用户名: 密码: 验证码:
粘质沙雷氏菌发酵生产2,3-丁二醇及其代谢调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2,3-丁二醇(2,3-butanediol, BD)是一种重要的生物基化学品,广泛用于化工、食品、航空航天燃料等领域,可用来制备聚合物、油墨、香水、熏蒸剂、增湿剂、软化剂、增塑剂、药物手性载体等。本论文以粘质沙雷氏菌H30(Serratia marcescens H30)为出发菌株,通过传统的发酵调控方法结合现代代谢工程手段对生物法制备2,3-丁二醇开展了以下研究工作:
     1.发酵条件和发酵培养基的优化
     通过摇瓶实验,确定了粘质沙雷氏菌H30生长及2,3-丁二醇合成的最佳培养条件和最优发酵培养基组成。最佳培养条件为:初始pH值为7.0,过程pH值控制为6.0,培养温度为30℃,接种量为5%,250mL三角瓶最适装液量为50mL。在此基础上通过单因素实验、Plackett-Burman Design实验和Response Surface Methodology实验对粘质沙雷氏菌H30的发酵培养基组分进行了优化,获得了培养基的最优配方为:蔗糖90g/L,安琪酵母粉33.36g/L,柠檬酸钠10g/L,乙酸钠4g/L,硫酸锰0.1g/L,硫酸镁0.3g/L,磷酸二氢铵1g/L。2,3-丁二醇摇瓶发酵水平由15.93g/L提高到44.70g/L,发酵时间由48h缩短至15h。此外,在摇瓶中进行补料实验,发现维持残糖浓度在15-30g/L有利于2,3-丁二醇的合成。
     2.3.7L发酵罐实验及各类发酵罐逐级放大实验
     在发酵罐实验中,我们首先在3.7L发酵罐进行了细致的研究,通过比较几种不同的补料及调控策略:脉冲补料发酵、恒速补料发酵、恒底物浓度-RQ(呼吸熵)调控发酵和pH自控-恒底物浓度-RQ调控发酵,获得了2,3-丁二醇的产量分别为115.5g/L,117.14g/L,139.92g/L和130.65g/L。最终确立了恒底物浓度-RQ调控发酵策略,粘质沙雷氏菌细胞干重达16.05g/L,2,3-丁二醇的生产能力达到3.34g/L·h,产物得率为94.67%。在该发酵调控策略的基础上,我们在50L-5000L的发酵罐中进行了逐级放大,产量均超过130g/L,在5000L发酵罐中2,3-丁二醇的产量为130.2g/L。
     3.粘质沙雷氏菌生物表面活性剂缺失工程菌的构建
     粘质沙雷氏菌H30因合成生物表面活性剂导致发酵过程中产生大量泡沫,泡沫的产生势必需要加入大量的泡敌,否则将引起逃液、微生物污染和发酵过程无法控制等后果,然而,泡敌的大量加入又将导致发酵液的乳化和菌体活力的下降。为此,我们从粘质沙雷氏菌H30中钓取了编码生物表面活性剂合成酶的基因swrw,并对该基因进行了插入突变。生物表面活性剂基因的突变菌经摇瓶实验验证表明该基因的突变并不会影响2,3-丁二醇的合成,在3.7L发酵罐中对该突变菌进行了补料发酵实验,发酵57h,2,3-丁二醇最高产量可达152g/L。
     4.2.3-丁二醇合成途径相关基因的鉴定
     基于已测序的三株沙雷氏菌基因组数据,进行序列比对分析和引物设计,成功克隆了粘质沙雷氏菌H30中α-乙酰乳酸脱羧酶基因(budA)、α-乙酰乳酸合成酶基因(budB)和2,3-丁二醇脱氢酶基因(budC),结果表明budA基因、budB基因和一LysR型调控因子budR组成一操纵子,而budC基因独立于操纵子存在于基因组的其它位置,文献检索表明这些基因为首次克隆。利用生物信息学软件对2,3-丁二醇代谢途径中的三个基因(budA、budB和budC)进行分析,结果表明三个基因的开放阅读框长度分别为780bp、1686bp和756bp,分别编码259、561和251个氨基酸。利用在线蛋白分析软件计算可知,三个基因编码的蛋白分子量分别为28.96kD(budA)、60.70kD(budB)和27.43kD (budC),等电点分别为5.48、5.88和5.51,三个基因编码的蛋白均为酸性蛋白。同时利用pET28a载体表达体系,表达分析了这三个基因,所得蛋白的分子量大小与预测的分子量基本一致。
     5.2,3-丁二醇合成的调控机制
     为了确认LysR型转录调控因子budR的功能,对budR进行了插入突变。结果表明budR突变后无法合成2,3-丁二醇的前体物质乙偶姻,进而导致2,3-丁二醇无法形成,说明budR调控乙偶姻的合成。检测budR突变菌中2,3-丁二醇脱氢酶的活性依旧存在,说明粘质沙雷氏菌H30中2,3-丁二醇脱氢酶独立存在于基因组其他位置,不受budR的调控。针对发酵过程pH、溶氧和副产物有机酸对2,3-丁二醇的合成具有重要影响,我们构建了启动子:lacZ融合报告载体pPbud-lacZ,利用报告基因lacZ的表达水平分别考察了pH、溶氧和副产物有机酸对启动子转录水平的影响,结果表明pH对于启动子的转录水平影响不大,而溶氧和副产物有机酸对启动子转录水平具有重大影响,溶氧越低启动子转录水平越高,乙酸、乳酸、琥珀酸和柠檬酸均能在一定程度上促进启动子的转录,其中乙酸的效果最为明显。
     6.2,3-丁二醇高效重组菌的构建
     针对发酵前期乙偶姻积累量较高,我们构建了能够在粘质沙雷氏菌H30中组成表达2,3-丁二醇脱氢酶的载体pPbud-BDH,含有该载体的粘质沙雷氏菌H30经摇瓶实验表明2,3-丁二醇脱氢酶的过表达有利于降低发酵前期乙偶姻的积累,同时可以加速耗糖。将该工程菌在3.7L发酵罐中进行补料发酵实验,在42h 2,3-丁二醇的浓度可达151g/L,生产能力为3.59g/L·h,产物得率为94.97%。
2,3-butanediol is an important biobased bulk chemical due to its extensive industrial application. It has been shown to have potential applications in the manufacture of printing inks, perfumes, fumigants, moistening and softening agents, explosives and plasticizers, and as a carrier for pharmaceuticals. In this current thesis,2,3-butanediol production by Serratia marcescens H30 was studied by using traditional fermentation regulatory methods and modern metabolic engineering technique. The detailed work was introduced as following:
     1. Optimization of fermentative conditions and medium compositions
     The optimization of flask fermentation conditions and cultural medium compositions for 2,3-butanediol production by Serratia marcescens H30 was investigated. The results showed that the optimal fermentation conditions included initial pH of 7.0, process controlled to pH 6.0, cultivation at 30℃, inoculum size of 5%(v/v) and 50mL medium in 250mL flask. On the basis of the above fermentation conditions, the concentrations of medium components were optimized in shake flask fermentations by using single factor experiment, Plackett-Burman design and Response Surface methodology. And the optimal medium (g/L) (sucrose 90; yeast extract 33.36; sodium citrate 10; sodium acetate 4; MnSO4 0.1; MgSO4 0.3; NH4H2PO4 3) was obtained. It could improve 2,3-butanediol production from 15.93 g/L to 44.7g/L and shorten fermentation period from 48h to 15h. Fed-batch experiments in flask showed residual sucrose concentration of 15-30g/L favored 2,3-butanediol production.
     2. The experiments in 3.7L bioreactor and scale up in 50L-5000L bioreactors
     The fermentation experiments were firstly carried out in 3.7L bioreactor. Several feeding and regulatory strategies, including pulse fed batch, constant feed rate fed batch, constant residual sucrose concentration fed batch with respiratory quotient (RQ) control and pH self-control with constant residual sucrose concentration fed batch and RQ control, were compared for improving the production of 2,3-butanediol. The obtained 2,3-butanediol concentrations were 115.5g/L,117.14g/L,139.92g/L and 130.65g/L, respectively. Ultimately, a suitable control strategy which combined the RQ control with the constant residual sucrose concentration fed batch was developed. Using this strategy, the DCW (Dry Cell Weight) of 16.05g/L with the 2,3-butanediol productivity of 3.34g/L-h and the yield of 94.67%was obtained. Then we performed fermentation scale up experiments in 50L-5000L bioreactors using the above strategy. The 2,3-butanediol concentrations obtained in 50L-5000L bioreactors were over 130g/L, and in 5000L bioreactor the 2,3-butanediol concentrations of 130.2g/L was achieved.
     3. Construction of the swrw mutant encoding a biosurfactant synthase in S. marcescens H30
     Biosurfactant synthesis by S. marcescens H30 during the fermentation process for 2,3-butanediol producton results in a lot foam formation, which is harmful to the fermentation process due to microbial pollution. In addition, excessive anti-foam agent added would influence the microbial activity and emulsify fermentation broth. So we amplified and cloned the swrw gene encoding the biosurfactant synthase in S. marcescens H30. A swrw mutant by mutagenesis with the suicide vector was constructed successfully. The flask experiment results of the swrw mutant on the basis of optimized medium showed that the swrw inactivation had no effect on the growth and 2,3-butanediol production. In 3.7L bioreactor, the swrw mutant was performed fermentation experiments using constant residual sucrose concentration fed batch-RQ control strategy. The maximum 2,3-butanediol concentration of 152g/L was obtained at 57h.
     4. Cloning, characterization and expression of the genes involved in 2,3-butanediol pathway from S. marcescens H30
     Based on the genome sequence of Serratia genus, we successfully cloned the genes involved in 2,3-butanediol pathway from S. marcescens H30. The sequencing result showed the budA, budB and budR genes, encoded a-acetolactate decarboxylase (a-ALDC), a-acetolactate synthase (a-ALS) and a LysR type regulatory factor, located in one operon designated acetoin operon. While the budC gene encoded 2,3-butanediol dehydrogenase (acetoin reductase) exsited in another position of the genome. Search of the knowledge database comfirmed that this was the first report of the genes involved in 2,3-butanediol pathway from S. marcescens H30. Bioinformatics analysis showed that the strengths of the budA, budB and budC genes were 780bp,1686bp and 756bp respectively, and encoded proteins of 259,561 and 251 residues. Their molecular weights and isoelectric points were 28.96kD and 5.48,60.7kD and 5.88,27.43kD and 5.51. They were acidic proteins judged from the calculated pI values. Expression products of the genes with pET28a system exhibited comparable molecular weights using SDS-PAGE analysis.
     5. Regulatory mechanism of 2,3-butanediol biosynthesis by S. marcescens H30
     To identify the function of budR, a budR mutant by mutagensis with the suicide vector was constructed successfully. The fermentation experiments showed that the budR gene regulated the precursor (acetoin) biosynthesis of 2,3-butanediol as a positive regulatory factor. While assay of 2,3-butanediol dehydrogenase from the budR mutant showed that the budC gene encoding 2,3-butanediol dehydrogenase from S. marcescens H30 remained its catalytic activity. The results indicated that the transcription and expression of the budC gene was not regulated by the budR gene.
     A lacZ reporter vector pPbud-lacZ fusing the promoter of the acetoin operon and the lacZ gene from PSV-beta-gal was constructed and used to analyze the effects of pH, dissolve oxygen and organic acid on the transcriptional level of the promoter. The results showed that pH had little effect on the transcriptional level of the promoter, while dissolve oxygen and organic acid had significant effect on the transcriptional level of the promoter. The expression of the lacZ gene was raised with the dissolve oxygen lowering. For organic acids, acetic acid, lactic acid, succinic acid and citric acid could increase partially the expression of the lacZ gene, it seemed acetic aicd was the best additive of the fermentation medium.
     6. Construction of engineering strain for 2,3-butanediol production
     In order to decrease the accumulation of acetoin in the fermentation process for 2,3-production by S. marcescens H30, a constitutive expression vector pPbud-BDH was constructed for over-expression of 2,3-butanediol dehydrogenase (BDH) from Klebsiella pneumoniae in S. marcescens H30. Flask experiments using the engineering strain showed that over-expression of BDH in S. marcescens H30 could lower acetoin accumulation and accelerate the sucrose consumption. In 3.7L bioreactor, the engineering strain was performed fermentation experiments using constant residual sucrose concentration fed batch-RQ control strategy. The maximum 2,3-butanediol concentration of 151g/L was obtained at 42h with the 2,3-butanediol productivity of 3.59g/L-h and the yield of 94.97%.
引文
[1]Ledingham, G.A., Neish, A.C. Industrial Fermentation, vol.2. In:Underkofler, L.A., Hichey, R.J.(Eds), Chemical Publishing. New York.1954,2:27-93
    [2]Perego P., Converti A. Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresource Technol. 2003,89:125-131
    [3]Neish, A.C. and Lendingham G.A. Production and properties of 2,3-butanediol. ⅩⅩⅫ. Fermentations at poised hydrogen ion concentrations. Can J Res.1949,23B:694-704
    [4]Magge, R.J., Kosaric, N. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol.1987,32:89-161
    [5]Syu, M.J. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol.2001, 55:10-18
    [6]Wanyne, W.V. Advances in applied microbiology.1963.
    [7]Matteson, D.S., et al. Asymmetric synthesis with boronic esters. J Organmet Chem.1985, 281,15-23
    [8]北京化学试剂公司编.化学试剂目录手册.北京工业大学出版社.1993,586
    [9]朱青芳.甲乙酮的合成方法及生产消费情况.医药化工.2007,3:33-37
    [10]司航.化工产品-有机化工原料.北京:化学工业出版社.1999
    [11]程能林.溶剂手册.北京:化学工业出版社.1994
    [12]王迪,王凡强,王建华.发酵法生产2,3-丁二醇.精细与专用化学品.2000,7:20-21
    [13]Long, S.K., Patrick, R. The present statue of the 2,3-butylene glycol fermentation. Adv Appl Microbiol.1963,5:135-155
    [14]Alam, S., et al. Kinetics of 2,3-butanediol fermentation by Bacillus amyloliquefaciens: Effect of initial substrate concentration and aeration. J Chem Tech Biotechnol.1990, 47:71-84
    [15]Perlman, P., et al. Polyurethane-maleamides for cardiovascular applications:synthesis and properties. J Mater Sci-Mater Med.1999,10:711-714
    [16]李卫凡等.聚氨酯的研究进展.江西化工.2007,3:46-48
    [17]Yang, C.H. Mixture design approach to PEG-PGG-PTMG ternary polyol-based waterborne polyurethanes, Ind Eng Chem Res.1997,36:1614-1621
    [18]陕西省化工研究院编,聚氨酯弹性体手册.化学工业出版社,2001
    [19]李绍雄,刘益军.聚氨酯树脂及其应用.化学工业出版社,2002
    [20]李俊贤.塑料工业手册—聚氨酯.化学工业出版社,1999
    [21]Garg, S.K., Jain, A. Fermentative production of 2,3-butanediol:A review. Bioresource Technol.1995,51:103-109
    [22]Yu, E.K.C., et al. Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid hydrolysed wood hemicelluslose. Biotechnol Lett.1982,4:741-746
    [23]Flickinger, M.C. Current biological research in conversion of cellulosic carbohydrates into liquid fuels:how far have we come? Biotechnol Bioeng.1980,22:27-48
    [24]张小舟,曾崇余等.乙偶姻合成工艺.南京化工大学学报.2001,23(4):54-57
    [25]张小舟,曾崇余等.乙偶姻合成研究现状及展望.江苏化工.2001,29(2):29-31
    [26]Bartowsky, E.J., Henschke, P.A. The'buttery'attritute of wine-diacetly-desirability, spoilage and beyond. Int J Food Microbiol.2004,96:235-252
    [27]Xiu, Z.L., Zeng, A.P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol. 2008,78:917-926
    [28]Celinska, E., Grajek, W. Biotechnological production of 2,3-butanediol-current state and prospects. Biotechnol Adv.2009,27(6):715-725
    [29]纪晓俊等.微生物发酵生产2,3-丁二醇的研究进展.现代化工,2006,26(8):23-27
    [30]Haren, A., Walpole, G.S.2,3-butanediol fermentation by Aerobacter aerogenes. Proc Royal Soc B.1906,77:399-405
    [31]Saddler, J.N., et al. Utilization of enzymatically hydrolyzed wood hemicelluloses by microorganisms for production of liquid fuels. Appl. Environ Microbiol.1983, 45:153-160
    [32]Barret, E.L., et al. Production of 2,3-butylene glycol from whey by Klebsiella pneumoniae and Enterobacter aerogenes. J Diary Sci.1983,66(12):2507-2514
    [33]Yu, E.K.C., Saddler, J.N. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown at high sugar concentrations in the presence of acetic acid. Appl. Environ Microbiol.1982,44(4):777-784
    [34]Jansen, N.B., Flickinger, M.C., Tsao, G.T. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC8724. Biotechnol Bioeng.1984a,26:362-369
    [35]Jansen. N.B., Flickinger, M.C., Tsao, G.T. Application of bioenergetics to modeling the microbial conversion of D-xylose to 2,3-butanediol. Biotechnol Bioeng.1984b, 26(6):573-582
    [36]Fages, J., et al.2,3-butanediol production from Jerusealem artichoke, Helianthus tuberosus, by Bacillus polymyxa ATCC 12321. Optimzation of KLa profile. Appl. Microbiol Biotechnol.1986,25:197-202
    [37]De Mas, C., et al. Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotech Bioeng.1987,31:366-377
    [38]Goel, A., et al. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotech Bioeng.1993,42:686-696
    [39]Dettwiler, B., Dunn, I.J., Heinzle, E. A simulation model for the continuous production of acetoin and butanediol using Bacillus subtilis with integrated pervaporation separation. Biotech Bioeng.1993,41(8):791-800
    [40]Sablayrolles, J.M., Goma, G Butanediol production by Aerbacter aerogenes NRRB199: Effect of initial substrate concentration and aeration agitation. Biotech Bioeng.1984, 26:148-155
    [41]HohnBentz, H., Radler, F. Bacterial 2,3-butanediol dehydrogenases. Arch Microbiol. 1978,116:197-203
    [42]Malthe Sorenssen, D., Stormer, F.C. The pH6 acetolactate-forming enzyme from Serratia marcescens. Purification and properties. Eur J Biochem.1970,14(1):127-132
    [43]Hespell, R.B. Corn fiber or sugars to acetoin and butanediol by Bacillus polymyxa strain. Curr. Microbiol.1996,32:291-296
    [44]Johansen, L., Bryn, K. and stormer, F.C. Physiological and biochemical role of the butanediol pathway in Aerobacter aerogenes. J Bacteriol.1975,123:1124-1130
    [45]Stormer, F.C. Isolation of crystalline pH 6 acetolactate-forming enzyme from Aerobacter aerogenes. J Biol Chem.1967,242:1756-1759
    [46]Stormer, F.C. The pH6 acetolactate-forming enzyme from Aerobacter aerogenes. J Biol Chem.1968a,243:3735-3739
    [47]Stormer, F.C. Evidence for induction of the 2,3-butanediol-forming enzymes in Aerobacter aerogenes. FEBS Lett.1968b,2:36-38
    [48]Holtzclaw, W.D., Chapman, L.F. Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol.1975,121:917-922
    [49]Joo, H.S., Kim, S.S. Purification and characterization of the catabolic alpha-acetolactate synthase from Serratia marcescens. J Biochem Mol Biol.1998,31:37-43
    [50]Loken, J.P., Stormer, F.C. Acetolactate decarboxylase from Aerobacter aerogenes: Purification and Properties. Eur J Biochem.1970,14:133-137
    [51]Rostgaard Jensen, B., Svendsen, I., Ottesen, M. Isolation and charaterization of an alpha-acetolactate decarboxylase useful for accelerated beer maturation. Proc Congr Eur Brew Conv.1987,21:393-400
    [52]Taylor, M.B., Juni, E. Stereoisomeric specifities of 2,3-butanediol dehydrogenase. Biochim Biophys Acta.1960,39:448-457
    [53]Juni, E. and Heym, GA. A cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetymethylcarbibol, and diacetyl. I. General aspects of the 2,3-butanediol cycle. J Bacteriol.1956,71:425-432
    [54]Ui, S., et al. Acetylacetoin synthase as a marker enzyme for detecting the 2,3-butanediol cycle. J Biosci Bioeng.2002,93:248-251
    [55]Ermelinda Eusebio, M., et al.Enthalpy of vaporization of butanediol isomers. J Chem Thermodyn.2003,35:123-129
    [56]Ui, S., Masuda, H., Muraki, H. Laboratory-scale production of 2,3-butanediol isomers (D(-), L(+), and meso) by bacterial fermentations. J Ferm Technol.1983,61:253-259
    [57]Stanier, R.Y., Fratkin, S.B. Studies on bacterial oxidation of the 2,3-butanediol and related compounds. Can J Res Sect.1944, B22:140-153
    [58]Neish, A.C. Production and properties of 2,3-butanediol. IV. Purity of the levorotatory 2,3-butanediol produced by Aerobacillus polymyxa. Can J Res Sect.1945, B23:10-16
    [59]Yan, Y.J., Lee, C.C., Liao, C. Enantioselective synthesis of (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenase. Org Biomol Chem.2009,7:3914-3917
    [60]Ui, S., et al. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J Ferm Bioeng.1997,84:185-189
    [61]Voloch, M.M., et al. Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae:a new model. Biotechnol Bioeng.1983,25:173-183
    [62]Ui, S., et al. Mechanism for the formation of 2,3-butanediol stereoisomers in Klebsiella pneumoniae. J Ferment Technol.1984,62:551-559
    [63]Ui, S., et al. Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa. J Ferment Technol.1986,64:481-486
    [64]Ui, S., et al. Discovery of a new mechanism of 2,3-butanediol stereoisomers formation in Bacillus cereus YUF-4. J Ferment Bioeng.1998,85:79-83
    [65]Zeng, A.P., et al. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol Bioeng.1994,44:1107-1114
    [66]Silveira, M.M., et al. Production of 2,3-butanediol from sucrose by Klebsiella pneumoniae NRRL B199 in batch and fed-batch reactors. Braz Arch Biol Techn.1998, 41:329-334
    [67]Qin, J.Y., et al. Production of 2,3-butanediol by Klebsiella pneumoniae using glucose and ammonium phosphate. Chinese J Chem Eng.2006,14(1):132-136
    [68]Ma, C.Q., et al. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol.2009,82:49-57
    [69]Lee, H.K., Maddox, I.S. Microbial production of 2,3-butanediol from whey permeate. Biotechnol Lett.1984,6:815-818
    [70]Yu, E.K.C., Chan, M.K.H., Saddler, J.N. Butanediol production from lignocellulosic substrates by Klebsiella pneumoniae grown in sequential coculture with Clostridium thermocellum. Appl Microbiol Biotechnol.1985,22(6):399-404
    [71]Cao, N., et al. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulas. Appl Biotechnol.1997,65:129-139
    [72]Sun, L.H., Wang, X.D., Dai, J.Y., Xiu, Z.L. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol.2009, 82:847-852
    [73]冯燕青,夏黎明.Klebsiella oxytoca发酵木糖生产2,3-丁二醇的研究.林产化学与工业.2009,29(1):103-106
    [74]Ji, X.J., et al. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresource Technol.2009,5214-5218
    [75]Petrov, K., Petrova, P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol.2009,84:659-665
    [76]Nllegaonkar, S., et al. Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J Microbiol Biotechnol.1992,8:378-381
    [77]Laube, V.M., Groleau, D., Martin, S.M.2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa. Biotechnol Lett.1984a,6:257-262
    [78]Laube, V.M., Groleau, D. Martin, S.M. The effect of yeast extracts on the fermentation of glucose to 2,3-butanediol by Bacillus polymyxa. Biotechnol Lett.1984b,6:535-540
    [79]Mrphy, D., Stranks, D.W. The production of 2,3-butanediol from sulphite waste liquor. Can J Techol.1951,29:413-420
    [80]Nakashimada, Y., et al. Enhanced 2,3-butanediol production by addition of acetic acid on Paenibacillus polymyxa. J Biosci Bioeng.2000,90:661-664
    [81]Yu, E.K., Saddler, J.N. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbiol.1982a,44:777-784
    [82]Bryn, K., Ulstrup, J.C., Stormer, F.C. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and its possible practical application in rapid Voges Proskauer Test. Appl Microbiol.1973,25:511-512
    [83]Larsen, S.H., Stromer, F.C. Diacetyl (acetoin) reductase from Aerobacter aerogenes. Kinetic mechanism and regulation by acetate of the reversible reduction of acetoin to 2,3-butanediol. Eur J Biochem.1973,34:100-106
    [84]Reynolds, H., Werkman, C.H. The intermediate dissimilation of glucose by Aerobacter indologenes. J Bacteriol.1937,33:603-614
    [85]Mickelson, M.N., Werkman, C.H. Influence of pH on the dissimilation of glucose by Aerobacter indologenes. J Bacteriol.1938,36:67-76
    [86]Perlman, D. Production of 2,3-butylene glycol from wood hydrolysates. Ind Eng Chem. 1944,36:803-804
    [87]Biebl, H., Zeng, A.P., Menzel, K., Deckwer, W.D. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol.1998,50:24-29
    [88]Converti, A., Perego, P. Use of carbon and energy balances in the study of the anaerobic metabolism of Enterobacter aerogenes at variable starting glucose concentrations. Appl Microbiol Biotechnol.2002,59:303-309
    [89]Perego, P., et al.2,3-butanediol production by Enterobacter aerogenes:selection of the optimal conditions and application to food industry residues. Bioprocess Eng.2000, 23:613-620
    [90]Grover, B.P., Garg, S.K., Verma, J. Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J Microbiol Biotechnol.1990,6:328-332
    [91]Raspoet, D., et al. Differentiation between 2,3-butanediol producing Bacillus licheniformis and Bacillus polymyxa strains by fermentation product profiles and whole-cell protein electrophoretic patterns. Syst Appl Microbiol.1991,14:1-7
    [92]Tsao, GT. Conversion of biomass from agriculture into useful products. Final Report. 1978, USDDE, Contract No. EG-77-S-02-4298
    [93]Voloch, M., Jansen, N.B., Ladish, M.R., Tsao, G.T., Narayan, R., Rodwell, V.W.. 2,3-butanediol. In:Blanch, H.W., Drew, S, Wang, D.I.C., editors. Comprehensive biotechnology; the principles, applications and regulatins of biotechnology in industry, agriculture and medicine. Oxford:Pergamon/Elsevier.1985. P.933-944
    [94]Menzel, K., Zeng, A.P., Deckwer, W.D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol.1997,20:82-86
    [95]Converti, A., Perego, P., Del Borghi, M. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics:carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng.2003,82:370-377
    [96]Zeng, A.P., Biebl, H., Deckwer, W.D. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microbiol Biotechnol.1990b,33:485-489
    [97]Maddox, I.S. Microbial production of 2,3-butanediol. In:Rehm, H.J., Reed, G., Puhler, A., Stadler, P., editors. Biotechnology 2nd Edition. VCH Verlagsgesellschaft, Weinheim. 1996, P.269-291
    [98]Aristos, A., et al. Metabolic flux analysis of Escherichia coli expressing the Bacillus subtilis acetolactate synthase in batch and continuous cultures. Biotech Bioeng.1999, 63(6):737-749
    [99]Ji, X.J., et al. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technol.2009,100:3410-3414
    [100]Zeng, A.P. Utilization of the tricarboxylic acid cycle, a reactor design criterion for the microaerobic production of 2,3-butanediol. Biotech Bioeng.1992,40:1078-1084
    [101]Kosaric, N., Magee, R., Blaszczyk, R. Redox potential measurement for monitoring glucose and xylose conversion by Klebsiella pneumoniae. Chem Biochem Eng Q.1992, 6:145-152
    [102]Zeng, A.P. Biobl, H., Deckwer, W.D.2,3-butanediol production by Enterobacter aerogenes in continuous culture:role of oxygen. Appl Microbiol Biotechnol.1990a, 33:264-268
    [103]Nakashimada, Y., et al. Optimization of dilution rate, pH and oxygen supply on optical purity of 2,3-butanediol produced by Paenibacillus polymyxa in chenostat culture. Biotechnol Lett.1998,20:1133-1138
    [104]Moes, J., et al. A microbial culture with oxygen sensitive product distribution as a potential tool for characterizing bioreactor oxygen transport. Biotechnol Bioeng.1985, 27:482-489
    [105]Ramachandran, K.B., Goma, G Effect of oxygen supply and dilution rate on the production of 2,3-butanediol in continuous bioreactor by Klebsiella pneumoniae. Enz Microbiol Technol.1987,9:107-111
    [106]Vollbrecht, D. Oxygen dependent switch over from respiratory to fermentative metabolism in the strictly aerobic Alcaligenes europhus. Eur J Appl Microbiol Biotechnol.,1982,15:177-184
    [107]Perter, B., Beronio, Jr., Tsao, G.T. Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol Bioeng. 1993,43:1263-1269
    [108]Franzen, C.J., ALBERS, e., Niklasson, C. Use of the inlet gas composition to control the respiratory quotient in microaerobic bioprocesses. Chem Eng Sci.51:3391-3402
    [109]Pirt, S.J., Callow, D.S. Exocellular product formation by microorganisms in continuous culture. I. Production of 2,3-butanediol by Aerobacter aerogenes in a single stage process. J Appl Bacteriol.1958,21:188-205
    [110]Wei, C.J., et al.2,3-butanediol production of immobilized Enterobacter aerogenes IAM1133 with K-carrageenan. J Ferment Technol.1980,58:123-127
    [111]Zeng, A.P., Biebl, H., Deckwer, W.D. Production of 2,3-butanediol in a membrane bioreactor with cell recyle. Appl Microbiol Biotechnol.1991,34(4):463-468
    [112]Lee, H.K., Maddox, I.S. Continuous production of 2,3-butanediol from whey permeat using Klebsiella pneumoniae immobilized in calcium alginate. Enzyme Micro Technol. 1986,8:409-411
    [113]Ghosh, S., Swaminathan, T. Optimization of process variables for the extractive fermentation of 2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology. Chem Biochem Eng.2003,17(4):319-325
    [114]Anwari, M., Khayati, G In situ recovery of 2,3-butanediol from fermentation by liquid-liquid extract. J Ind Microbiol Biochemnol.2009,36:313-317
    [115]Eitman, M.A., Miller, J.H. Effect of succinic acid on 2,3-butanediol production by Klebsiella oxytoca. Biotechnol Lett.1995,17:1057-1062
    [116]Yu, E.K. Deschatelets, L., Louis-Seize, G, Saddler, J.N. Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum. Appl Environ Microbiol.1985,50:924-929
    [117]Blomqvist, K., et al. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol.1993,175:1392-1404
    [118]Mayer, D., Schlensog, V., Bock, A. Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena. J Bacteriol. 1995,177:5261-5269
    [119]Kovacikova, G, Skorupski, K. Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholera tcpPH promoters. Mol Microbiol.2001,41:393-407
    [120]Kovacikova, G., Skorupski, K. Binding site requirements of the virulence gene regulator AphB:differential affinities for the Vibrio cholera classical and El Tor tcpPH promoters. Mol Microbiol.2002a,44:533-547
    [121]Kovacikova, G., Skorupski, K. Regulation of virulence gene expression in Vibrio cholera by quorum sensing:HapR functions at the AphA promoter. Mol Microbiol. 2002b,46:1135-1147
    [122]Kovacikova, G., Lin, W., Skorupski, K. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol.2005, 57:420-433
    [123]Nicholson, W.L. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl Environ Microb.2008,74:6832-6838.
    [124]Mallonee, D.H., Speckman, R.A. Development of a mutant strain of Bacillus polymyxa showing enhanced production of 2,3-butanediol. Appl Environ Microbiol.1988, 54:168-171
    [125]Henriksen, C.M., Nilsson, D. Redirection of pyruvate catabolism in Lactococcus lactis by selection of mutants with additional growth requirements. Appl Microbiol Biotechnol.2001,56:767-775
    [126]DeModena, J.A., et al. The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technol.1993,11:926-929
    [127]Buddenhagen, R.E., Webster, D.A., Stark, B.C. Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnol Lett.1996,102:695-700
    [128]Geckil, H., et al. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst Eng. 2004,26:325-330
    [129]Yang, G, Tian, J.H., Li, J.L. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol.2007,73:1017-1024
    [130]Ji, X.J., Huang, H., Li, S., Du, J., Lian M. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett. 2008,30:731-734
    [131]Ji, X.J., et al. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol.2009, online
    [132]Ui, S. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett Appl Microbiol.2004,39:533-537
    [133]Zheng, Y., et al. One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae. J Chem Technol Biotechnol. 2008a,83:1409-1412
    [134]Grimont, P.A., Grimont, F., De Rosnay, H.L. Taxonomy of the genus Serratia. J Gen Microbiol.1977,98(1):39-66
    [135]Grimont, P.A., Grimont, F. The genus Serraia. Annu Rev Microbiol.1978,32:221-248
    [136]Von Graevenitz, A. Fastidious gram-negative, facultatively anaerobic rods:a renewed interest. Eur J Clin Microbiol.1984,3(3):223-224
    [137]Cohen-Kupiec, R., Chet, I. The molecular biology of chitin digenstion. Curr Opin Biotechnol.1998,9(3):270-277
    [138]Long, Z.D., Xu, J.H., Jiang, P. Significant improvement of Serratia marcescens lipase fermentation, by optimizing medium, induction, and oxygen supply. Appl Biochem
    Biotech.2007,142:148-157
    [139]Li, H., et al. Serratia marcescens gene required for surfactant Serrawettin W1 production econdes putative aminolipid synthetase belonging to nonribosomal peptide synthetase family. Microbio Immunol.2005,49(4):303-310
    [140]Van Houdt, R., Givskov, M., Michiels, C.W. Quorum sensing in Serratia. FEMS Microbiol Rew.2007,31:407-424
    [141]Williamson, N. et al. The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol.2006,4:887-899
    [142]Neish, A.C., et al. Production and properties of 2,3-butanediol. XVIII, Dissimilation of glucose by Serratia marcescens. Can J Res.1947,25:65-69
    [143]Bahadur, K., Dube, J.N. Study of 2,3-butanediol formation by Serratia marcescens. Arch Microbiol.1958,32:16-19
    [144]Wei, M.L., Webster, D.A., Stark, B.C. Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene:alterations in fermentation pathways. Biotechnol Bioeng.1998,59(5):640-646
    [145]Van Houdt, R., et al. N-Acyl-L-homoserine lactone quorum sensing controls butanediol fermentation in Serratia plymuthica RVH1 and Serraiia marcescens MG1. J Bacteriol. 2006,188:4570-4572
    [146]Van Houdt, R., Aertsen, A., Michiels, C.W. Quorum-sensing-dependent switch to butanediol fermentation prevents lethal medium acidification in Aeromonas hydrophila AH-1N. Res Microbiol.2007,158:379-385
    [147]马成伟,杜彤,孙亚琴,修志龙.生物转化法生产2,3-丁二醇的研究.精细与专用化学品.2006,14(15):15-18
    [148]张刚,杨光,李春,斐海生,曹竹安.生物法生产2,3-丁二醇研究进展.中国生物工程杂志.2008,28(6):133-140
    [149]Qureshi, N., Meagher, M.M., Hutkis, R.W. Recovery of 2,3-butanediol by vacuum membrane distillation. Sep Sci Technol.1994,29:1733-1748
    [150]Othmer, D.F., et al. Liquid-liquid extraction data:system used in butadiene manufacture from butylenes glycol. Ind Eng Chem.1945,37:890-894
    [151]Verhue, W.M., Tjan, F.S.B. Study of the citrate metabolism of Lactococcus lactis subsp. Lactis biovar diacetylactis by means of 13C nuclear magnetic resonance. Appl Environ Microbiol.1991,57(11):3371-3377
    [152]Cogan, M.. Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis subsp. Diacetylactis. J Dairy Res.1981,48:489-495
    [153]Jonas, H.A., Anaers, R.F., Jago, G.R. Factors affecting the activity of the lactate dehydrogenase of Streptococcus remoris. J Bacteriol. 1972,111(2):397-403
    [154]Kaneko, T., Takahashi, K., Suzeuki, H. Acetoin fermentation by citric-positive Lactococcus lactis subsp. Lactis 3022 grown aerobically in the presence of Hemin or Cu2+. Appl Environ Microbiol.1990,56:2644-2649
    [155]Nasstt, N., et al. Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. Lactis biovar diacetylactics. Appl Environ Microbiol.1993,59(6):1893-1897
    [156]Brien, R.W.O. Effect of aeration and sodium on the metabolism of citrate Klebsiella aerogenes. J Bacteriol.1975,122(2):468-473
    [157]Buswell, J.A. Metabolism of phenol and cresols by Bacillus stearotherphilus. J Bacteriol.1975,124(3):1077-1083
    [158]Speckman, R.A., Collins, E.B. Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol.1968,95(1):174-180
    [159]Brown, T.D.K., Pereira, C.R.S., Stromer, F.C. Studies of the acetate kinase-phosphotransacetylase and the butanediol-forming systems in Aerobacter aerogenes. J Bacteriol.1972,112(3):1106-1111
    [160]Fond, O., Jansen, N.B., Tsao, G.T. A model of acetic acid and 2,3-butanediol inhibition of the growth and metabolism of Klebsiella oxytoca. Biotechnol Lett.1985,7:727-732
    [161]Renna, M.C., et al. Regulation of the Bacillus subtilis alsS, alsD and alsR genes involved in post-exponential phase production of acetoin. J Bacteriol.1993, 175:3863-3875
    [162]Zheng, Z.M., et al. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng. 2008,100(5):923-932
    [163]Xu, Y.Z., et al. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng.2009,104(5):965-972.
    [164]纪晓俊,黄和,朱建国,高振,周慧.1,3-丙二醇发酵过程中pH调控策略研究.武汉理工大学学报.2007,29(3):75-78
    [165]Wei, Y.H., et al. Biosurfactant production by Serratia marcescens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein. Biotechnol Lett,2004,26:799-802
    [166]Miller, J.H. Experiments in molecular genetics. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory Press.1972
    [167]Rombel, I.T., Sykes, K.F., Rayner, S., Johnston, S.A. ORF-FINDER:a vector for high-throughput gene identification. Gene.2002,282:33-41
    [168]Thompson, J.D., Higgins, D.G., Gibson, T.J. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and wight matrix choice. Nucleic Acids Res.1994, 22(22):4673-4680
    [169]Chumakov, K.M., Iushmanov, S.V. [A principle of maximum topological similarity in molecular systematics]. Mol Gen Mikrobiol Virusol.1988,3:3-9
    [170]Vihinen, M., et al. MULTICOMP:a program package for multiple sequence comparison. Comput App1 Biosci.1992,8(l):35-38
    [171]Brodskii, L.I., et al. [GeneBee-NET:An Internet based server for biopolymer structure analysis]. Biokhimiia.1995,60(8):1221-1230
    [172]Voges, O. and Proskauer, B. Beitrage zur Ernahrungsphysiologie und zur Differential Diagnose der Bacterien der hemorrhagischen Septicamie. Z. Hyg. Infektionskrankh. 1898,28:20-32
    [173]Werkman, C.H. An improved technique for the Voges-Proskauer test. J Bacteriol.1930, 20:121-125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700