. Prediction of equilibrium surface tension and surface adsorption of aqueous surfactant mixtures containing zwitterionic surfactants [J]. Langmuir, 2000, 16: 7640-7654.
    156. Fainerman V B, Miller R, Aksenenko E V. Simple model for prediction of surface tension of mixed surfactant solutions [J]. Advances in Colloid and interface Science, 2002, 96: 339-359.
    1.沈平平,俞稼镛.大幅度提高石油采收率的基础研究[M].北京:中国石化出版社,2001.4-5.
    2.宋万超,李之平,俞稼镛.化学复合驱基础及进展[M].北京:中国石化出版社,2002.390-394.
    3.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.698-710.
    4.宋瑞国,梁成浩,张志军.驱油用表面活性剂体系的发展趋势及展望[J].化学工程帅,2006,134(11):37-39.
    5.沙鸥,张卫东,陈永福,等.烷基酚磺酸聚醚磺酸盐驱油剂的合成及表征[J].精细化工,2007,24(11):1069-1073.
    6.李立勇,周忠,崔正刚,等.脂肪醇聚氧乙烯醚磺酸盐耐温耐盐性研究[J].精细石油化工进展,2008,9(1):4-7.
    7. Yu Ping Huang, Lei Zhang, Lu Zhang, Lan Luo, Sui Zhao, Jia Yong Yu. Dynamic interfacial dilational properties of hydroxy-substituted alkyl benzene sulfonates [J]. J. Phys. Chem. B, 2007, 111(20): 5640-5647.
    8. Xianguang Wang, Feng Yan, Zhenquan Li, Lu Zhang, Sui Zhao, Jingyi An, Jiayong Yu. Synthesis and surface properties of several nonionic-anionic surfactants with straight chain alkyl-benzyl hydrophobic group [J]. Colloid and Surface, 2007, 302: 532-539.
    9. Feng Yan, Yu-Ping Huang, Xian-Guang Wang, Lu Zhang, Sui Zhao, Jia-Yong Yu. Adsorption and micellization properties of novel heterodouble chained n-acyltaurate surfactants [J]. Journal of Dispersion Science and Technology, Accepted, 2008, 29(5):670-67
    1.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    2. Dahanayake M , Cohen A W, Rosen M J. Relationship of structure to properties of surfactants. 13. Surface and thermodynamic properties of some oxyethylenated sulfates and sulfonates [J]. J. Phys. Chem., 1986, 90: 2413-2418.
    3. Boucher E S, Grinchuk T M, Zettlemoyer A C. Surface activity of sodium salts of alpha-sulfo fatty esters: the air-water interface [J].J. Am. Oil Chem. Soc., 1968, 45: 49-52.
    4.肖衍繁,李文斌.物理化学[M].天津:天津大学出版社, 1997,282-283.
    5. Peltonen L, Hirvonen J,Yliruusi J. The Behavior of sorbitan surfactants at the water–oilinterface: straight-chained hydrocarbons from pentane to dodecane as an oil phase [J]. J. Colloid and Interface Sci., 2001, 240: 272-276.
    6. Kijiro K N, Toshihiro J N, Ayao K. Critical aggregating or micellar concentration, and aggregate formation of nonionic surfactants in nonaqueous solutions [J]. J. Colloid Interface Sci., 1974, 49: 383-389.
    7.靳志强.双尾表面活性剂的合成及其超分子结构的研究[D].北京:中国科学院研究生院,2002.
    8.祝荣先. Guerbet醇聚氧乙烯醚乙酸钠的合成及性质研究[D].北京:中国科学院研究生院,2006.
    9. Xianguang Wang, Feng Yan, Zhenquan Li, Lu Zhang, Sui Zhao, Jingyi An, Jiayong Yu. Synthesis and surface properties of several nonionic-anionic surfactants with straight chain alkyl-benzyl hydrophobic group [J]. Colloid and Surface, 2007, 302: 532-539.
    10.宫清涛.多取代直链烷基苯磺酸钠的合成及其界面与体相性质的研究[D].北京:中国科学院研究生院,2005.
    11.王琳,张路,楚艳萍,赵濉,俞稼镛.多支链烷基苯磺酸钠水溶液的表面性质[J].物理化学学报,2004,20:1451-1454.
    12. Gōtte E, Schwuger M J. Theories and experiments on the mechanism of washing with primary alcohol sulfates[J]. Tenside, 1969,3: 131-135.
    13. Paquette R G, Lingafelter E C,Tartar H V. Studies of sulfonates. VII. Conductances and densities of sodium ethyl-, n-butyl-, n-octyl-, and n-dodecylbenzene-p-sulfonate solutions[J]. J. Am. Chem. Soc., 1943, 65: 686-692.
    14.赵国玺,朱德民.十二烷基聚氧乙烯醚硫酸钠的表面活性研究[J].日用化学工业,1996,3:1-3.
    15. W Binana-Limble, R Zaza , E. Platone. Micellar properties of ethoxylated sodium alkylcarboxylates [J]. J. Colloid Interface Sci. 1988, 124: 647-651.
    16. Nikas Y J,Puvvada S, Blankschtein D. Surface tensions of aqueous nonionic surfactant mixtures[J]. Langmuir, 1992, 8: 2680-2689.
    17. Mulqueen M, Blankschtein D. Prediction of equilibrium surface tension and surface adsorption of aqueous surfactant mixtures containing ionic surfactants [J]. Langmuir, 1999, 16: 8832-8848.
    18. Mulqueen M, Blankschtein D. Prediction of equilibrium surface tension and surface adsorption of aqueous surfactant mixtures containing zwitterionic surfactants[J]. Langmuir, 2000, 16: 7640-7654.
    19. Klevens H B. Critical micelle concentrations as determined by refraction[J]. J. Phys. Colloid Chem., 1948, 52: 130-148.
    20.王显光.阴-非离子型表面活性剂的合成与理化性能研究.北京:中国科学院研究生院, 2007.
    21. Rosen M J. Surfactants and interfacial phenomena, 3th ed., New York: John Wiley and Sons, 2004, 65.
    22.俞稼镛,宋万超,李之平,等.化学复合驱基础及进展[J].北京:中国石化出版社,2002.
    1.赵国玺,朱步瑶.表面活性剂作用原理[M],中国轻工业出版社,2003,87.
    2. Graham D E, Philips M C.Proteins at liquid interfaces. IV. Dilatational properties[J]. J. Colloid Interface Sci., 1980, 76(1): 227-239.
    3. Miyano K, Abramham B M, Ting L. Longitudinal surface waves for the study of dynamic properties of surfactant systems: I. Instrumentation[J]. J. Colloid Interface Sci., 1983, 92(2): 297-302.
    4. Stenvot C, Langevin D. Study of viscoelasticity of soluble monolayers using analysis of propagation of excited capillary waves[J]. Langmuir, 1988, 4: 1179-1183.
    5. Cardenas Valera A E, Bailey A I. The interfacial rheological behaviour of monolayers of PEO/PMMA graft copolymers spread at the air/water and oil/water interfaces[J]. Colloids Surf. A:, 1993, 79: 115-127.
    6. Murry Brent S.Equilibrium and dynamic surface pressure-area measurements on protein films at air-water and oil-water interfaces[J]. Colloid Surf. A, 1997, 125: 73-83.
    7. Kim Y H, Wasan D T, Breen P J. A study of dynamic interfacial mechanisms for demulsification of water-in-oil emulsions[J]. Colloid Surf. A. 1995, 95: 235-247.
    8. Kao R L, Edwards D A, Wasan D. Measurement of interfacial dilatational viscosity at high rates of interface expansion using the maximum bubble pressure method. I. Gas-liquid surface [J]. J. Colloid Interface Sci., 1992, 148(1): 247-256.
    9. Thodoris D, Karapantsios, Margaritis Kostoglou. Investigation of the oscillating bubble technique for the determination of interfacial dilatational properties[J]. Colloids Surf. A:, 1999, 156: 49-64.
    10. Wasan T. Dynamic Film and interfacial tensions in emulsion and foam systems [J]. J. Colloid Interface Sci., 1997, 187: 29-44.
    11. Horozov Tommy,Arnaudov Luben. A novel fast technique for measuring dynamic surface and interfacial tension of surfactant solutions at constant interfacial Area[J]. J. Colloid Interface Sci., 1999, 219: 99-109.
    12. Sun T L, Zhang L, Wang Y Y, Peng B, Zhao S, Li M Y, Yu J Y. Influence of demulsifiers of different structures on interfacial dilational properties of an oil–water interface containing surface-active fractions from crude oil [J]. J. Colloid Interface Sci., 2002, 255(2): 241-247.
    13.孙涛垒,彭勃,许志明,张路,赵濉,李明远,俞稼镛.原油活性组分油水界面膜扩张粘弹性研究[J].物理化学学报,2002,18(2):161-165.
    14. Sun T L, Zhang L, Wang Y Y, Peng B, Zhao S, Li M Y, Yu J Y. J. Dispersion Sci. Technol., 2003, 24(5): 699-707.
    15.王宜阳,张路,孙涛垒,方洪波,赵濉,俞稼镛.不同结构破乳剂油水界面扩张粘弹性研究[J].物理化学学报,2003,19:297-301.
    16.孙涛垒.界面扩张粘弹性测定仪的设计制作及其在实际体系中的应用[D].北京:中国科学院研究生院,2002.
    17.孙涛垒,张路,王宜阳,赵濉,俞稼镛.界面张力弛豫法研究不同分子量原油活性组分界面扩张粘弹性[J].高等学校化学学报,2003,24(12):2243-2247.
    18. Loglio G, Tesei U, Miller R, Cini R. Dilational viscoelasticity of fluid interfaces: The diffusion model for transient processes[J]. Colloids Surf. , 1991, 61: 219-226.
    19. Miller R, Loglio G, Tesei U, Schano K H. Surface relaxations as a tool for studying dynamic interfacial behaviour[J]. Adv. Colloid Interface Sci., 1991, 37: 73-96.
    20. Loglio G, Tesei U, Pandolfini P, Cini R. A software-driven apparatus designed for measuring geometrical and physical properties of a large bubble formed at a capillary tip[J]. ColloidsSurf. A, 1996, 114: 23-30.
    21. Tempel M. van den, Lucassen Reynders E H. Relaxation processes at fluid interfaces[J]. Adv. Colloid Interface Sci., 1983, 18: 281-301.
    1.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003:535-560.
    2. Robert K, Prud’homme, Saad A K. Foams: theory, measurements, and applications [M]. New York: Marcel Dekker Inc, 1995.
    3. Rosen M J. Surfactant and interfacial phenomena [M]. Third edition, New Jersery: John Wiley & Sons, Hoboken, 2004, Chapter7: 277-302.
    4. Resanov A I, Krotov V V, Nekrasov A G. Extremes of some foam properties and elasticity of thin foam films near the critical micelle concentration [J]. Langmuir, 2004, 20: 1511-1516.
    5.王增林,王其伟.强化泡沫驱油体系性能研究[M].石油大学学报(自然科学版),2004,8(3):49-51.
    6. Exerowa D,Kruglyakov P M. Foam and Foam films, Amsterdam, Elsevier, 1998.
    7. Exerowa D, Kolarov T, Esipova N E. Foam and wetting films from aqueous cetyltrimethylammonium bromide solutions: electrostatic stability [J]. Colloid Journal, 2001, 63(1): 45-52.
    8. Exerowa D, Churaev N V, Kolarov T. Foam and wetting films: electrostatic and steric stabilization [J]. Adv. Colloid and Interface Sci., 2003, 104: 1-24.
    9.李作峰,谭惠民.表面活性剂混合体系的起泡性和泡沫稳定性[J].油气地面工程,2003,22(4):13-14.
    10. Ne meth Z, Ra cz G, Koczo K. Foam control by silicone polyethers-mechanisms of cloud point antifoaming[J]. J. Colloid Interface Sci., 1998, 207: 386-394.
    11. Nikolov A D, Wasan D T. Ordered micelle structuring in thin films formed from anionic surfactant solutions: I. Experimental[J]. Journal of Colloid Interface Sci. 1989, 133: 1-12.
    12. Krichevsky P A, Nikolov A D, Wasan D T. Formation and expansion of dark spots in stratifying foam films[J]. Langmuir, 1990, 6: 1180-1189.
    13. Sethumadhavan G N, Nikolov A D, Wasan D T. Stability of liquid films containing monodisperse colloidal particles[J]. J. Colloid Interface Sci., 2001, 240: 105-112.
    14. Sethumadhavan G N, Nikolov A D,Wasan D T. Film stratification in the presence of colloidal particles[J]. Langmuir, 2001, 17: 2059-2062.
    15. Pendey S, Bagwe R P, Shah D O. Effect of counterions on surface and foaming properties of dodecyl sulfate [J]. J. Colloid Interface Sci., 2003, 267: 160-166.
    16. Kumar K, Nikolov A D, Wasan D T. Effect of film curvature on drainage of thin liquid films[J]. J. Colloid Interface Sci., 2002, 256: 194-200.
    17. Lunkenheimer K, Malysa K. Simple and generally applicable method of determination and evaluation of foam properties[J]. J. Surf. Detg., 2003, 6(1): 69-74.
    18. Adamson A W. Physical Chemistry of Surface[M], 4th ed., Wiley-Interscience, New York, 1982
    19. Angarska J.K., Tachev K.D., Kralchevsky P.A., Mehreteab A., Broze G.,Effects of Counterions and Co-ions on the Drainage and Stability of Liquid Films and Foams,Journal of Colloid and Interface Science. 1998,200:31-45
    20.赵晓东,江琳,孟英峰,贾朝霞.钻井用耐盐抗高温发泡剂的制备和性能研究[J].西南石油学院学报,2001,23(4):46-48.
    1. Ekwall P, Setala K, Sjoblom L. Further investigations on the solubilization of carcinogenic hydrocarbons by association colloids[J]. Acta Chem., Scand, 1951, 5: 175.
    2. Dong D C, Winnik M A. The Py scale of solvent polarities: solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with ET and Y values[J].Photochem. Photobiol., 1982, 35: 17-21.
    3. Chaudhuri R,Guharay J,Sengupta P K. Fluorescence polarization anisotropy as a novel tool for the determination of critical micellar concentrations[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 101: 241-244.
    4. Watkins D M,Sayed-Sweet Y, Klimash J W. Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies[J]. Langmuir, 1997, 13: 3136-3141.
    5.高莹,郑用熙.表面活性剂双水相的性质与应用1:表面活性剂双水相的微环境性质[J].化学学报,1996,54:491-496.
    6. Weber G Annu. Uses of fluorescence in biophysics: some recent developments[J]. Rev. Biophys. Bioeng, 1972, 1: 553-570.
    7. Chem R,Edelhoch H. Biochemical Fluorescence[M], Marcel Dekker, New York, 1975.
    8. Dorrance R. C,Hunter T J. Chem. Soc., Faraday Trans. 1, 1974, 70, 1572.
    9. Turro N J, Yekta A. Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles[J]. J. Am. Chem. Soc., 1978, 100, 5951.
    10. Konglin P, Miller D, Steinwandel J. Determination of micelle aggregation numbers by energy transfer[J]. J. Phys. Chem., 1981, 85: 2363.
    11. Tan Xiao-Li, Zhang Lu, Zhao Sui. Aggregation of sodium 1-(n-Alkyl) naphthalene-4-sulfonates in Aqueous Solution: Micellization and Microenvironment Characteristics[J]. Langumuir, 2004, 20: 7010-7014.
    12.王琳,王东贤,宫清涛.稳态荧光探针研究支链烷基-苯磺酸钠的聚集行为[J].感光科学与光化学, 2004,22(1):20-27.
    13. Aoudia M, Wade W H, Rodgers M A. J. Cholesteryl-pullulan and cholesteryl-amylopectin interactions with egg phosphatidylcholine monolayers [J]. J. Colloid Interface Sci., 1991, 145: 493-501.
    14. Goon P,Manohar C, Kumar V V. Determination of critical micelle concentration of anionic surfactants: comparison of internal and external fluorescent probes [J]. J. Colloid Interface Sci., 1997, 189: 177-180.
    15.毕只初.自身荧光猝灭法研究十二烷基-苯磺酸钠水溶液的聚集性质[J].油田化学,1988,5(3):222.
    16.刘金彦,赵剑曦,杨连枝.自发射荧光猝灭测定Gemini阴离子表面活性剂胶团聚集数[J].光谱学与光谱分析,2006,26(4):682-685.
    17.程发,郑宝江,朱森,等.稳态荧光法测定Gemini水溶液聚集性质[J].化学工业与工程,2004, 21(4):293-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700